
Windtalking Computers:
Frequency Normalization, Binary Coding Systems, and

Encryption

Givon Zirkind
B.Sc., Computer Science, Touro

College; M.Sc. Computer Science,
Fairleigh Dickinson University

givonz@hotmail.com

ABSTRACT
The goal of this paper is to discuss the application of known
techniques, knowledge and technology in a novel way, to
encrypt computer and non-computer data. There are two
distinct and separate methods presented in this paper.

Method 1: Alter the symbol set of the language by adding
additional redundant symbols for frequent symbols. This will
reduce the high frequency of more commonly used symbols.
Hence, frequency analysis upon ciphertext will not be possible.
Hence, neither will decryption be possible.

Method 2: [A prerequisite to understanding this method is to
understand that there is a difference between a binary
representation and base 2.] To-date most computers use the
binary base 2 (base2) and most encryption systems use ciphering
and/or an encryption algorithm, to convert data into a secret
message. The method of having the computer “speak another
secret language” as used in human military secret
communications has never been imitated. The author presents
the theory and several possible implementations of a method for
computers for secret communications analogous to human
beings using a secret language or; speaking multiple languages.
This is done by using a binary base other than base 2. Ex.
Fibonacci, Phi or Prime.

In addition, steganography may be used for creating alternate
binary bases. This has no mathematical resolution if
implemented with randomness.

This kind of encryption scheme proposed significantly increases
the complexity of and the effort needed for, decryption. First
the binary base must be known. Only then, can decryption
begin.

This kind of encryption also breaks the transitivity of plaintext-
codebook-binary. Or, the correlation between letters-ASCII-
base2. With this transitivity broken, decryption is logically not
possible. (This is discussed and explained in detail.)

Coupled together with encrypting the plaintext, binary
encryption makes decryption uncrackable, produces false
positives—information theoretic secure, and requires much more
computing power to resolve than is currently used in brute force

decryptions. Hence, my assertion that these combination of
methods are computationally secure—impervious to brute force.

As every methodology has its drawbacks, so too, the proposed
system has its drawbacks. It is not as compressed as a base 2

would be. (Similar to adding random padding to the
encryption.) However, this is manageable and acceptable, if the
goal is very strong encryption:

At least two of the general methods and their various
implementations herein proposed are not decryptable by method
– uncrackable – by conventional, statistical means.

Specifically:

1. Creation of new symbol sets is used to alter and
confound the natural symbol frequency.

2. Also, alternate binary encryptions other than binary
base 2 are used.

Using alternate binary encryptions lend easily to the creation of
new symbol sets and the confounding frequency analysis.

All rights reserved. Originally Written April 28, 2008.
All rights reserved. Revised June 28, 2012

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures – Data abstraction
E.0 [Data]: General
E.3 [Data]: Encryption
E.3 [Data]: Encryption – Code Breaking
E.m [Data]: Miscellaneous
F.2.0 [Theory of Computation]: Analysis Of Algorithms And
Problem Complexity – General
F.2.1 [Theory of Computation]: Analysis Of Algorithms And
Problem Complexity – Numerical Algorithms and Problems –
Number-theoretic computations
F.2.2 [Theory of Computation]: Analysis Of Algorithms And
Problem Complexity – Nonnumerical Algorithms and Problems
– Pattern matching
F.2.m [Theory of Computation]: Miscellaneous
H.0 [Information Systems]: General
H.1.0 [Information Systems]: Models and Principles – General

H.1.1 [Information Systems]: Models and Principles – Systems
and Information Theory – Information Theory

Mathematics Subject Classification
 94A60 Cryptography
14G50 Applications to coding theory and cryptography
General Terms
Algorithms, Decryption, Encryption, Design, Reliability,
Security.

Keywords
Binary Coding, Binary Encryption, Data Encryption,
Decryption, Encryption, Fibonacci, Fibonacci Representation,
Golden Mean, Golden Mean Base, Phinary, Secret Encryption

1. INTRODUCTION

1.1 Revisions:

This article was originally published in April 2008. The article
did not pass peer review. I self published on the web. Also,
after years of not being able to pass peer review in academic
circles; I sought support from the hacker community (white &
gray hat only) to attempt to crack a sample encrypt. Possibly, by
setting up a distributed net to attempt a brute force decrypt. I
did not say how to attempt or program that brute force decrypt.
(My methods are known and available from the ACM archive,
part of the Cornell archive.) Over time, I have gotten several
comments about the article. These comments can be divided
into categories. Also, there are some comments that reoccur.
This revised article is to address the category of statements and
the commonly reoccurring statements. A lot of history and
anecdotes have been removed from this article. Many examples
have been deleted from this article. The Abstract has been
revised, reformatted and has many additions. A lot of
information has been removed in the hopes of simplification and
clarity. The original can be found at
http://arxiv.org/abs/0912.4080

I fully understand the resistance to someone making the claim to
having made an advance in the field of encryption. I fully
understand the oft asserted claim of making an encryption that is
uncrackable. Which is why I always preface my emails and
articles, with a brief bio, of my academic background as well as
the fact that I own a patent in data compression. Data
compression inherently involves encryption. Along with the
achievement of having solved a compression with a 20 year
standing engineering prize. Also, since the claim is tall, I had all
my colleagues review the article before submitting to any
journal.

Even thought the claim is tall, intellectual probity demands
actually reading an article before assuming it is bunk. Real
refutations require stating the premise and steps of the logical
proof, THEN; demonstrating that either the premise or one of
the steps of the logical proof are false. Detractors that don’t do
that, are not valid detractors. Detractors who say, as some PhDs

in cryptography have said, ‘Your math is potentially ok.’ But,
refuse to accept my conclusions, do not have probity. [Or,
perhaps they are government hacks trying to dissimulate? So,
more uncrackable encryption methods will not be available to
the public?]

I readily admit cryptography is not my forte. At the same time, I
am not ignorant of the subject either.

If a scientist is to have true probity, he has to actually read the
article before rejecting the method. I have received many
offhanded, spurious dismissals. No one can read a technical
article of this length in 5 minutes. I accept those offhanded
dismissals as a fact of life. Arrogance. Intellectual arrogance.
Professorial arrogance. Scorn of a presumptuous neophyte. Not
as a real refutation.

The honest and good say they are not interested in evaluating
such a tall claim and are not going to read such a paper. – I can
accept and appreciate that.

I will note a significant aspect of the rejections so far. The more
academic or government related the reviewer the less academic
and more personal of an attack, the rejection is. Many
prejudicial assumptions are made—of me personally or my
claims. The ultimate of course is the exasperated, “it doesn’t
make sense” without explanation. Remember, especially in the
U.S., schools and research centers are heavily government
funded, especially in the field of cybersecurity. The less
government affiliated the reviewer – business person (sysadmin
or security professional) or tech writer or hacker (or the term
cracker if you prefer as a non-malicious curious individual) – the
more they understand.

Also, by simple comments and questions, I can tell:

1. If someone actually read the article. Any reviewer that
discusses and rejects my method—singular—has
either not read the article, nor understood it. All
except one reviewer [Travis H.] has mentioned just
one method. That reviewer did NOT give an
offhanded dismissal to my claims. Not to say he
agrees. But to say, he warrants reading the article and
contemplating the processes discussed.

2. If someone understands the heart of the linguistics and
math involved or not.

First, I describe two basic categories of encryption. That is
mentioned in the title. Frequency normalization is the first. I
devote an entire section to this one process. Even laymen get
that.

First Method: Frequency normalization is a common
mathematical term also employed in physic, probability and
other fields. As the basis of decryption is to look for the natural
frequency of letters in a ciphertext—basing an encryption
process upon the efficacy of confounding the natural frequency
of letters is something I will not belabor an explanation. This is
fundamental to cryptography.

Once the frequency has been normalized, then standard
encryption techniques are applied. The binary techniques here

http://arxiv.org/abs/0912.4080

may be applied also for good measure. But once the frequency
has been normalized; and then the plaintext encrypted; the
frequency analysis commonly employed in decryption will be
of no avail.

Only one person [from the Cryptography listed in the
acknowledgements] commented, so far has asked me why you
must change the symbol set. At least he asked the right
question. The answer is the heart of the first encryption process.
Without changing the symbol set, confounding the natural
frequency is not possible. (Perhaps reading my article, [ZIR01]
on data compression might help explain why. Read the section
that describes, why serial compression will not gain in
compression.)

This method of enciphering or encoding or encryption (each
word has its own technical meaning is this list) by altering the
symbol set has never been used in the field of encryption. All
the reviewers –like one reviewer for the American Mathematical
Society (AMS)—who said, ‘No one has ever done it this way
before.’ Only confirms my assertion of the novelty of the
encryption methods I propose.

If no other encryption would be employed together with
frequency normalization, then decryption would involve:
guessing which sets of letters represent the original letter; then
observing if the words created are in the dictionary and if the
entire message makes sense.

This decryption should be, I believe, information theoretic.
There would be false positives. While I have not calculated the
probabilities or statistics, the simple number of combinations
would seem to me, to generate some false positives.

Decrypting this method alone may or may not be
computationally secure. This method alone may not be
impervious to brute force. [A human could easily decrypt this.
A computer would require lots of guessing and may not be able
to guess right.] But, coupled with any other encryption—of any
kind—even the simplest—it would be logically “uncrackable”
and beyond brute force decryption.

Second method: Involves breaking the transitivity of letter—
codebook—actual binary representation. Commonly, letter—
ASCII-base 2. [Explained in depth in the article.] This is done
with a combination of two techniques:

1. A choice of encryption of the letter or using a different
codebook (reference chart, ex. EBCIDIC instead of
ASCII) or both changing the codebook along with
encrypting the letter.

2. Encrypting the binary.

Encrypting the binary must be done in a way that has no
mathematical relationship to the encryption of the codebook.
Otherwise, transitivity is maintained. This is explained in depth
in the article.

Encrypting the binary is done either with steganography or; by
using other natural bases –other than base 2—which can be
represented in binary. (Ex. Fibonacci and Phinary) This is
discussed in depth in the article.

[Steganography in computers is not new. [JOH001] People
have been embedding messages in the bytes of JPEGs and
pictures for decades. The particular technique of computer
steganography I propose in my examples may or may not have
been used before. I have not heard of its use before. I have not
researched its existence or use. I will leave the priority usage to
computer historians to judge.]

One very intellectual commentator [Travis H.] stated that
without randomness, the steganography is crackable.

True. While randomness can be implemented into the
technique, I intentionally leave out how to implement
randomness in this technique. Suffice to say, randomness can
be built into the steganography. However, in my original article I
discuss the subject when discussing using big and little endian as
steganographic techniques. Also, I did mention “changing the
masks”. Bear this in mind when reading that section.

Some individuals who reviewed the article, told me, that unless
randomness was introduced—which must be done by padding
—the method would be crackable. The original article discusses
this too. (That section has been preserved as Section 7, “Infinite
Combinations”, in this article.) That when encrypting the binary
from base 2 to another binary base, padding is a natural
consequence. Padding is also a natural consequence of the
steganography.

It is obvious if you look at the pictures in the article, that the
steganography pads the ciphertext.

1.2 Amended From Original Introduction:

The order of several sections have been change so that the
presentation of methods will match the order of the methods
listed in the title.

Reordering the material included renumbering the tables.
Although the table references were proof read, there may be
some errata in the references.

Two major section headings have been added to indicate where
those methods are being discussed.

A section has been added explaining with changing the symbol
set is not decryptable by brute force.

In a previous published article, I mentioned parenthetically, in a
discussion of compression and encryption, that the exchange of
symbol sets (ciphering) does not alter the frequency of the
symbols [ZIR01]. Hence, the original symbol set can always be
ascertained from an enciphered text [KAH05]. Intrinsically
altering the symbol set is one way to truly encrypt a linguistic
message. This article discusses the process of altering the
linguistic symbol set and the impact that altering the linguistic
symbol set has upon encryption. In addition, this article
discusses how to encrypt the binary numeric representation,
exclusive of the alphabetic encryption and; the impact binary
numeric encryption has upon decryption. I.e. Producing a very
strong encryption that can not be decrypted, certainly not
methodically by process.

[The linguistic symbol set would be letters as opposed to a
numeric symbol set of numerals.]

I have made it (non-decryptable or uncrackable encryption)
much easier and more practical than one time key encryption.

What I have done, improved upon, is, that practically speaking,
one time key encryption can now be decoded by guessing. That
is what brute force methods do. I have increased the guessing
possibilities astronomically. Whether supercomputers or
distributed networks can crack these encryption methods,
remains to be seen.

On another level, what I have done is to advance the level of
intelligence in language. There can be no intelligence without
language. [WHO01] Language inherently involves intelligence
and the expression of ideas. [WHO01] One of the chief
methods that language employs in expressing ideas and using
intelligence is comparison and categorization. [WHO01].
Language involves the expression of covert as well as overt ideas
and concepts. [WHO01] Which, is done by categorization.
[WHO01] Encryption, in a regard, involves a high level of
intelligence, linguistically speaking, by making extremely covert
categories. The reverse, decryption, involves a high level of
intelligence, by recognizing the hidden patterns of language in a
seemingly mass of chaos. What I have done, is to raise our level
of intelligence to the point, that even though there is an overt
chaotic mass, in which we can not see the intelligence, at least
(upon generation) we can categorize the different, non-
interpretable (non-decryptable) chaotic masses containing
intelligence.

[One professor commentator said that he has no idea what I am
talking about. But, suggested that perhaps I was talking about
using chaos theory for encryption. His comment implied been
there done that. To be clear, although I did use the word chaos
in the previous paragraph, the methods I propose, do not,
intentionally have anything to do with chaos theory. This all
about logic, math and linguistics.]

This is the indicator to understanding this paper. When one
reads this presentation, one should understand, that there are
many examples of several new methods. If one sees just one
method, one has to study the paper further. [I have adjusted the
titles to make this clear.]

Writing is a relationship and correspondence between sounds,
lexicons and written symbols. The permutations and
combinatorics of all the possible sounds, to make as many
words as we need, is a necessity of communication. Those
permutations and combinations must be defined and limited by
the natural phenomenon of what the mouth can utter and the ear
can hear. Permutations and combinatorics are math. A lexicon
and grammar relate objects (words). Relationships are logic. So,
math and logic are an intrinsic part of communication. When
you can no longer do the math and; there are no relationships
(It’s illogical.); then, there can be no communication. That is
encryption.

1.3 Responses to Additional Comments

→ At this point it is fitting to answer a common comment about
my work, “Why would I want to use non-decryptable
encryption? Why would I want to encrypt something that I

could not decrypt?” To take this comment seriously, it is a gross
misunderstanding of encryption and; an ignorance of the
fundamental concept of encryption. Any encryption or
enciphering or encoding (these are three distinct technical terms
chosen specifically for a reason), is designed to be non-
decryptable—to the uninitiated. But the sender and receiver will
have the keys and methods to decrypt.

Obviously, I did not intend to produce total gibberish that can
never be understood again.

Obviously, I did not intend that there should be no reverse
process for decryption.

What I intended by “non-decryptable by method” is
“uncrackable”.

What I intended is, that if you do not have the keys and you do
not know the exact methods of encryption (the alpha & binary),
then, you can not decrypt the message. Even with the advanced
computing power of the today. Your information is secure.
That is what encryption is all about.

→ One comment and misconception that constantly arises is a
misunderstanding of terms. In the original paper I used the term
“non-decryptable by method”. Apparently, this is an old term,
no longer used. The term “uncrackable” or “unbreakable”
seems more appropriate.

[Jeremy Stanley, commented on Jack Lloyd’s Cryptography list,
that he was not able to find the expression “non-decryptable by
method” in literature. I responded, that I had used the term from
the original patent for one time key pad from the 1930s. So, I
have gone with the suggestion “uncrackable”.]

He also asserts that this would seem an exaggeration. Because
of brute force. True. But, it is no more an exaggeration than the
ability to decrypt one time key pad. And, if you need more
computing power than currently available—a common fallback
for many encryption schemes—than this new method is no
exaggeration. That is why we constantly hunt for bigger &
bigger prime numbers. To require more computing power to
decrypt, than is currently available.

→ As for not having passed peer review in the past:

The so-called refutations lack any logical and mathematical
refutation.

One absurd declaimer said, that my math is potentially ok but he
doesn’t know what I am talking about. A clear contradiction. If
my math is ok, then, I am right? Ne c’est pas?

All these so-called refutations say that encryption was never
done this way before. So my claim of novel techniques is
certainly valid.

→ Previously, I had a lengthy discussion in the introduction
about releasing the genie from the bottle. That in our age of
terrorism, cybercrime, cyberwarfare, would it be prudent –if I
really had found a new uncrackable, unbreakable encryption—
would it be prudent to publish a paper about it? Well, if the
academic community and tremendously funded government

agencies entrusted to this science say I am full of hokum, then
the release of this information and techniques is of no moment
—certainly of no moment to governments.

→ Here I will add some history, that I did not mention in the
original version. This history is now appropriate:

When David Kahn, a newpaper reporter, wrote his “History of
Cryptography”, an excellent work for an amateur and a good
primer for encryption, the NSA (National Security Agency, U.S.)
maligned him as an amateur and his work as incorrect. If so,
why was the NSA pressuring the publisher not to publish his
book? When the NSA asked for the removal of certain
information which they considered sensitive—which was public
record anyway—the author simply agreed. [BAM01] The NSA
could have chosen the correct, civil and polite method. It didn’t
need to be nasty, maliciously degrading and maliciously
discrediting.

I believe we are witnessing a repeat performance by the NSA
and other government types of attacking law abiding citizens,
who are not part of the government cryptographic apparatus.
Today, this runs counter to the federal law in the U.S., the
Cybersecurity Act. It would behoove the U.S. government and
other governments to work with intelligent and talented, law
abiding private individuals. Rather than, attacking and harassing
them.

For this reason, I have eliminated any apologies for unleashing a
new “uncrackable” encryption method. I intentionally
submitted prior versions of my article to journals inside the U.S.
only. (Where was living at the time.) However: If the academic
community can not understand my presentation; then I am not
to blame for disseminating gibberish. If the government with all
their experts, can not understand my presentation, their loss. I
was intentionally obfuscating, but included enough for
intelligent, open minded people knowledgeable in the field to get
it. If hackers got it, while the government and academics didn’t;
the governmentals and academics need to rethink their position
and academic status. If the hackers have already understood,
then the genie is already out of the bottle. This article, written
with clarity intended, should not cause any clamor about
unleashing a new “unbreakable” encryption method.

I am reminded of the anecdote of the man who’s car has engine
trouble. He brings his car to his mechanic. His mechanic can’t
find the problem. His car breaks down on the highway. He goes
to get help. By the time a tow truck comes to tow his car to a
garage, his car is stolen. What the mechanics couldn’t fix for
weeks, the thieves could fix in a minutes!

Had the government chosen the correct path of classification and
restriction of technology, as a law abiding citizen I could have
accepted that. Although, with all the cyrberattacks and
cybercrime, in my opinion, John Q. Public deserves better
encryption and security than the government is allowing or;
industry is providing.

Since, there are issues to implementation, which I have not
explained how to overcome, that is sufficient for my conscience
for not having released the genie from the bottle. Because, no
one who understands the process, so far, has been able to
overcome the obstacles to implementation. (Also, omitting

several equations that I had to conceive as well as an integral
mathematical concept.)

2. FREQUENCY NORMALIZATION
2.1 CHANGING THE SYMBOL SET

As I stated and partially explained above as well as in a previous
article [ZIR01], what is necessary for compression and
encryption is to change the symbol set. For example, if the
English text were replaced with the international phonetic
alphabet, there would be more letters altogether and less of some
regularly written letters. I.e. The dipthong “ch” would be
replaced by one symbol. Now this new symbol appears, with its
own frequency. And, the frequencies of ‘c’ and ‘h’ have been
changed. Because, ‘c’ and ‘h’ no longer appear where ‘ch’
appears – the dipthong has been replaced by a new symbol.1

This substitution technique is also well known in cryptography.
It does complicate matters. [KAH12] [KAH13] [VAU03]

Applying this knowledge to the premise of this paper: The
properties of the binary symbol set are altered so that the
alphabetic symbol set is altered in a way that “normalizes” the
frequency of the letters. This is a completely novel approach to
encryption. This encryption method does not use a key per se;
although one must have the translation table.

What I am proposing is: Add extraneous, “useless” binary
numbers to create extra symbols to alter the frequency. Then
encryption methods are used on the letters of the original text, to
produce a ciphered text that includes new identity letters which
do not have the frequency analysis of English. This would be
sufficient to not be decryptable. But, in addition to altering the
frequency, the ciphered text is (for example) then translated to
binary base 2 which is enciphered in base Fibonacci. With
extraneous numbers?! – Then, the encryption is very strong and
not decipherable!

Example:

Returning to the “The quick brown fox jumped lazily over the
sleepy dog.” Let’s say, I replace some of the ‘e’s with another,
new, symbol. E.g. “The quick brown fox jumpφd lazily over
thφ sleφpy dog.” I have achieved several things. Most
importantly, the frequency analysis is now confounded. The
letter ‘e’ is no longer the most frequent letter. If I would now
engage in some kind of enciphering, there is no way to get back
to the original message by frequency analysis. [Nor, is there any
other method that I can think of, that will reverse the process

1 See citations [WIK10] & [WIK11] for more information on
the International Phonetic Alphabet (IPA), as well as a link for
a chart of the IPA.

without knowing the codebook encryption process. (The extra
symbols and what they replace.)]

In a sense, this kind of encoding is a CAPTCHA. When a
human sees this encryption, a human knows that it is seeing an
encryption and; what is encrypted. But, a computer, using
dictionary attacks, by trying to match the letter patterns of words
in a dictionary will not. The computer can only offer the human
a possible, but not definite, decryption.

Notice how “the” and “thφ” are now 2 different words. The
confusion begins.

If I follow the procedure through, and apply the technique to the
2nd most frequent letter, “O”, then the sentence now looks like:
“The quick brown fψx jumpφd lazily over thφ sleφpy dψg.”

Look at Tables 1A, 1B & 1C, below comparing the 3 frequencies
for the 3 different enciphering methods:

Frequency for unaltered text.

Letter Tally Frequency

E 6 6/44 = 13.6%

O 4 4/44 = 9.0%

L 3 3/44 = 6.8%

D 2 2/44 = 2.5%

H 2 2/44 = 2.5%

I 2 2/44 = 2.5%

R 2 2/44 = 2.5%

T 2 2/44 = 2.5%

U 2 2/44 = 2.5%

A 1 1/44 = 2.3%

B 1 1/44 = 2.3%

C 1 1/44 = 2.3%

F 1 1/44 = 2.3%

G 1 1/44 = 2.3%

J 1 1/44 = 2.3%

K 1 1/44 = 2.3%

M 1 1/44 = 2.3%

N 1 1/44 = 2.3%

P 1 1/44 = 2.3%

Q 1 1/44 = 2.3%

S 1 1/44 = 2.3%

V 1 1/44 = 2.3%

W 1 1/44 = 2.3%

X 1 1/44 = 2.3%

Y 1 1/44 = 2.3%

Z 1 1/44 = 2.3%

Table 1A

Frequency with one
additional new letter.

Letter Tally Frequency

O 4 4/44 = 9.0%

E 3 3/44 = 6.8%

L 3 3/44 = 6.8%

D 2 2/44 = 2.5%

H 2 2/44 = 2.5%

I 2 2/44 = 2.5%

R 2 2/44 = 2.5%

T 2 2/44 = 2.5%

U 2 2/44 = 2.5%

A 1 1/44 = 2.3%

B 1 1/44 = 2.3%

C 1 1/44 = 2.3%

F 1 1/44 = 2.3%

G 1 1/44 = 2.3%

J 1 1/44 = 2.3%

K 1 1/44 = 2.3%

M 1 1/44 = 2.3%

N 1 1/44 = 2.3%

P 1 1/44 = 2.3%

Q 1 1/44 = 2.3%

S 1 1/44 = 2.3%

V 1 1/44 = 2.3%

W 1 1/44 = 2.3%

X 1 1/44 = 2.3%

Y 1 1/44 = 2.3%

Z 1 1/44 = 2.3%

Table 1B

Frequency with two additional
new letters.

Letter Tally Frequency

E 3 6/44 = 6.8%

L 3 3/44 = 6.8%

D 2 2/44 = 2.5%

H 2 2/44 = 2.5%

I 2 2/44 = 2.5%

O 2 2/44 = 2.5%

R 2 2/44 = 2.5%

T 2 2/44 = 2.5%

U 2 2/44 = 2.5%

A 1 1/44 = 2.3%

B 1 1/44 = 2.3%

C 1 1/44 = 2.3%

F 1 1/44 = 2.3%

G 1 1/44 = 2.3%

J 1 1/44 = 2.3%

K 1 1/44 = 2.3%

M 1 1/44 = 2.3%

N 1 1/44 = 2.3%

P 1 1/44 = 2.3%

Q 1 1/44 = 2.3%

S 1 1/44 = 2.3%

V 1 1/44 = 2.3%

W 1 1/44 = 2.3%

X 1 1/44 = 2.3%

Y 1 1/44 = 2.3%

Z 1 1/44 = 2.3%

Table 1C

Analyzing the data in Table 1, we see that with only one new
symbol, ‘e’ is no longer the most common letter. If we use two
new symbols, ‘e’ is tied in first place with another letter and; ‘o’,
a very frequent number, becomes an ordinary number.

The additional letters are not shown. The additional letters have
the same frequency as the letters they replace. Although, we
could do this differently so that one new twin letter has a higher
frequency, than its additional twin letter. This means, for the
most frequently occurring letter, there is at least two, if not three
letters tied for 1st place.

Would a decryption method start by guessing that some
combination of the most frequent letters is ‘e’? Then, what?

And, if I follow through with the identity replacement procedure,
and apply the technique to punctuation marks, like spacing, then
the sentence now looks like: “Theωquick brownωfψx
jumpφdωlazily overωthφ sleφpyωdψg.” And, if you do not
know where words begin and end, you are missing a big clue in
deciphering. Human beings intuitively know, when deciphering,
if they are seeing words or not and where spaces, breaks
between words, should go. Computers have to do a dictionary
comparison on text and subtext: Guess.

A dictionary comparison creates longer and longer cumulative
length strings, compares them with EVERY word in the
dictionary and; then, decides if a possible word or word, has
been located and a new string should be started for analysis.

E.g. Using the example above, a dictionary comparison would
be done like this:

The secret message is:

“Thequickbrownfoxjumpedlazilyoverthesleepydog.”

“T” – is “T” a word? No. Add a letter.

“Th” – is “Th” a word? No. Add a letter.

“The” – is “The” a word? Yes. Record first word. Start new
word.

“q” – is “q” a word? No. Add a letter.

“qu” – is “qu” a word? No. Add a letter.

“quic” – is “qui” a word? No. Add a letter.

“quic” – is “quic” a word? No. Add a letter.

“quick” – is “quick” a word? Yes. Record second word. Start
new word.

Here we can see the difficulties in this analysis and the
propensity for errors. After having discovered the first four
words, “the”, “quick”, “brown”, “fox”; the next word is “jump”.
Then the analysis becomes unclear. Should there be a look

ahead? If so, how many letters to look ahead? Is it “over” or
“overt”? It could it be “overt he” instead of “over the”. Is slang
included or not? I.e. Is “bro” a word?

True, there are sophisticated dictionary algorithms. But, the
point is that by simply removing the space between words
creates a big obstacle for a computer to decipher. -- Consider
this, removing a space is alteration of the symbol set. There is
now, one less symbol. If half the ‘e’s in the sentence had been
removed, it would be a big alteration.

While computers can figure out, if the string of words
deciphered actually makes sense as a sentence in English; this is
not accurate and is not as sophisticated as a human.

2.2 Frequency Normalization

In addition, to just replacing every other letter, knowing the
letters’ frequencies from tables, etc.; with little effort, one could
parse any given input text, tally all the letters, calculate the
frequency of each letter, and then; create a sufficient amount of
new symbols – identity symbols – to “normalize” enough of the
letters to make frequency analysis impossible! All that would be
required is to randomly replace the given letters with their
corresponding identity letters.

In fact, a very similar method is done in JPEG, with Huffman
coding. [MIA01] [PEN01] The JPEG standard has a feature, to
use Huffman coding. Huffman coding is the most compact
binary encoding. [HUF01] What Huffman coding does, is tally
all the symbols, and assigns the shortest code symbol to the
most frequent symbol to be coded. I.e. The most frequent
letter, for example, will be replaced with a ‘1’. But, Huffman
coding requires parsing the data prior to encoding. This is
necessary to develop the code table. Huffman encoding
produces a table which must be transmitted for decoding. Also,
in JPEG, each new section of data – image frame, will have its
own Huffman table as the frequency of the symbols will change
in each frame. For example, in one frame, you may have
hundreds of red pixels – which will be assigned a ‘1’. And, only
a few white pixels, which may be assigned a ‘1111’. But, in the
next frame, there may be hundreds of white pixels – which will
then be assigned a ‘1’. And, the few red pixels, which will be
assigned a ‘111’.

Since JPEG is not a secret encryption method, there is no
concern about the code table being captured and the data being
decrypted. But, with secret messaging, it will be very important
to protect the code tables. – A disadvantage. But, a common
concern in secret encryption and a concern that is no more
significant than protecting an encryption key.

[In [ZIR01] I discuss JPEG and Huffman encryption in depth.]

Following are possible implementations of this theory:

2.3 Base 2 Binary Frequency
Normalization

Even with regular binary, not all the symbols of the ASCII table
are used. There are enough symbols left over for graphics and
alternate (other language) alphabets (e.g. Greek). What if, for
example, the symbol 253 was also used to represent the letter
‘e’, along with symbol 69?

Following such an insertion of additional identity symbols, with
one simple binary encryption, the entire frequency analysis is
irrevocably confounded! No complex key is needed to make
and keep the message secret!

2.4 Fibonacci Frequency Normalization

Using a more simple and obvious example first: Any positive
integer less than any given Fibonacci number can be had, by
adding up some set of the previous Fibonacci numbers. For
example, the number 6 is not in the Fibonacci sequence, but, it
could be composed of 1+5; or 1+2+3. In fact, adhering strictly
to the Fibonacci sequence; {0, 1, 1, 2, 3, 5….} – the number (big
endian) “010001FIB” (1+5) is not the same as “001001FIB” (1+5)!
It would be a trivial matter to create extra symbols that referred
to the same letter.

There is no one to one correspondence between positive integers
and Fibonacci numbers. – This is one of the beauties of base
Fibonacci. This property alone, becomes very useful for
implementing a frequency normalization encryption scheme as
herein discussed, without any serious extra effort encoding!
Simply pick different sets of numbers to express the ASCII
numbers for any letter – and alternate the set you use! Most
letters will have corresponding ASCII numbers with multiple
corresponding Fibonacci sets.

In addition, if there is no frequency analysis to be had, there is
also no way of knowing which binary system is being used!
For, even if we assume, that the binary system was encrypted,
and; that it would be possible to determine which binary system
was being used; by assuming that we could backtrack from a
valid language letter frequency analysis; after frequency
normalization of the language letter symbol set, that clue – the
language letter symbol frequency – no longer exists. After
frequency normalization, any binary system that does produce a
proper frequency analysis is producing a false positive! You
would not know, that the frequency analysis, did indeed provide
a link to the correct binary system or not.

2.5 An Example of Frequency
Normalization

To give a real example, with a larger sample than one sentence:
Let’s use the abstract of this paper which is only one paragraph.
When that abstract was written, there was no intention of
choosing words so that a special frequency would occur or; that
every letter of the alphabet would be used or; that any letter
would be excluded. It was just written to express a thought.
The text was not adjusted in any way to facilitate encryption or
be an example of any kind. I am positive very similar results will
occur if I choose to work on the King James’ Version of the
Bible or any other text for that matter.

Look at Table 2. It is divided into three sub-tables A, B & C.
Each sub-table has three columns. The leftmost column
contains the letters of the alphabet. The middle column contains
that letter’s tally. The rightmost column expresses that letter’s
tally as a percentage of the total number of letters in the
paragraph.

• The leftmost sub-table is sorted alphabetically.

• The middle table is sorted by percentage, in
descending order. I.e. Most frequent letter first.
Followed by the next most frequent letter. Etc.

• The rightmost sub-table shows what the percentages
would be, if identities had been issued and frequency
normalization applied.

o The additional new identity symbols are not
displayed.

o The frequencies of the new symbols are
assumed to be the same as the letters that
they replace.

o The encryption method applied:

 Adding three additional symbols
to the most frequent letter. Its
frequency is altered as it appears in
the third sub-table.

 Adding two additional symbols to
each of the next, top 9 most
frequent letters. Their frequencies
are also altered as they appear in
the third sub-table.

o Adding new symbols to a given letter, in
effect divides the tally of that given letter.

o The letter ‘e’, having such a high frequency,
was given three new symbols. So, ‘e’, goes
from a frequency of 12% to 3%
(12%/4=3%).

Alphabetized
Frequency
Analysis

Frequency
Analysis Sorted by
Numeric Value

Frequency Analysis
With Identity Letters
Added; Sorted by
Numeric Value

A 67 8.5% E 96 12.1% E 96 3.0%

B 10 1.3% T 75 9.5% T 75 3.2%

C 36 4.5% O 71 9.0% O 71 3.0%

D 26 3.3% A 67 8.5% A 67 2.8%

E 96 12.1% S 64 8.1% S 64 2.7%

F 14 1.8% N 58 7.3% N 58 2.4%

G 21 2.7% I 45 5.7% I 45 1.9%

H 31 3.9% R 41 5.2% R 41 1.7%

I 45 5.7% C 36 4.5% C 36 1.5%

J 0 0.0% H 31 3.9% H 31 1.3%

K 6 0.8% M 29 3.7% M 29 3.7%

L 23 2.9% P 27 3.4% P 27 3.4%

M 29 3.7% D 26 3.3% D 26 3.3%

N 58 7.3% L 23 2.9% L 23 2.9%

O 71 9.0% U 22 2.8% U 22 2.8%

P 27 3.4% G 21 2.7% G 21 2.7%

Q 1 0.1% Y 16 2.0% Y 16 2.0%

R 41 5.2% F 14 1.8% F 14 1.8%

S 64 8.1% B 10 1.3% B 10 1.3%

T 75 9.5% K 6 0.8% K 6 0.8%

U 22 2.8% V 6 0.8% V 6 0.8%

V 6 0.8% W 6 0.8% W 6 0.8%

W 6 0.8% Q 1 0.1% Q 1 0.1%

X 1 0.1% X 1 0.1% X 1 0.1%

Y 16 2.0% J 0 0.0% J 0 0.0%

Z 0 0.0% Z 0 0.0% Z 0 0.0%

Table 2A. Table 2B. Table 2C.

Observations From Sub-Table 2A:

• Some letters do not appear at all!

• The letter ‘e’ appears significantly more often than the
rest.

• The first 10 letters, have a significantly higher
frequency than the other letters.

• Approximately, 6 letters appear very infrequently.

• The average frequency of a letter is 3.9%.

• The standard deviation from the mean frequency is
3.4%

• That any letter appearing with a frequency greater than
the average plus the standard deviation (3.9%
+3.4%=7.3%) is exceptional and unique. I.e. An
identifiable letter.

• In the example above, ‘E’, ‘T’, ‘O’, ‘A’, ‘S’, & ‘N’
are exceptional and unique letters as we would expect.

Observations From Sub-Table 2C:

• Some letters do not appear at all!

• The letter ‘e’ appears as often as any other letter.

• The first 10 letters, with a significantly higher
frequency from Sub-Table 2A, now appear as often as
other letters.

• Approximately, 6 letters appear very infrequently.

• The average frequency of a letter is 2.1%.

• The standard deviation from the mean frequency is 1%

• Letters [‘M’, ‘P’ & ‘D’] appearing with a frequency
greater than the average plus the standard deviation
(2.1%+1%=3.1%) are not exceptional and unique. I.e.
An identifiable letter.

Table 3 below shows two sub-tables. Sub-table A on the left,
shows the letters of the alphabet sorted by their original
frequency prior to any attempts at frequency normalization.
Sub-table B on the left, shows the letters of the alphabet; sorted
by their new frequency if identities had been added to alter the
frequency. We see previously frequent letters buried deep
below. For instance, the frequent ‘i’, looks identical to an ‘f’.
The average ‘m’, now looks like the most frequent letter, an ‘e’.
We see that the frequent ‘e’ is now tied with ‘o’ and, the original
top 10 letters [E,T,O,A,S,N,I,R,C,H], all have the same
approximate frequency. In addition, remember to factor in, the
additional 21 extra identity symbols. There are now, 10 original
+ 21 new symbols = 31 symbols: All with approximately the
same frequency! The entire alphabet has 47 letters in total. (26
letters + 21 new symbols = 47 letters new alphabet)

[Each letter that has twin replacements is having its frequency
divided by 3. So, there is the original symbol, plus 2 new
identity symbols. (1+2=3). This is done for 9 of the first 10
letters. So, 9 x 2 = 18. The letter ‘e’, having such a high
frequency, gets one more identity symbol. I.e. The frequency
for ‘e’ is divided by 4 instead of 3. That requires 3 new symbols.
So, 18 + 3 = 21 new symbols.]

Frequency of Letters with
New Symbol Set –
Displayed in Original
Frequency Order

Frequency of Letters with
New Symbol Set – Displayed
in New Frequency Order

E 96 3.0% M 29 3.7%

T 75 3.2% P 27 3.4%

O 71 3.0% D 26 3.3%

A 67 2.8% T 75 3.2%

S 64 2.7% E 96 3.0%

N 58 2.4% O 71 3.0%

I 45 1.9% L 23 2.9%

R 41 1.7% A 67 2.8%

C 36 1.5% U 22 2.8%

H 31 1.3% S 64 2.7%

M 29 3.7% G 21 2.7%

P 27 3.4% N 58 2.4%

D 26 3.3% Y 16 2.0%

L 23 2.9% I 45 1.9%

U 22 2.8% F 14 1.8%

G 21 2.7% R 41 1.7%

Y 16 2.0% C 36 1.5%

F 14 1.8% H 31 1.3%

B 10 1.3% B 10 1.3%

K 6 0.8% K 6 0.8%

V 6 0.8% V 6 0.8%

W 6 0.8% W 6 0.8%

Q 1 0.1% Q 1 0.1%

X 1 0.1% X 1 0.1%

J 0 0.0% J 0 0.0%

Z 0 0.0% Z 0 0.0%

Table 3A. Table 3B.

Table 4A.

Letters & Identities Sorted by Frequency Prior
to Normalization

Original
Letter or
Identity

Tally
Normalized
Tally of Letter
& Identity

Frequency

as a percent

E 96 24 3.0%

é 24 3.0%

â 24 3.0%

ä 24 3.0%

T 75 25 3.2%

à 25 3.2%

ü 25 3.2%

O 71 24 3.0%

Ç 24 3.0%

ê 23 2.9%

A 67 22 2.8%

ë 22 2.8%

è 23 2.9%

S 64 21 2.7%

Ï 21 2.7%

Î 22 2.8%

N 58 19 2.4%

Ì 19 2.4%

Ä 20 2.5%

I 45 15 1.9%

Å 15 1.9%

É 15 1.9%

R 41 14 1.7%

Æ 14 1.7%

Æ 13 1.6%

C 36 12 1.5%

Ô 12 1.5%

Ö 12 1.5%

H 31 10 1.3%

Ò 10 1.3%

Û 11 1.4%

M 29 29 3.7%

P 27 27 3.4%

D 26 26 3.3%

L 23 23 2.9%

U 22 22 2.8%

G 21 21 2.7%

Y 16 16 2.0%

F 14 14 1.8%

B 10 10 1.3%

K 6 6 0.8%

V 6 6 0.8%

W 6 6 0.8%

Q 1 1 0.1%

X 1 1 0.1%

J 0 0 0.0%

Z 0 0 0.0%

Table 4A. Continued.

Table 4B.

Letters & Identities Sorted
by Normalized Frequency

Original
Letter or
Identity

Frequency

as a percent

M 3.7%

P 3.4%

D 3.3%

T 3.2%

à 3.2%

ü 3.2%

E 3.0%

é 3.0%

â 3.0%

ä 3.0%

O 3.0%

Ç 3.0%

ê 2.9%

è 2.9%

L 2.9%

A 2.8%

ë 2.8%

î 2.8%

U 2.8%

S 2.7%

ï 2.7%

G 2.7%

Ä 2.5%

N 2.4%

ì 2.4%

Y 2.0%

I 1.9%

Å 1.9%

É 1.9%

F 1.8%

R 1.7%

æ 1.7%

Æ 1.6%

C 1.5%

ô 1.5%

ö 1.5%

û 1.4%

H 1.3%

ò 1.3%

B 1.3%

K 0.8%

V 0.8%

W 0.8%

Q 0.1%

X 0.1%

J 0.0%

Z 0.0%

Table 4B. Continued.

Tables 4A & 4B above shows the results of the frequency
normalization process herein discussed. Table 4A lists the letters
according to the frequency order prior to normalization. The
identities of a letter are grouped with the letter itself. Table 4B
shows the letters and their identities, both, sorted by their
frequencies after normalization.

Observations: Several infrequently found letters rise to the top.
Frequent letters are buried deep below.

Frequency analysis observations:

• There are 46 symbols

• The average frequency is 2.1%

• The standard deviation of the frequency of any given
symbol is approximately 1% (0.995%)

• Frequencies between 1.1% -- 3.1% are within the
standard deviation of the mean.

• 72% of the symbols (33/46) (approximately ¾) appear
within a frequency range of the standard deviation
(1%) from the mean (average).

• The remaining 18% of the symbols appear within a
frequency range of 2% from the mean.

Comparison of Tables 4 with Tables 6:

• Compare the standard deviation of the expanded
symbol set: 1% from Table 4; with the original
standard deviation of 3.4% from Table 2B.

• All the letters from the expanded symbol set have a
frequency less than the original average frequency.
[Compare the highest frequency of the expanded
symbol set: 3.7% from Table 4B; with the average
frequency of 3.9% from Table 2B.]

With only a 1% difference between the majority of frequencies
after normalization, the symbols are can not be differentiated
after normalization if ciphered.

Also, the decipherer can not know, that extra symbols have been
added. Even if an assumption (guess) that extra symbols have
been added, one can not know which symbols are the extra
symbols.

3. ENCRYPTING THE BINARY
3.1 FUNDAMENTAL PRINCIPLES:
BREAKING THE TRANSITIVITY AND
CORRESPONDENCE OF ALPHABET TO
BASE 2

[This section is not intended as a survey. It merely states all the
computer science principles necessary to understand the
cryptographic process.]

Encryption is an integral part of computing.

Electronic computers use an immense number of tiny electronic
switches, measuring on and off, voltage positions of high or low.
[MAL01] The status of these switches (on or off) is easily
represented by a binary system – a system of only two
possibilities. [MAL01] When stringed together, the many
different combinations of just two possibilities, provide enough
symbols for our needs. E.g. All the letters of the alphabet,
letters of multiple alphabets, punctuation marks, numerals,
different machine control codes, different machine operation
codes, etc.

The string of switches are conventionally converted to the
numerals 0 & 1 for easy representation. Also, these numerals (0
& 1) are conventionally grouped together. Due to the binary
nature of the numbers and operation of current electronic
computing machinery, a binary numeral system is used.
[MAL01]

As binary numbers go beyond several digit places, they become
unwieldy for human comprehension. An easy mathematical
way, of representing large binary numbers, is to convert them
into a number that represents an exponential multiple of 2. E.g.
Base 16 (base16), is the 4th exponential multiple of 2
(2x2x2x2=16). Using base16 makes it easier for humans to
conceptualize and deal with the large number of switches, their

combinations, and the codes used for the combination of
switches.

A base16 number represents 4 binary digits. Two base16 numbers
are referred to as one byte and represents 8 switches. The
possible number of combinations and permutations of all the
binary switches (and digits) for 2 base16 numbers is 256.
[GOL001] This number (256) provides a sufficient amount of
codes for all the symbols usually needed to represent linguistic
data (letters and punctuation marks). [JEN01]

A code book to correlate the base16 numbers to the language
symbols is needed [JEN01]. There are two common code
books. They are referred to as ASCII and EBCIDIC [COL01]
[HOD01], with ASCII being more pervasive as it is used in PC
computers.2

As a rule, most encryption systems take the ASCII value as a
decimal number or; some numerical value standing for the
language symbol, and scramble it somehow. (Either by
encoding, enciphering or encryption, as will be explained in
detail below.) [KAH11] Then, the new number is translated into
a base 2 binary number.

If instead of using the standard base 2 binary representation for
ASCII values, an alternate binary representation can be used.
E.g. The letter “A” has an ASCII value of 65 in base 10. The
number 6510 in binary, base2, is represented as 0100 0001.
However, quite logically and mathematically, the same number,
could be represented in a binary system – that is not base 2 – as
0001 1000 0000.

Indeed, as will be explained mathematically and
cryptographically, there are many binary number systems:
Some natural and many, unnatural.

The advantage to using alternate binary systems becomes clear
when the decryption process is understood. While the
decryption process will be explained below in detail, in very
brief, it integrally involves a frequency analysis of the symbol
set, the numbers representing the letters of the alphabet. Any
given language will have an intrinsic frequency to certain letters
and sounds. Some of which, will be high and, some will be low.
By counting the frequency of symbols in a secret message and;
matching those frequencies to the frequencies of the symbols
within a given language, one slowly develops a correspondence
between encrypted symbols and the alphabet. Thus, a message

2 While I could not find a citation or study to support this claim,
it would appear, that as PCs are a ubiquitous commodity item
and; mainframes a large ticket item reserved for government
and industry; therefore, PCs are more prevalent than
mainframes. And, as EBCDIC is an IBM code table, used for
IBM mainframes [GAN01]; whereas ASCII is used on PCs;
therefore: it appears that ASCII is more common than
EBCDIC. In addition, ASCII is the backbone of Internet
communications [HOD01].

is decrypted. With more advanced encryption techniques,
highly sophisticated mathematics are needed to determine the
frequencies. But, the process remains the same: Find the most
common letter, the 2nd most common letter, the 3rd most
common letter, etc. [KAH05]

This decryption technique works, because, ultimately, a person
is always working on only one symbol set. I.e. The letters of the
known alphabet. The resultant encrypted letter (the output of
the encryption) is always equal to a specific ASCII symbol.
Meaning, however you encrypt your original text message, if the
output is an “A”, that “A” will always be an ASCII 65. And,
any given ASCII number will always be equal to the same
specific base2 number. Serial ciphering will not alter the
frequency of the letters in a message. No matter how many
consecutive types of scrambling from alphabet, to base10 to base2

are used; the same inherent frequency of the source remains.
[KAH11]

A basic transitivity exists:

ASOURCE SYMBOL ↔ BASCII BASE 16 NUMBER/CODE BOOK ↔ CBASE 2 BINARY NUMBER

So, no matter how many different substitutions you use to
scramble an “A” – only the representation by number changes.
You never change the codebook! The ASCII table always
remains the same! And, you never change the base 2 binary
number which is necessary to convert the ASCII number into a
string of switches for the computer to work with!

If you break the transitivity; if the binary number is not a base 2

number; if the binary number is one of many different binary
numbers; then, two totally different relationships have been
scrambled. The ASOURCE SYMBOL ↔ BASCII BASE 16 NUMBER/CODE BOOK

relationship is independently scrambled from the BASCII BASE 16

NUMBER/CODE BOOK ↔ CBASE 2 BINARY NUMBER relationship. In addition, the
BASCII BASE 16 NUMBER/CODE BOOK ↔ CBASE 2 BINARY NUMBER is not a linguistic
scrambling! Meaning, that there is no frequency analysis to be
had, to figure out which decimal number is the most frequently
encrypted, the 2nd most frequently encrypted, etc. By visual
inspection, one can not know which binary system one is
looking at.

(As will be explained below, there are some intricacies to specific
binary systems that may exhibit or exclude certain visual
patterns. But, this is not definite. And, a sufficient number of
binary systems are available, that have no indicators whatsoever,
to make scrambling of the binary system possible and logically
irreversible.)

Thus, using the procedure above, a very strong encryption
technique can be made with only the major drawback, that it is
imperative to keep the keys or code tables as well as the binary
system used, secret!

To-date, neither the author nor any reviewer of this article has
never read of any encoding or encryption device that uses this
technique. Nor, has the author ever read of a proposal for using
this technique. And, while there are mathematical works
discussing binary systems and converting binary numbers to a
standard form [KNO01] [WIK01]; the author has never heard or
read of any one, applying such knowledge to encrypt a binary
transmission. Usually, encryption is done on the letters, not on
the binary representation.

3.2 DEFINITIONS:

[While it is customary to explain all technical terms in the
beginning of a paper, prior to using them, doing so, in this
instance, may give the impression of a survey. Therefore, this
section has been made a glossary at the end of the article. The
glossary defines all computer science, mathematical, linguistic
and cryptographic terms used in this paper. The reader may
wish to read the glossary before proceeding. Or; to continue
reading and refer to the glossary for those terms which are
unfamiliar.]

3.3 THE PROCESS:

The process is easily understood, but in application, may be
more complicated:

1. Simply encipher or encrypt the letters of the message.

2. If a numerical value has already been assigned to each
enciphered letter, then skip the next step.

3. If a numerical value has not been assigned to each
enciphered letter, translate the enciphered letters into
ASCII

4. Translate the ASCII into base 2 binary.

5. Cipher the base 2 binary with another binary system.

Plaintext
In Cipher Text

Numerical Value
Assigned to Letter?

Translate Alpha
Letters to ASCII

Translate
Numerical Value of
Letters to Binary

Base 2

Translate Binary
Base 2 to Another

Binary System

Yes

No

Flowchart A.

3.4 IMPLEMENTATION:

Now, we can get into the details of operation for encryption
methods using alternate binary systems. From the definitions
above, it is clear that aside from base 2, there are four natural
binary systems: Fibonacci and Phinary, both standard and non-
standard.

As for unnatural binary systems, many could be constructed.
All that would be required is to either refer to a different series,
other than Fibonacci. Or, exclude certain numbers from the
natural order. Thus, by creating gaps in the number line, a new
numbering system will be had. E.g. 0, 1, 3, 5 Or, in a binary
format: “0000”, “0010”, “0100”, “0101”. If one is trying to
encode, just the 26 letter alphabet, then, within a two byte space,
16 bits, many numerical systems could be had. (The significance
of two bytes will soon become apparent.) In fact, for Fibonacci
representation, only 5 bits would be needed for a reasonable

minimum. Since encryption and confusion are the goal, there is
no maximum to the number of bits we could use to generate
artificial numbering systems. Quite a large number of binary
systems could be generated with 16 bits alone. And, although it
will take more bits to represent the message, the tradeoff will be
more than worth the security of the data encryption, as will be
explained below.

Using just 16 bits, to produce 256 symbols, which only requires
8 bits, will produce many extraneous, “don’t care”, symbols.
The decryptor can not know which ones are the “don’t’ care”
symbols. Nor does the bit sequence have to be consecutive.
E.g. The first 2 bits could be part of the number, but the next 2
bits could not be part of the number. E.g. If instead of writing
“1111 11112” for 256; one could write: “0000 1111 1111
0000encrypted base”. The inability of the computer to do math with
such a binary number is irrelevant. The encryption is the only
relevant matter.

The total number of 256 binary number encryption tables that
could be constructed, for 256 numbers is, out of 16 binary digits
(bits) : 1024*1023*1022*1021*…*768. [The first number can
be one of any of the 1024 bit combinations. Now that one
combination has been used, the next number can only be one of
1024-1, or 1023 bit combinations. Now that one more
combination has been used, the next number can only be one of
1024-2, or 1022 bit combinations.] That is a mighty large
number!

While it can be argued that this is just another cipher, and serial
ciphering does not really add to the complexity of deciphering
KAH11]; the difference is, that neither the letters nor a numerical
identity for the letters [A=1, B=2, etc.] are not being serially
ciphered! The binary numbers themselves are being ciphered!
And, it is not a mathematical formula to be deciphered! It’s a
code table!

Also, that the decipherers are expecting 8 bit groups to represent
numbers. And, there is no way to know if this is a two 8 bit
groups or one 16 bit group. It will be unknown as to how many
different bit groups were used in enciphering a message if an 8
bit group does not work. And, if an 8 bit grouping does not
work, it is unknown if that is because it is not the right bit
grouping or; because of a complicated cipher/frequency
confounding encryption scheme.

And, if just numbers are being encrypted, there is usually, no
way to reverse that encryption. For example, I could encrypt all
the numbers in a checkbook, with a numerical translation table.
That is not decryptable. One can not reconstruct the proper
binary numbers from encrypted binary numbers.

[Statistics are a funny thing. If it looks too good to be true, it is.
There is something known as the “First Digit Phenomenon” and
Benford’s Law. It is a statistical law about distribution which

explains a fact, that taking random numbers – first digits, such as
in lists, usually produces a certain distribution of numerals. 30%
for 1, 17.6% for 2, etc. This statistical law has been used in
audits to find fraud. If it is used in the decryption of numerical
data I do not know. The equation is (P=log(1+1/D). P –
Probability, D – The Digit in question. E.g. For the numeral
“1”: P=log(1+1/1)=log(1+1)=log 2 = 0.30 Also, not all lists
follow this law. So, even with Benford’s law: The list in
question may not be subject to Benford’s law [LIV003]
[LIV004] Even if the list in question is subject to Benford’s law,
simply knowing something is wrong, does not tell what should
be right.]

Each binary system will have its pros and cons in application –
with computers or encryption.

As Huffman proved, the most compressed binary system is a
base 2 system. [HUF01] A clear advantage to using base 2
binary. Which means, conversely, if base 2 is the most
compressed binary system, then, there must be other binary
systems!

3.4.1 Phinary

The Phinary system, especially the standardized Phinary system,
uses many bits per number. It can be seen from simple
inspection [See Table A, below, for the Phinary numbers 1 thru
10.], that Phinary numbers require lots of digits. The tradeoff in
size will make the system produce very large bit-sized messages.
Much larger than other binary systems. However, for small
messages, this disadvantage may be of no significance. As often
occurs, encryption is needed with short messages and not
encyclopedias. So, in spite of the tradeoff, the increase in size
and; subsequent transmission time, may be of no moment;
considering the capacity of today’s technology.

Decimal Base φ

1 1
2 10.01
3 100.01
4 101.01
5 1000.1001
6 1010.0001
7 10000.0001
8 10001.0001
9 10010.0101
10 10100.0101

 Table A.

3.4.2 Fibonacci Representation

While Fibonacci representation does not generate as many digits
as the Phinary system, still, it requires more digits than a base 2
system. In fact, to express, the 256 characters of the entire
ASCII table, will require 12 digits in Fibonacci. This is not that
significant an increase in the number of bits used.

In addition, at the very minimum, four bits must be added to
complete one byte to facilitate most computer operations. If
four more bits—digits, extraneous digits are added to a 12
bit/digit Fibonacci number, then, the Fibonacci number appears
just like two 8 bit base 2 numbers taking up 2 bytes.

Also, if four extraneous digits are added, then many additional
bit patterns can be created and substituted for natural Fibonacci
binary numbers. E.g. If the first four bits of every two bytes, is
in a “don’t care” state, then, the first four bits can be randomly
filled with garbage data – noise. This will only add to the
confusion of the binary number ciphering.

If every 12 bit Fibonacci number is padded with 4 bits, then, this
is an increase of merely 1/3 the size of the entire message. Such
a trade off in length is not a negative attribute given the current
capacities of today’s computers and transmission facilities.
Confusion is paramount. A little extra space or time is of
minimal concern.

In addition, if no padding of extra bits are used, but two 12 bit
Fibonacci numbers are laid out, one after the other, then; two
consecutive Fibonacci numbers appear as 3 two byte base 2
numbers.

To illustrate:

Using big endian, the highest natural Fibonacci number needed
to express 256 is

“1111 0000 0000FIB”

= (1x12210) + (1x6810) + (1x4410) + (1x2110) + (0x1310) + (0x810) +
(0x510) + (0x310) + (0x210) + (0x110) + (0x110) + (0x0)

= 25510.

Adding 4 extra bits, to fill out a byte, I could write the Fibonacci
number “1111 0000 0000FIB” as: “0000 1111 0000 0000FIB” and
express this number in two bytes. If I so desired, I could
substitute, encipher, this Fibonacci number, “1111 0000 0000FIB”,
with “1010 0000 0000 0000” or “1010 1111 0000 0000”. Further
confounding the encryption process and creating more binary
systems.

So we see, that length, symbol boundaries and (byte) word
boundaries are of significance in both encryption and
decryption.

Since, if I were to employ enciphering of the binary system, as
part of my encryption method, by picking and choosing from
different binary systems; I could – as described above – create a
binary system, made of 2 bytes, from which, I use only a
sufficient set of symbols to express 256 out of the 1024
possibilities.

Indeed, using a two byte cipher for a one byte base 2 binary
number, I could construct a cipher that would imitate a
standardized Fibonacci number. This possible identity,
demonstrates, that I could totally confound a message
represented in a binary coding system by encrypting just the
binary.

Furthermore: If I take a 40 character message, and transmit the
same message as 4,000 bytes containing ciphered numbers,
Fibonancci or not; unless the interceptor knows the length of
the original message, there is no way to know, just how big a
binary group might be and; how many binary groupings have
been transmitted. Perhaps, forty 8 bit bytes were sent with a lot
of garbage in between. Which means, that the binary encoding
requires one hundred 8 bit bytes per character.

One could use base 2 binary, but, exclude all numbers that have
an “11” sequence, in order to mimic a standardized Phinary
binary system. Again, ambiguity provides obfuscation.

Practicality will limit the number of binary bases available for
use. But even so, there are a sufficient number of possibilities to

confound the process sufficiently to make methodical deductive
decryption impossible.

3.4.3 Golden Sequence Representation

Use successive sequences of golden sequence symbols as
numerals to represent numeric data for ciphering and encryption.
Because of the order of the symbols, i.e. no symbol starts with a
“0” or; that each symbol must be a combination of previous
symbols; therefore, a string of golden sequence symbols can be
broken up into individual parts.

Again, the symbols are purely binary. Again, there is no way of
discerning these symbols from base 2 binary.

3.4.4 Base Prime Representation

One could define any number as a sum of prime numbers
smaller than that number itself; with each prime number being
used only once. Hence, if we use bits to represent the prime
number sequence; e.g. 1, 2, 3, 5, 7, 11... In a fashion similar to
Fibonacci representation, we could use prime number
representation, to define each number.

For sure, we can conjure up other sequences as well, to use to
mimic the idea of numeric representation, as we started with
Fibonacci representation.

3.4.5 Boustrophedon:

If boustrophedon is applied to bit sequences, binary numbers,
the result is NOT a mathematical inversion. (E.g. “0000 0001”
becomes “1000 0000”) This is neither an additive, nor
multiplicative inverse nor; is this multiplication by (–1) or some
such procedure. It is a physical inversion. This is not
decipherable by some mathematical calculation. It is a pictorial
encryption and the picture still looks legitimate. There is no
logical or mathematical way to know, what the original number
was.

However, as in many forms of ciphering, even if the original
symbols are swapped with new symbols; the original frequency
is maintained. Even if I do not know what the new symbols
stand for. And, so long as the language’s frequency is
maintained, it is decipherable. Or better put, translatable from
the binary code to the original alpha letters.

But, if alternation (e.g. every other byte is inverted) or other
variables are introduced (such as an encoding the letters with a
key or an encryption method prior to inverting the binary); since
one can not tell the difference between the pictures; the
frequency analysis is confounded. Once the frequency analysis

is confounded, the message can no longer be decrypted. -- This
will be true for any combination of methods that encrypt the
binary numbers and confound the frequency analysis.

Alternating inversion of the bits with every other byte, would
produce very interesting results. Because, while it would halve
the frequency of some letters, it would increase the frequency of
other letters. Hence, the frequency distribution is disturbed. In
fact, by reason, it would halve the frequency of higher, more
frequent letters. Alternating boustrophedon would perform an
incomplete frequency normalization.

In addition, there is no code table. What is necessary for
decoding, is the right sequence, starting position for inversion,
and jump order (how many bytes to skip between inversions),
etc. These are parameters that are easily altered.

Certainly, if a complex mathematical formula was used to
encrypt the data; and then, the resultant binary data was
encrypted with boustrophedon; decryption would be impossible
as correct mathematical calculations would be impossible and;
deciphering numeric encryption is not possible.

However, we must remember, as is prone with encryption &
encoding, espionage is engaged in, to steal the encryption
algorithm or the codebook. (See [KAH14] for a good example of
the necessity of stealing a codebook.) That would be true of
encrypted binary systems too. The only good – and sensible
defense, is to continually change the encryption method or
codebook. [KAH07] [KAH08] Encrypting the binary,
especially with ciphered Fibonacci numbers, permits quick and
constant alternate codebook generation.

From real life: Towards the end of WWII, the U.S. Army was
changing codebooks for the U.S. forces in Europe at a rate of
once every two weeks. [KAH01] The Japanese, who failed to
change their codebooks, faced devastating results. [KAH07]
[KAH08]

For example, look at Table 5. The left most column is a digit
sequence. The middle column is a base. The right most column
is the value of the sequence in base 10. Every number is written
as “11”. But, if I do not know what the base is, I do not know
what the number means. For all you know, it’s “11” in base 256
or base 1024!

Symbolic
Representation

Base Base 10
Equivalent

11 Base 2 3

11 Base 3 4

11 Base 4 5

11 Base 5 6

11 Base 6 7

11 Base 7 8

11 Base 8 9

11 Base 9 10

11 Base 10 11

11 Base 16 17

 Table 5

The same would be true for expressing binary in a variety of
different bases.

Take another example that has many significances. If I wanted
to encrypt the numbers in a checkbook, and I use a simple cipher
of adding one to a digit [9+1 becomes 0], then I transmit the
numbers, that can not be decrypted. It is not possible. One
needs some kind of mathematical reference, a total – correct or
incorrect – to even know, if an encryption has been attempted.

Languages, as will be explained below in detail, have a natural
frequency distribution of letters3 [KAH15] – numbers do not!
Unless there is a restriction on the possible numbers somehow,
like map coordinates [KAH01] [VAU03] to clue one in
somehow, there is no way of decrypting encrypted numbers. --
When this fact is factored into encrypting the binary, that one is
encrypting numbers and not letters; then it becomes apparent
that if the binary is encrypted, the binary can not be decrypted.

3 See Table B.

A 0.082

B 0.015

C 0.025

D 0.043

E 0.127

F 0.022

G 0.020

H 0.061

I 0.070

J 0.002

K 0.008

L 0.040

M 0.024

N 0.067

O 0.075

P 0.019

Q 0.001

R 0.060

S 0.063

T 0.091

U 0.028

V 0.010

W 0.023

X 0.001

Y 0.020

Z 0.001

Table B.

Frequency Distribution of Letters [VAU03]

This is very significant. Because often, secret messages often
contain just numeric or monetary values. A very practical and
historical example is that of agents representing buyers and
bidders. The various agents, during the bidder process, must
communicate with their home offices. But, the agents and
buyers do not want their competition to know what price they
are bidding.

To implement this, we need to remember that quite often, secret
messages will have the minimum of information to get the
message across. E.g. Go. Yes. No. Buy. Sell. Etc. Also, a
code includes a prearranged agreement to symbols, which
includes the symbol sequence. If an agent transmits just two
numbers; the first the agent’s bid, the second the competition’s
bid and, the buyer knows this sequence and; the numbers are

encrypted and; that’s all there is to the message; that is not a
decryptable message.

E.g. Simply add or subtract 5 from every digit to any sale price.
Or, just add or subtract $5, from every sale price.

In sum, from the above examples, it becomes imminently clear,
that enciphering the binary number has no connection with the
encryption of the letters associated with the ASCII table.

Furthermore, if so desired, alternates to the natural binary
systems can be employed increasing the number of possible
ciphers for enciphering base 2.

Also, we must take into consideration, that while the ASCII table
represents 256 characters; commonly, messages use far few
characters. The rich character set of ASCII includes machine
control codes, e.g. carriage return, new line, etc. The rich
character set is not necessary for the data payload. Also, the
ASCII character set includes graphics or other language letter
symbols as well as capital and miniscule letters. Miniscule letters
are often a redundancy that is eliminated in encryption.

In addition, the table could also be enciphered in and of itself.
Adding to the confusion. E.g. The letter “A” could be
represented by the number 32, instead of 65. This enciphering is
also separate from the encryption of the letters of the original
plaintext message. (But, this could be viewed as just serial
enciphering, which does not really add to the strength of the
encryption.)

4. SUMMARY OF BREAKING THE
TRANSITIVITY AND CORRESPONDENCE
OF ALPHABET TO BASE 2:

The ultimate goal of all language encryption is to confound the
frequency analysis.

Every language has a frequency for the letters within the
language. [KAH15] The frequency is different for each language.
In English, the letters ‘E’, ‘T’, ‘O’, ‘N’, ‘I’, ‘S’ are the most
common, with “E” being approximately 13% [KAH09]
[KAH10] or 12.7% [VAU03]. This frequency does not really
change. [KAH05] And, with more written samples, the more
definite the frequency becomes. [KAH05]

The most basic kind of encryption, simple ciphering, replacing
each letter with a different letter, will not alter the frequency of
the letters. The cipher will look different from legible text, but,
when tallied, the frequency of the letters will be the same.
[KAH11]

E.g. “The quick brown fox jumped lazily over the sleepy dog.”
-- This sentence is used when teaching typing because it has
every letter in the alphabet. An unnatural contrivance, true,
which just strengthens the point that innate frequencies of letters
exist. An analysis of the sentence reveals the following
tabulation:

Alphabetical Listing Sorted by Frequency

 By Alphabetically

Letter Tally Frequency Letter Tally Frequency

A 1 1/44 = 2.3% E 6 6/44 = 13.6%

B 1 1/44 = 2.3% O 4 4/44 = 9.0%

C 1 1/44 = 2.3% L 3 3/44 = 6.8%

D 2 2/44 = 2.5% D 2 2/44 = 2.5%

E 6 6/44 = 13.6% H 2 2/44 = 2.5%

F 1 1/44 = 2.3% I 2 2/44 = 2.5%

G 1 1/44 = 2.3% R 2 2/44 = 2.5%

H 2 2/44 = 2.5% T 2 2/44 = 2.5%

I 2 2/44 = 2.5% U 2 2/44 = 2.5%

J 1 1/44 = 2.3% A 1 1/44 = 2.3%

K 1 1/44 = 2.3% B 1 1/44 = 2.3%

L 3 3/44 = 6.8% C 1 1/44 = 2.3%

M 1 1/44 = 2.3% F 1 1/44 = 2.3%

N 1 1/44 = 2.3% G 1 1/44 = 2.3%

O 4 4/44 = 9.0% J 1 1/44 = 2.3%

P 1 1/44 = 2.3% K 1 1/44 = 2.3%

Q 1 1/44 = 2.3% M 1 1/44 = 2.3%

R 2 2/44 = 2.5% N 1 1/44 = 2.3%

S 1 1/44 = 2.3% P 1 1/44 = 2.3%

T 2 2/44 = 2.5% Q 1 1/44 = 2.3%

U 2 2/44 = 2.5% S 1 1/44 = 2.3%

V 1 1/44 = 2.3% V 1 1/44 = 2.3%

W 1 1/44 = 2.3% W 1 1/44 = 2.3%

X 1 1/44 = 2.3% X 1 1/44 = 2.3%

Y 1 1/44 = 2.3% Y 1 1/44 = 2.3%

Z 1 1/44 = 2.3% Z 1 1/44 = 2.3%

Table 6.

Sub-Table A. Sub-Table B.

It must be remembered, that this sentence is contrived to contain
every letter in the alphabet. Even in a contrived sentence like

this, the frequent occurrence of the letter “E” can not be avoided.
In regular text, with a greater statistical sample (of letters), the
frequency will be apparent.

Returning to the example sentence, notice, that if I replace all the
‘e’s with ‘q’s, how the frequency is unaltered: “Thq euick
brown fox jumpqd lazily ovqr thq slqqpy dog.” -- There is now
one ‘e’ and 6 ‘q’s. The letters look different, but the frequency
is the same.

Serial enciphering, using one cipher substitution after another,
may appear complicated, but in reality, it does nothing to alter
the difficulty of decryption. Because, once again, the frequency
analysis is unaltered. And, it is entirely a binary correspondence.

E.g. If I repeat the substitution from the above example, and
now replace all the ‘q’s with ’x’s; then I have: “Thx euick
brown foq jumpxd lazily ovxr thx slxxpy dog.” There are now 6
‘x’s, representing the same letter. And, only one ‘q’,
representing the only ‘x’ in the sentence.

What more complicated ciphering does, is to alternate, which
letters replace other letters. Often, this is done with a key. So,
that given a word, like “sleepy”, the replacement for the 1 st ‘e’
will be ‘q’, but the replacement for the 2nd ‘e’ will be ‘x’. Now,
when encoded, we have “slqxpy”. Now, the frequency of the
appearance of the letter ‘e’, has been changed.

As interesting as the subject is, I will not go into the complexity
of the keys and methodology of decryption. (I refer interested
readers to David Kahn’s excellent book, The Codebreakers.
[KAH01]) Suffice to say, some trace of cyclic repetition remains
and can be ultimately factored out. Albeit by difficult
mathematical means and computers, but any key, no matter how
long, so long as it repeats, can eventually be decrypted. This is
why large prime numbers are so important to encryption.
Because one can go on for millions of digits, without a repetition
ever occurring. Think of digits as characters, or alterations to
characters.

As David Kahn, a great historian of cryptography noted
[KAH05] [KAH11], people often mistakenly think that it is the
complexity of the encryption that makes something
decipherable. But, this is a fallacy. Indeed, the method herein
proposed, is a simple, and yet, quite elegant way, of encrypting
and making something undecipherable.

But, by employing alternate binary systems, and encoding the
binary translation of an enciphered message, one is not adding to
the same target of substitution. The binary encoding does not
just add another layer of substitution to the letters, albeit a bit
more complicated. Encrypting the binary number system is a
different target of encryption than the letters of the message.

Therefore, the ternary correspondence of letter to ASCII to
binary is irrevocably altered.

Disregarding the ASCII table. One can conceive of the
encryption used with computers, as the substitution of a base 10
(decimal) number for a letter; which is then converted from base
10 to base 2 binary. Even this simple correspondence of base 10
to base 2 binary is broken with binary encryption.

[In the examples to follow, { }, () & [] are used to pair
corresponding symbols and connote a relationship. Symbols
outside an enclosure are enciphered symbols referencing the
symbols inside the enclosure marks.]

Conventional encryption only encrypts the letters of the original
plaintext message. There is a simple logic, that ASOURCE SYMBOL =
BASCII BASE 16 NUMBER/CODE BOOK = CBASE 2 BINARY NUMBER. A=B=C. And, no
matter what kind of cosmetic alteration to “A” is done, it
remains, that A=B=C. Only one variable, “A”, is encrypted.
But, the relation, A=B=C is still valid. E.g. In binary base 2,
using ASCII: “A” = 65 = “0001 0001”. If some letter, “Q” for
example, is converted to another letter, “A” for example, by
some encryption technique, the correspondence has not been
changed. E.g. “Q” = [(65 = “0001 000”) = “A”] So, really,
only one symbol has been encrypted. That limitation (of only
one symbol having been encrypted) makes decryption possible.

However, if an alternate binary system is used, the
circumstances are different. E.g. “A” = 65 = “0001 1000 0000FIB”
already alters the correspondence, A=B=C by only one
enciphering. [(“A” = 65) = “0001 00012”] = “0001 1000
0000FIB”). Such an alteration would be an enciphering “0001
1000 0000FIB” = “0001 00012”. If an additional enciphering is
used, e.g. “A” is exchanged with “Q”, then the transitivity is
broken. E.g. {“Q” = (“A”} = {65) = (“0001 00012”} = “0001
1000 0000FIB”). A≠B≠C. And; enciphering BASCII BASE 16 NUMBER/CODE

BOOK, would only complicate matters more, because any frame of
reference is now gone. E.g. {“Q” = (“A”} = {[65=54]) = (“0011
01102”} = “0010 0100 1000FIB”).

[It is more than serial enciphering, because the target of
enciphering is different; the binary system is not directly
attached, referencing, the original plaintext. Therefore, when the
binary system is enciphered, it is not an additional enciphering of
the original plaintext.]

[In addition, enciphering the binary is not a mathematical
change, but a pictorial change.]

The frequency analysis is confounded because you don’t know
what you are counting. Meaning, let’s assume the original
message is in unencrypted English – Plaintext. You have a bit
stream that was enciphered with “a” binary system. You have
no way of knowing which binary system it is. You do not know
if you should tally different individual bytes or; every different
set of two bytes; or every 12 bits. The tally will not necessarily

generate a frequency analysis similar to English. None of the
frequency analyses generated need be similar to English. More
than one frequency analysis may be similar to English. The
message may be too short to confirm a frequency analysis. If a
sophisticated encryption algorithm was first applied to the
letters, to substitute for other letters, to severely confound the
frequency analysis, there may be no frequency observable. If
some unnatural binary coding system was used; with or without
a sophisticated encryption algorithm, a frequency analysis will
not be apparent. Best case scenario, you have to engage in many
frequency analyses, of several different bit lengths.

5. DECRYPTING:

5.1 Normalized Letter Frequency

This would require assuming the language of the ciphertext and
its corresponding frequency. Then, guesses would have to be
made to reconstruct the symbol set (of the alphabet). Apply the
symbol set guessed. See if the decrypt makes sense. The
magnitude of the decryption process would be measured in the
factorials of the possible combination of symbols.

Spacing and punctuation—which may or may not have been
included—would have to be taken into account.

It must be noted that the combinations of the frequencies will
not be exact. Frequencies are probabilities. Tolerance factors
will have to be introduced to guessing symbol sets. [The
frequency of the letter ‘e’ may be 11%, 12%, 13% or even 14%.
Any combination of symbols within the range must be
considered.] I have never seen an actual letter frequency which
is a whole number.

Also, frequencies vary with text and probably with context.

Also, the smaller the text, the greater the possibility the
frequency will deviate from the standard frequency.

One option, is to select an assumed subset of symbols to be
equal to the most frequent letter, ‘e’, then; ‘t’, etc. Then apply
the assumed reconstructed symbol set to the ciphertext and see
if it makes sense.

However, if any kind of encryption was done to the ciphertext
after replacing the ordinary alphabet with the new symbol set
then; the regroupings and tests will be on the wrong symbols
and combinations of symbols. There is no way to know what
the original symbols were and which encrypted symbols refer to
which symbols in the (new, revised) extended symbol set.

This is not decryptable by method—uncrackable—unbreakable.
Brute force is useless.

5.2 Encrypted Binary

As the encryption possibilities for the binary system increase, so
does the decryption possibilities decrease.

Again, look at Table 5. If one does not know the value of the
sequence of digits “11”, one does not know the base. I can not.
I can only guess or assume – which is a guess.

Sometimes, when it is known, that the numbers must have
certain values, decryption is possible. This scenario occurs in
military applications when determining encrypted map
coordinates. [KAH01]

Again, if I encrypt all the numbers in a checkbook with some
cipher key, that can not be decrypted. A control number might
indicate inaccuracies, but a control number will not indicate a
deciphering method. Certain arithmetic manipulations might
indicate transpositions (exchanging certain numbers for others)
within a given sum. But, a cipher will not be found.

Again, Benford’s law might indicate something is amiss. But,
Benford’s law will not tell you what the correct numbers should
be.

The key to decryption of text expressed as numbers is in the
relationship of the numbers to the letters. When numbers
represent letters, decryption is commonly done by frequency
analysis of the numerals representing the letters. [KAH05]

When employing frequency normalization, there is no frequency
analysis to be had. Hence, the standard and common method of
decryption innately fails.

As explained in a previous paper [ZIR01], if the frequency is
altered, then, decryption becomes difficult. If the frequency is
sufficiently altered, then decryption is impossible.

What an encryption key does is to alter the frequency of the
appearance of letters, especially, even in any cyclic fashion of
any kind. With longer and longer keys, one simply lowers the
frequency more and more. When one uses a large enough prime
number as a key to encrypt a message; essentially, what one has
done is, to alter the frequency of appearance of each symbol to
“1”.

To undo frequency normalization, theoretically, one could guess
and tally up different symbols, in different permutations,
assuming a valid, normal frequency distribution. And; attempt
to decipher the message based upon these guesses. However, if
you compare Tables 1A & 2A; you will see that there is a
difference between the frequency for the letter ‘e’, the most
common letter in the alphabet between the two texts. Estimated
frequencies are not exact. It is only in theory, that some such
brute force method may be able to decipher such an encryption.
That theory requires many variables to become known
constants. This is not reality. There are too many variables and
unknowns. In practicality, I do not think decryption of
frequency normalization is plausible.

For Example: Using a binary encryption scheme without adding
new symbols, -- assuming you know the source language,
assuming there was no substitution or scrambling of the letters
and; assuming no extra dummy letters have been added – at the
very minimum – from the methods listed in this paper alone –
several frequency analyses have to be done. After all, it could be
a 16 bit binary system. Or; an 8 bit binary system, but each 16
bits is two 8 bit symbols. Or;, a 12 bit binary system, that
requires two bytes to represent itself, so it appears as two 8 bit
symbols. And, if a larger binary representation, such as φ is
used, the number of possibilities and attempts increase. Also,
one has to account for big endian, little endian possibilities?

In fact, one could use base 2 binary, but skip each number that
contains a “11” in order to mimic a standardized Phinary binary
system. There is no way to discern the difference.

If it is only several possibilities as described above, then, there
are several analyses to review. Some will be gibberish, and one
will be valid. Assuming, nothing was done to confound the
frequency. But, extra letters could have been added in the
original text. Or, a 12 bit binary system, could have been coded
with extra dummy numbers that are not valid, to distort the
frequency distribution. In fact, it is conceivable, that sufficient
leeway is possible, to remove the frequency distribution
altogether with dummy letters!

While one might argue, that if a Fibonacci numbering system is
being used, then, the (unique) properties of the Fibonacci system
will be discoverable. Then, the message could be decrypted. –
This is a fallacy. I will explain:

1. The Fibonacci numbers are not being written – in or
out of sequence.

2. References to Fibonacci numbers are being written –
NOT Fibonacci numbers!

3. The Fibonacci numbers are only correlated to a bit
pattern.

4. But, the bit pattern itself does not express a Fibonacci
number!

Using a bit pattern correlating to Fibonacci numbers to
represent positive integers results in non-Fibonacci
numbers. -- I.e. The Fibonacci sequence has the series of
numbers, starting from 0 or 1, that satisfy the formula,
fn=(fn-1)+(fn-2). The series is {0,1,1,2,3,5,8,13…}. While
the numbers 2 & 5 are Fibonacci numbers; their sum 7 is
not. Using a bit pattern (little endian) “0010 1000FIB” that
references the Fibonacci series to indicate the addition of
2+5; does not produce a Fibonacci number. [Even in base
2, the bit pattern “0010 10002” = 3310. Thirty-three is not a
Fibonacci number either.]

5. The unusual properties of the Fibonacci sequence only
appear, when the Fibonacci numbers are used in a way
that takes advantage of the numbers’ order within the
Fibonacci series. I.e. (fn=Fibonacci number) fn,
fn+1, fn+2, fn+3.…

Example:

[(fn+1)/fn]=[(fn+2)/(fn+1)]=[(fn+3)/(fn+2)]=
[(fn+4)/(fn+3)]… = The Golden Mean
[LIV02]

Using a bit pattern correlating to the Fibonacci
numbers to represent letters, will not produce
Fibonacci numbers in sequence. Hence, you can not
test sequential numbers. If you can not test sequential
numbers, the tests will fail.

It should be intuitive that any bit pattern could be correlated to a
subset of the Fibonacci sequence or; any other sequence for that
matter. There is no way to determine what sequence, if any, the
bit pattern is referring to.

Decryption techniques other than frequency analysis are now
necessary; such as capturing known cleartext messages and their
corresponding ciphertext. It will become immediately apparent,
that there are more bytes than a one to one correspondence
would require. That could mean many things. But, it is a clear
indication that a pure 8 bit/byte binary representation is NOT
being used! Possibly, every other byte is a dummy byte. Or,
some other algorithm may be used to insert dummy bytes.
Someone may decide to encrypt each character with more than 2
bytes. It is unknown how many bits did used for a valid
character.

Of course, the more bits used, the longer the message, the longer
the time involved in transmitting that message. But, someone
may decide, the security is worth it.

5.3 Brute Force

Brute force techniques are predicated upon the assumption, that
the method of decryption is known and; there are a finite – a
very large number – but finite, number of possible solutions. It
is just the amount of time to test each and every possible
solution that is the obstacle.

For example, dictionary attacks for passwords. A password is
known to exist and all the possibilities of the password are
known. Exactly which characters can make up the password are
known. The possible lengths of the password are known. All
the possible permutations and combinations of characters are
known. There is a limited set of alphanumeric possibilities to the
password. A very large set, but a limited and known set. A

person trying each and every possible password, one at a time,
will take too long to penetrate the security. But, a computer
could do so in a half hour or, overnight. Or, with a distributed
network, over the course of months or years.

Brute force attacks for longer messages and more complicated
encryption methods usually attack targets assuming known
methods of encryption were used, especially methods that use
keys for ciphering. The long keys, the complicated mathematical
equations, are all known. Computing the questions or testing the
keys takes a long time. But, it is doable. The time obstacle is
diminished by distributed computing or supercomputer power.

But, the basic principle of brute force decryption is:

1. The methods of encryption are known.

2. All possible keys are known – even if it is a very large
number.

3. The numerical representation of the letter is known
and; if reversing the mathematical encryption is
necessary, it is possible to do the math.

4. It is just a matter of processing time to perform all the
calculations.

5. The frequency of the letters in the ciphertext has been
maintained – in some form.

When applying the rules necessary for a brute force decryption
to the encryption methods described in this paper:

1. The methods of encryption are known. – We just
discussed them.

2. While the implementations of the methods of
encryption, that we discussed, are finite; the
possibilities are infinite: Unlike the possible number of
passwords to a given system, which is finite.

3. As for keys:

a. While keys may be used and are known,
they are not necessarily an integral part of
the process. But, if keys are used, they are
known.

b. Since the encryption method is based upon
pictorial representations; using combinations
of 1s & 0s, in different or same length
strings; to reference subsets of numbers:
The question is, are the combinations of 1s
& 0s, in different or same length strings
finite and/or the number of subsets of
numbers these representations refer to;
finite? – Since I can always add one more 0
or 1 to the string, these pictorial
representations are infinite. As for the
number of subsets of numbers referred to,
no matter how large, it is finite.

4. The numerical representation of the letter is not known
and; if reversing the mathematical encryption is

necessary, it is impossible to do the math until the
numerical representation is known.

5. The frequency of the letters in the ciphertext has not
been maintained! -- A crucial difference!

5.3.1 Brute Force Fails When Applied to an
Infinite Number of Possibilities

Once an element of infinity has been introduced (point 2 & 3b),
brute force fails – as a method. Brute force may provide a lucky
guess. But, brute force will not definitely provide an answer.
This is fundamental difference in applying brute force to binary
encryption as opposed to key based encryption.

Example: Currently, with a dictionary type attack on a 5 letter
password, the total number of possible passwords are 2565. A
big number. Not humanly possible, unless one is dedicating
one’s life to the solution. One can think of medieval
mathematicians calculating the values of sines, cosines and
logarithms. For a computer: It’s just a half hour’s work. It’s
not a guess! It’s an algorithm based upon permutations.

5.3.2 Brute Force is Inaccurate When Applied to
Frequency Normalization

Against frequency normalization alone, not in conjunction with
any other encryption method, brute force may, by assembling all
the possible permutations, reconstruct the original sequence.

Consider: Pasting together symbols with different frequencies,
to ascertain which sets of symbols represent actual alphabetic
frequencies, may follow a method. However, the frequencies of
letters that we use, are only theoretical – not actual. The actual
frequencies fluctuate and differ between real messages.
Compare Tables 4B & 6. Even for high ranking letters, the
frequencies of appearance are almost all not the same. – The
frequencies of appearance may be similar for the appearance of
the same letter in different texts; but usually the frequency of
appearance is not the exact same frequency in two separate
texts. [E.g. In comparing Tables 6 & 2B, the letter “E” appears
13.6% in Table 6 vs. 12.1% in Table 2B.] So, even though we
have a method, it is inaccurate and we may not succeed.

5.3.3 The Possible Number of Binary
Representations are Infinite

With the binary representation encryption methods described in
this paper, there is no algorithm to decryption. We start by
guessing one method, then another, then another. What if the
encryption uses a different implementation than one discussed in
this paper? We have no method to try all different
implementations.

5.3.4 Alternate Bit Patterns Appear Similar and
Can Not Be Differentiated

Essentially, by binary representation redundancy, we have
introduced a parameter into the encryption method that can not
be discerned by a computer. Akin to CAPTCHA, but the lack of
identity applies to humans as well. The computer can not tell by
looking at or, inspecting, the bit patterns; which binary
representation/encoding was used. Because, all possible bit
patterns, are valid bit patterns, for many different possible
representations. E.g. If a sigma is used in English writing,
something is wrong. A sigma is not an English letter. But, a
Fibonacci or prime number binary representation, is a valid bit
pattern for base 2.

Also, as the numeric representation is not known:

1. We have no way of mathematically solving for
equations that may have encrypted the data.

2. The issue of reconstructing symbol subsets arises
again. Only this time, for the numbers themselves.
This encryption does not have a frequency analysis to
use as a basis for reconstruction. We have no method
of reconstructing the numerical references, if
frequency normalization was used on the numerals.

[Given the example above in Table 4, if using the
Fibonacci representation for the numbers 1 through
46, many numbers can be represented by different
sums of Fibonacci numbers. This encrypts the
numerals. – Not the letters. This complicates
reconstructing the symbol sets with the frequencies of
letters and impedes such reconstruction.]

One can argue, that, if known binary numbers, were used for
these symbols, you could algorithmically – by method – go
through a large number of permutations and reconstructions to
attempt to guess the correct correspondence of sets of identities
to letters. Although, this will require a lot of computing power
and time.

Counterpoint: While there may be an algorithm that can give
every possible permutation to reconstruct the correct frequencies
from a frequency normalization; there is no algorithm to
determine the binary number encryption. So, if you do not
know what you are counting, how can you reconstruct the
frequency?

Perhaps brute force could be used against frequency
normalization, if there was no binary number encryption. Then,
by adding symbol frequencies together, to create a table that
matches the normal frequency distribution, one could try to
recreate the message. Yes, this would involve many
permutations until a correct table would be made. Which is par

for brute force. However, it will require human intervention,
CAPTCHA, to inspect each possibility for correctness.

However, in combination with binary number encryption,
decryption is not possible. Because, you do not know what
symbols to count. You can not create a tally for frequency
analysis or reconstruction.

Brute force fails against a theoretically non-decryptable
encryption method such as one time key encryption. Likewise, I
maintain that brute force fails when the two methods together:
encrypting the binary numbers in another base besides base 2;
along with the combination of letter frequency normalization are
used together. Because, the combination of the methods is
theoretically not decryptable.

In sum, just as one time key encryption is theoretically proven to
be non-decryptable; so to the combination of ciphering the
cleartext and encrypting the binary numbers separately, results
in a lack of correlation making decryption impossible. Likewise,
frequency normalization, especially when coupled with
encrypting the binary numbers separately, result in a lack of
frequency making decryption impossible.

6. SUMMARY

Several encryption methods are proposed:

1. An encryption method that targets the binary
numbering system alone. This method uses other
binary numbering systems, both natural binary
systems such as Phinary and Fibonacci, as well as
unnatural binary systems, to replace the base 2 system.

2. A second encryption method of ciphering the text and
encrypting the binary numbers. This method provides
a theoretically undecipherable system.

3. A third encryption method of frequency
normalization; using a sufficient number of identity
letters for high frequency letters. This reduces the
frequencies of high identity letters and introduces
additional letters into the alphabet. This method is a
strong encryption method, if not decipherable. This
method may be decryptable by brute force.

4. A fourth encryption method of frequency
normalization and encrypting the binary numbers.
This method also provides a theoretically
undecipherable system.

Process #1:

1. Translate the letters of the plaintext to ASCII values.

2. Cipher the base 2 binary values of the ASCII values to
another binary base.

Flowchart of Process #1:

Plaintext
In

Translate Text to
ASCII

Translate ASCII
from Base 2

Binary to another
Binary System

Flowchart B – Process #1.

Process #2:

1. Cipher the letters of the plaintext.

2. Translate the letters of the plaintext to ASCII values.

3. Cipher the base 2 binary values of the ASCII values to
another binary base.

Flowchart of Process #2:

Plaintext
In Cipher Text

Translate Alpha
Letters to ASCII

Translate
Numerical Value of
Letters to Binary

Base 2

Translate Binary
Base 2 to Another

Binary System

Flowchart C – Process #2.

Process #3:

1. Add 3 symbols as identities for the letter ‘e’.

2. Randomly replace the letter ‘e’ with identities.

3. Add 2 symbols as identities for the 9 next, most
frequent letters in the alphabet.

4. Randomly replace the nine most frequent letters with
their identities.

Flowchart of Process #3:

Plaintext
In

Replace an equal
number of ‘e’s with

3 identities.

Replace an equal
number of the 2nd-
10th most frequent

letters with 2
identities for each

letter.

Flowchart D – Process #3.

Alternate implementations could include using a formula to
figure out how many identities to add, per letter. This would be
done by calculating the average frequency. Then, dividing any
given frequency by the average frequency, to ascertain the
number of identities necessary to generate, for any given
number.

Process #4:

1. Add 3 symbols as identities for the letter ‘e’.

2. Randomly replace the letter ‘e’ with identities.

3. Add 2 symbols as identities for the 9 next, most
frequent letters in the alphabet.

4. Randomly replace the nine most frequent letters with
their identities.

5. Cipher the text.

6. Encrypt the binary.

Flowchart of Process #4:

Plaintext
In

Replace an equal
number of ‘e’s with

3 identities.

Replace an equal
number of the 2nd-
10th most frequent

letters with 2
identities for each

letter.

Cipher the altered
text (the text with

the identities
added).

Assign numeric
values to the

symbols for the
letters.

Without using
base 2: Encrypt

the binary
representation for
the numeric values

of the letters.

Flowchart E – Process #4.

Alternate implementations could include using a formula to
figure out how many identities to add, per letter. This would be
done by calculating the average frequency. Then, dividing any
given frequency by the average frequency, to ascertain the

number of identities necessary to generate, for any given
number.

7. INFINITE COMBINATIONS

I hesitated from saying that these methods of encryption were
not decipherable. Not because they were not. But, because they
have an attribute in common with one time key encryption; in
that the encryption is not decipherable by method; however,
they are decipherable by brute force. The reason one time key
encryption is decipherable by brute force is; that the number of
possible keys is finite. However, I have now reasoned how to
make the methods proposed, have an infinite number of possible
combinations. Thereby, defeating brute force decryption as a
method of decryption.

Once upon a time, before the computing power of our day, one
time key encryption could not be guessed. However, today,
with current computing power, a brute force method will
decipher one time key encryption. Because, the number of keys
are finite. Albeit, a very large number of possible keys. But,
still, a finite set. So, each possible key is individually tested. If
however, one could make an infinite set of keys, or
permutations, one could make an encrypted message
theoretically non-decipherable.

While I had the beginnings of such an idea, it was not fully
developed. Now, I have come upon a way of making the above
methods applicable in an infinite number of different ways.

One possibility: Using the method of altering the picture, by bit-
slicing, meaning: combing the plaintext bit pattern, with the
golden sequence, one can produce ciphertext. As the golden
sequence is self expanding, the golden sequence can be enlarged
to be as large as necessary for any given message.

For example: Using some known algorithm, add extra bits. E.g.
After every third bit, insert a bit from the golden sequence. The
ciphertext produced, similar to the ciphertext produced by the
method of reversing the bits, has an altered pattern. The
alteration is pictorial and not based upon math per se. The target
of the ciphering is the ASCII. The result of the ciphering is
indistinguishable from ASCII. The process is not reversible by
method. There is no way to know if the original ASCII has been
altered. And, there are an infinite number of possible ASCII
cipherings.

Ex. The merging of plaintext with the golden sequence on the
third bit of each byte:

ABC -- Plaintext

65 66 67 -- ASCII

0010 0001 || 0010 0010 || 0010 0011 -- Binary

001-0 00-01 || 0-010 –001-0 || 00-10 0-011 – Divided in Triplets

1011010110110 -- Golden Sequence

0011 0000 || 0101 0101 || 0010 0001 || 1000 0111 -- Merged

48 85 65 135 – Ciphertext ASCII

0 U A Graphic -- Ciphertext

Also, it was noted, that the increase in size of the ciphertext over
the plaintext, is acceptable, in order to achieve security. This
gives an infinite number of possible combinations. Which, is
much better than a finite number of combinations: The
drawback of any key encryption method. Because, all key
encryption methods have a minimum and maximum size. One
size is the case when the minimum equals the maximum. Also,
all key encryption systems have a finite set of symbols
(numbers) from which to select for each digit/position/character.
So, the possible permutations and combinations to create keys is
finite.

One is not limited to the golden sequence. There are an infinite
number of sequences, irrationals, transcendentals, etc. to base
such a method on.

Also, what is merged can be mixed up, in an infinite number of
ways. The starting point in the irrational or golden sequence can
be altered. Non-sequential digits can be used for merging. Not
every byte has to be merged. Etc.

Ex. Sin 49º 50’ 39”; every third digit of Sin 49º 50’ 39”; Sin
49º 50’ 39” spliced into a round robin of every set of 1st, 2nd, 3rd

and 4th bit position.

One can go on and on with, more and more possible
combinations. The point is, the possible number of
combinations is infinite: Practically, as well as theoretically.
This is because one can always add another position or byte. In
addition, each new combination will be unique, with its own
unique frequency analysis; which does not correlate to the
original plaintext.

Now, that an infinite number of possibilities has been
introduced, deciphering, by method is truly not possible. While
guessing may work, there is no method.

Brute force guessing would require scanning for familiar bit
sequences. Also, if the algorithm is known, a simple XOR will
decrypt the ciphertext. Also, the security as well as transmission
of algorithm choice and merging sequence, is no better than
keyed encryption. But, I contend, that there are an infinite
number of “unfamiliar” irrational sequences to choose from to
make guessing impractical. I maintain that while guessing is
possible, it is highly improbable.4

4 Credit goes to Dr. Gertrude Levine (Fairleigh Dickinson
University) for her criticism and disagreement, which helped
me coalesce these thoughts.

8. FURTHER RESEARCH

[Original content deleted.]

The ensuing discussions about the original article has led me to
understand that there are presumptions about one time key pad
and its implementation. These assumptions lead to building in
vulnerability and susceptibility to brute force attack. Other
implementations would eliminate that vulnerability. That is out of
the scope of this article.

9. CONCLUSION

Essential to achieving the goal of this project, was to use a
different perspective. Hitherto, throughout the history of
cryptography; all enciphering and encryption methods sought
uniqueness to obfuscate the data – unique encoding of each letter
in a message, unique keys. This method uses the opposite
approach: ambiguity – multiple letters for the same letter – to
obfuscate the data.

In addition, this work demonstrates the aphorism, that a
mathematical proof should be like a poem. The methodology is
simple and requires few steps as well as little effort.

Author’s Bio: Givon Zirkind received his Bachelor’s in
Computer Science from Touro College and; his Master’s in
Computer Science from Fairleigh Dickinson University, both
schools are located in the USA. His career has involved computer
operations; software engineering; design and management of
business applications with extensive database programming and
management; Internet, web page design and implementation; e-
commerce solutions, Google analytics; computer
communications, data transfers and telecommunications; data
conversion projects; reverse engineering of data and legacy
software; being a published author and editor of a technical
journal; teaching and; automated office support. His research
work includes AFIS data compression and independent genetic
database development and research. He may be reached at his
email: GIVONZ@HOTMAIL.COM.

10. ACKNOWLEDGMENTS

To my grandfather for all his support in all my endeavors.

Allen Scott Gerner, colleague and friend, for his assistance with
compiler operations, access to his library and encouragement. B.S.
Computer Information Science, NJ Institute of Technology; M.S.
Computer Science, NJ Institute of Technology.

To Ramona Brandt for donating resources and support to this
project.

Dr. Larry T. Ray, R.I.P., Ph.D. Mathematics/Computer Science,
Stevens Institute of Technology (NJ), formerly professor of
computer science, Fairleigh Dickinson University, for his
mathematical evaluation and support in this project.

To Jack Lloyd and all those on his Cryptography List,
randombits.net for all their input and comments. Travis H. Jeremy
Stanley, and others.

11. REFERENCES

[BAM01] Bamford, James; The Puzzle Palace: Inside America’s
Most Secret Intelligence Organization, Penguin Books, USA, 1983,
ISBN: 0-14-00-6748-5

[BET01] Understanding Big and Little Endian Byte Order,
http://betterexplained.com/articles/understanding-big-and-little-
endian-byte-order

[BLA01] Blanc, Bertrand; Maaraoui, Bob; Endianness or Where
is Byte 0, http://3bc.bertrand-blanc.com/endianness05.pdf

[CAP01] CAPTCHA: Telling Humans and Computers Apart
Automatically; http://www.captcha.net/

[COL01] Collin, S.M.H.; Dictionary of Computing, Fourth
Edition, Peter Collin Publishing, 2002, ISBN: 9781901659467; See
entries for ASCII and EBCDIC

[DAV01] DaVinci, Leonardo; The notebooks of Leonardo
DaVinci; Konecky & Konecky, Old Saybrook, CT; ISBN:
156852448X, Translated by Edward MacCurdy

[EUC01] Euclid, translated by Sir Thomas L. Heath, Book 6,
Dover Books, USA, ISBN: 0-486-60089-0; Proposition 30

[EUC02] Euclid, translated by Sir Thomas L. Heath, Book 2,
Dover Books, USA, ISBN: 0-486-60088-2, Proposition 11

[FRI001] Friedrich, Johannes; Extinct Languages, Dorset Press,
New York, 1989, ISBN: 0880293381

[GAN01] Ganssle, Jack and Barr, Michael; Embedded Systems
Dictionary; CMP Books, 2003, ISBN: 978157820204

[GOL01] Goldstein, Larry J., Schneider, David I., Siegel, Martha
J.; Finite Mathematics and Its Applications, Fourth Edition,
Prentice Hall, 1980, ISBN 0-13-318221-5

[HIG001] Higham, Charles; Trading With the Enemy: An Expose
of the Nazi-American Money-Plot 1933-1949, Hale, London 1983

[HOD01] Hodges, M. Susan; Computers: Systems, Terms and
Acronyms, 16th Edition; SemCo, 2006, ISBN: 9780966842289

[HUF01] A Method for the Construction of Minimum redundancy
Codes, David A. Huffman, Proceedings of the I.R.E., Volume 40,
Issue 9, Sept. 1952, pgs 1098-1102, ISBN 0096-8390

[JEN01] Jennings, Tom; An Annotated History of Some
Character Codes or ASCII Infiltration;
http://www.wps.com/projects/codes/

[JOH001] Johnson, Dr. Neil F., www.jjtc.com/ Steganography

[KAH01] Kahn, David; The Codebreakers: The Story of Secret
Writing; Scribner, New York, 1996; ISBN 0684831309

[KAH02] ibid. pg. 523

[KAH03] ibid. Chapter 16

[KAH04] ibid. pg. 518

[KAH05] ibid. Chapter 20

[KAH06] ibid. pgs. xv-xviii

http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII11.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII11.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI30.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI30.html
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order
mailto:GIVONZ@HOTMAIL.COM

[KAH07] ibid. pg. 508

[KAH08] ibid. Chapter 17

[KAH09] ibid. pg. 100

[KAH10] ibid. pgs. 739-740

[KAH11] ibid. pg. 737

[KAH12] ibid. pgs. 100-105

[KAH13] ibid. Chapter 4

[KAH14] ibid. pg. 488

[KAH15] ibid. pg. 748

[KNO01] Knott, Ron; Using the Fibonacci Numbers to Represent
Whole Numbers,
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibrep.ht
ml

[LIV01] Livio, Mario; The Golden Ratio: The Story of Phi, The
World’s Most Astonishing Number; Broadway Books, New York,
2002, ISBN: 0-7679-0815-5; pg. 11

[LIV02] Ibid. Chapter 5

[LIV03] Ibid. pgs. 232-236

[LIV04] Ibid. Appendix 9

[MAL01] Digital Principles and Applications, Fourth Edition,
Malvino, Albert Paul and Leach, Donald P.; Macmillan/McGraw
Hill, 1986, ISBN 0-07-039883-6

[MIA01] Compressed Image File Formats: JPEG, PNG, GIF,
XBM, BMP, Your guide to graphics; by John Miano, ACM Press,
SIGGRAPH Series, 1999

[PEN01] Pennebaker, William B. and Mitchell, Joan L.; JPEG
Still Image Data Compression Standard , Van Nostrand
Reinhold, 1993

[PHI01] Philologos; Boydem II:Yiddish and Cockney? The
Jewish Daily Forward; Friday, December 22, 2006;

[VAU01] Vaudenay, Serge; A Classical Introduction to
Cryptography: Applications for Communications Security;
Springer Science+Business Media, Inc., New York, 2006, ISBN-
10: 0-387-25464-1

[VAU02] Vaudenay, Serge; A Classical Introduction to
Cryptography: Applications for Communications Security;
Springer Science+Business Media, Inc., New York, 2006, ISBN-
10: 0-387-25464-1; Section 1.1.2, definition of decryption

[VAU03] Vaudenay, Serge; A Classical Introduction to
Cryptography: Applications for Communications Security;
Springer Science+Business Media, Inc., New York, 2006, ISBN-
10: 0-387-25464-1; Section 1.1.3

[VER01] Verne, Jules; Twenty Thousand Leagues Under the Sea,
Sterling Publishers, New York, 2006, ISBN: 140272599X
[WEB01] Webster’s New International Dictionary, Second
Edition, G & C. Merriam Co., Springfield, Massechusetts; 1945;
entry for cipher

[WEB02] Webster’s New International Dictionary, Second
Edition, G & C. Merriam Co., Springfield, Massechusetts; 1945;
entry for code

[WEB03] Webster’s New International Dictionary, Second
Edition, G & C. Merriam Co., Springfield, Massechusetts; 1945;
entry for argot

[WHO01] Language, Thought and Reality: Selected Writings of
Benjamin Lee Whorf, MIT Press, Cambridge Massachusetts;
1993; ISBN 0-262-2303-8

[WIK01] Golden ratio base;

http://en.wikipedia.org/wiki/Phinary#Writing_golden_ratio_base_
numbers_in_standard_form

[WIK02] Non-standard Positional Numeral Systems,

http://en.wikipedia.org/wiki/Non-
standard_positional_numeral_systems

[WIK03] Endianness

http://en.wikipedia.org/wiki/Big_endian

[WIK04] Encryption; http://en.wiktionary.org/wiki/encryption

[WIK05] CAPTCHA; http://en.wikipedia.org/wiki/Captcha

[WIK06] Golden ratio; http://en.wikipedia.org/wiki/Golden_ratio

[WIK07] Fibonacci Number;
http://en.wikipedia.org/wiki/Fibonacci_number

[WIK08] Fibonacci coding;
http://en.wikipedia.org/wiki/Fibonacci_representation

[WIK09] Zeckendorf's theorem;
http://en.wikipedia.org/wiki/Zeckendorf%27s_theorem

[WIK10] International Phonetic Alphabet,
http://en.wikipedia.org/wiki/International_Phonetic_Alphabet

[WIK11] IPA Chart for English,
http://en.wikipedia.org/wiki/International_Phonetic_Alphabet_for
_English

[ZIR01] Zirkind, Givon; AFIS Data Compression: An Example
of How Domain Specific Compression Algorithms Can Produce
Very High Compression Ratios; ACM SIGSOFT, Software
Engineering Notes, Volume 32, Issue 6, November 2007, Article
No. 8, ISSN: 0163-5948

GLOSSARY

Cipher or Encipher – A cipher is a set of symbols or letters used to
replace intended letters to create a secret message. Enciphering is
the process of substituting the letters of one message with a
cipher. [WEB01] Commonly, especially with computers,
numbers are used for letters and; the numbers are interchanged.
I.e. A=1, B=2, C=3, etc. Ciphering might be as simple as adding
one to each number. Or, ciphering might involve a more complex
mathematical operation.

Code or Encoding – is to translate into symbols. [WEB02] Using
some kind of one to one correspondence, a translation of symbols
is made. Letters and words are both symbols and; can both be
encoded.

Enciphering – is a special kind of encoding, when substituting one
set of symbols (letters) for another set of (letters).

Encryption – is new term for scrambling information or data.
Encryption is not limited to letters or words. Also, encryption is
not limited to substitution or a one to one correspondence, such as
a codebook or using a key per se. Commonly, encryption
involves complex algorithms, usually employing complex
mathematical formulae. [WIK004] [KAH05] [KAH06]

Deciphering – is to reverse the process of enciphering.

Decoding – is to reverse the process of encoding.

Decrypting – is to reverse the process of encrypting. However,
technically or commonly, decrypting connotes reversing the
encryption when NOT in possession of the decryption key.
[VAU01]

Apart from the above methods of making messages secret and
keeping communications secure; there is yet another way of
keeping messages secret: That is to speak another, not
understood, “secret,” language. This practice has been used by
thieves, the military, spies and private investigators. Immigrant
parents often use their native tongue as “the secret” language.
Secret languages are also a common tactic used in price
negotiations in markets. Argot is an example of this. [PHI01]
[WEB03]

Boustrophedon – is when a language is written from either right to
left or; left to right. This was true of some ancient languages,
including Greek, up until a certain time. [KAH001] [FRI001]

Little Endian / Big Endian – This refers to which digit, the right or
the left, is the biggest, or most significant digit. [BET01] [BLA01]
[WIK03] Little Endian systems have the smallest digit on the
right. While Big Endian systems, have the biggest digit on the

right. Each successive digit, is an additional multiple of the base.
E.g. In base 10: 102 x 101 x 100. E.g. In binary numbers: “0001”
could be a decimal 1. Or, “1000” could be a decimal 1. Or,
“1000” could be a decimal 8 [2x2x2]. It depends where you put
the big end and where you put the little end. This has a bearing
upon how binary numbers are written, represented and actually
placed onto hardware. While little endian is common in writing,
i.e. “0001” is a decimal 1; machines may actually operate in big
endian format.

In terms of encryption, one can consider reversing big endian with
little endian, like boustrophedon or mirror writing. Meaning, to
write the letters of a message backwards.

CAPTCHA – Completely Automated Public Turing test to tell
Computers and Humans Apart. A test, given as a challenge, by a
computer, that a computer can not answer. If the question is
answered correctly, it is assumed the respondent is human. This
test usually involves reading a distorted image. [CAP01] [WIK05]

Binary Code – A code with only two symbols. E.g. on/off, 1/0,
etc. These two symbols can be combined in any fashion to
encode any number of things. Morse code is one example of a
binary code. Base 2 is another common well known example of a
binary code.

The Golden Ratio – is the ratio that satisfies the ratio a:b::(a+b):a.
Or, a/b = b/(a+b). This equation becomes a2+ab-b2=0. Using the
quadratic equation, the equation can be solved. The solution to
the equation is a constant, equal to (1 + √5)/2 ≈ 1.6 The golden
ratio is symbolized with the Greek letter Phi: φ The golden ratio
has many unique properties that have made it the object of study.
[EUC01] [EUC02] [LIV001] [WIK06]

The Golden Mean – same thing as the golden ratio. Although, the
golden mean is more of a geometric property, rather than an
algebraic description of the ratio.

The Fibonacci Sequence – is a sequence named after the
mathematician, Leonardo Fibonacci, who did not discover this
sequence, but wrote about it, in his book, Book of Calculation, the
Liber Abaci. [LIV001] [KNO01] The sequence starts at zero.
Followed by a one. Thereafter, each consecutive number is the
sum of the previous two consecutive numbers: {0, 1, 1, 2, 3, 5, 8,
13… } [LIV02] [KNO01] [WIK07]

A Fibonacci number – is a number in the Fibonacci sequence.
[LIV02] [KNO01] [WIK07]

The Fibonacci sequence has many unique properties. One
property is, that any whole number, positive integer, less than any
given Fibonacci number, can be expressed as the sum of some
subset of the preceding Fibonacci numbers. E.g. Using the above

subset of Fibonacci numbers, one can count up to 13 thus: 1, 2, 3,
1+3, 5, 1+5 or 1+2+3, 2+5, 8, 1+8, 2+8 or 1+1+8, 3+8 or 1+2+8,
1+3+8 or 1+1+2+8, 13. [LIV02] [KNO01] [WIK07]

Fibonacci Representation – is a numeric representation that uses
the property of the Fibonacci series that permits the expression of
any positive integer as a sum of Fibonacci numbers. This numeric
representation is a natural extension of the Fibonacci series;
making Fibonacci representation a natural binary system. [LIV01]
[KNO01] [WIK01] I.e. Using a left to right sequence, big endian,
system, and a zero for exclusion, and a one for inclusion:
“01111FIB” = (in decimal) 0+1+1+2+3 = 710 Even though the
Fibonacci is a natural binary system, the mathematics are more
complicated than base 2.

Standard Form Fibonacci Representation – In addition, the
Fibonacci sequence has a property, proven by Zeckendorf’s
theorem, that any number can be represented by a set of previous
Fibonacci numbers, without any two Fibonacci numbers in a row.
E.g. Four in base 10, could be “0111FIB” or “01001FIB” or
“00101FIB”. [KNO01] [WIK09]

Standardized Form – is when, in a binary system, for a given type
of number, e.g. positive integer, every number can be expressed
without consecutive ones. E.g. “11” is not present in the
numbering system. [WIK09] When applying Zeckendorf’s
theorem [see previous paragraph] to the Fibonacci based
numbering system, then, the Fibonacci numbers are being
expressed in standardized form.

Golden Ratio Base – Using the golden ratio as a base, any real
number can be expressed as a binary number. This is also referred

to as Phinary, after the name Phi, φ, for the golden ratio. Numbers
in Phinary are written thus: 0101φ In addition, like Fibonacci
numbers, any golden ratio base number can be written in a
standardized form. [WIK01] [WIK06] [WIK09]

Golden Sequence – a binary sequence, a long range numeric
sequence, that is not periodic; based upon the Fibonacci sequence.
The sequence is generated by starting with a “1”. Then, replacing
each “1” with a “10” and, each “0” by a “1”:

1

10

101

10110

10110101

1011010110110

Each sequence is a combination of the last two previous
sequences – in Fibonacci fashion. The sequence is “self-similar”
and expandable infinitely; with uniqueness.

Cleartext or Plaintext – Regular text that has not been enciphered,
encoded or encrypted. [KAH06] [VAU01]

While I have mentioned only four natural binary systems:
Fibonacci and Phinary, both standard and non-stardard; there are
many more binary systems that could be constructed, as will be
discussed below.

	1. INTRODUCTION
	1.1 Revisions:
	1.2 Amended From Original Introduction:
	1.3 Responses to Additional Comments

	2. FREQUENCY NORMALIZATION
	2.1 CHANGING THE SYMBOL SET
	2.2 Frequency Normalization
	2.3 Base 2 Binary Frequency Normalization
	2.4 Fibonacci Frequency Normalization
	2.5 An Example of Frequency Normalization

	3. ENCRYPTING THE BINARY
	3.1 FUNDAMENTAL PRINCIPLES: BREAKING THE TRANSITIVITY AND CORRESPONDENCE OF ALPHABET TO BASE 2
	3.2 DEFINITIONS:
	3.3 THE PROCESS:
	3.4 IMPLEMENTATION:
	3.4.1 Phinary
	3.4.2 Fibonacci Representation
	3.4.3 Golden Sequence Representation
	3.4.4 Base Prime Representation
	3.4.5 Boustrophedon:

	4. SUMMARY OF BREAKING THE TRANSITIVITY AND CORRESPONDENCE OF ALPHABET TO BASE 2:
	5. DECRYPTING:
	5.1 Normalized Letter Frequency
	5.2 Encrypted Binary
	5.3 Brute Force
	5.3.1 Brute Force Fails When Applied to an Infinite Number of Possibilities
	5.3.2 Brute Force is Inaccurate When Applied to Frequency Normalization
	5.3.3 The Possible Number of Binary Representations are Infinite
	5.3.4 Alternate Bit Patterns Appear Similar and Can Not Be Differentiated

	6. SUMMARY
	7. INFINITE COMBINATIONS
	8. FURTHER RESEARCH
	9. CONCLUSION
	10. ACKNOWLEDGMENTS
	11. REFERENCES
	GLOSSARY

