

AthCon 2011
Capture the Flag Reversing Challenge

June 2011

George Nicolaou

ishtus{ατ}astalavista{δοτ}com

Glafkos Charalambous

glafkos{ατ}astalavista{δοτ}com

Table of Contents
Chapter 1. Introduction ... 4

Chapter 2. Executable “%s%s%sGet_It_All%s%s%s.exe” ... 5

2.1 Anti-Reversing Techniques... 5

2.2 GIA Analysis .. 8

2.3 Function 00401240 ... 12

2.4 Conclusions ... 16

Chapter 3. Executable %s%s%sAthcon_2011%s%s%s ... 17

3.1 INT3 Exceptions ... 17

3.2 Analysis of WinMain Unencrypted Body ... 18

3.2.1 Analysis of Parenting Function 1 .. 20

3.2.2 Analysis of Parenting Function 2 .. 22

3.2.3 Analysis of Parenting Function 3 .. 24

3.3 Analysis of WinMain Decrypted Body ... 25

3.4 Conclusions ... 29

Chapter 4. Appendix ... 30

4.1 Get_It_All De-obfuscation Script for ODBGScript .. 30

4.2 GIA Unknown Object structure .. 31

4.3 INT3 Address Lookup Program .. 32

4.4 ODBGScript AthCon_2011 module INT3 block Patcher ... 33

4.5 ODBGScript AthCon_2011 module Parent ID Hook ... 37

4.6 Init_Table Values (Addresses) .. 38

Table of Figures
Figure 1 Initial Error Message ... 5
Figure 2 Memory View .. 5
Figure 3 GIA PE Header ... 5
Figure 4 Patching NumberOfRvaAndSizes ... 6
Figure 5 %s%s%s Bug .. 6
Figure 6 WinMain Called at 0040252C ... 6
Figure 7 WinMain Procedure of GIA .. 7
Figure 10 Inside Obfuscation Function 2 .. 7
Figure 8 Obfuscation Function 1 ... 7
Figure 9 NOP-ing Obfuscation Function ... 7
Figure 11 Creating your own Junk Code-Obfuscation Function ... 8
Figure 12 Print Message Block .. 9
Figure 13 Sleep(1000) ... 9
Figure 14 Object Allocation .. 9
Figure 15 GIA Execution and Debugging Functions... 9
Figure 16 GIA CreateProcess & OpenProcess Function ... 10
Figure 17 GS Cookie Initialization .. 10
Figure 18 Stack Cookie Check .. 10
Figure 19 Function 00401110 First Code Analysis Block ... 10
Figure 20 Function 00401110 Second Code Analysis Block .. 11
Figure 21 Function 00401110 Third Code Analysis Block ... 11
Figure 22 00401240 Header .. 12
Figure 23 00401240 Second Code Analysis Block ... 12
Figure 24 00401240 Init Addresses ... 13
Figure 25 00401240 Init Numbers .. 13
Figure 26 00401240 Second Code Analysis Block ... 13
Figure 27 00401240 EXCEPTION_BREAKPOINT check .. 14
Figure 28 00401240 Loop ... 14
Figure 29 00401240 GetThreadContext Code Analysis Block.. 15
Figure 30 00401240 Managing CONTEXT flags .. 15
Figure 31 00401240 SetThreadContext and WriteProcessMemory .. 16
Figure 32 00401240 ContinueDebugEvent ... 16
Figure 33 Athcon WinMain ... 17
Figure 34 ODBGScript Log... 17
Figure 35 WinMain First Code Analysis Block .. 18
Figure 36 00403850 Decrypt_Function Function .. 18
Figure 37 403DA0 Decrypt_Function2 ... 19
Figure 38 WinMain Second Code Analysis Block .. 19
Figure 39 00403A50 Function, POI .. 20
Figure 40 00404440 Parenting Function First Code Analysis Block .. 20
Figure 41 00404440 Parenting Function Second Code Analysis Block .. 21
Figure 42 00404440 Parenting Function Third Code Analysis Block ... 21
Figure 43 WinMain Second Code Analysis Block .. 22
Figure 44 00403B70 Parenting and File Handling Functions ... 23
Figure 45 00402250 fopen Call ... 23
Figure 46 00402250 fread and Hash .. 24
Figure 47 00404c10 Parenting Function 3 Loop 1 .. 24
Figure 48 00403C80 Parent and Hash ... 25
Figure 49 WinMain Decrypted Body .. 25
Figure 50 WinMain Third Code Analysis Block ... 26
Figure 51 00401010 Mess_With_RemoteDebugging Function .. 26
Figure 52 WinMain Fourth Code Analysis Block ... 27
Figure 53 GetTickCount Check ... 27
Figure 54 00401180 CheckForHWBreakpoints .. 28
Figure 55 00403910 Init Table Function ... 28
Figure 56 004039E0 Key Construction Function .. 28
Figure 57 Key When AthCon_2011 Not Patched .. 29
Figure 58 Archive Key .. 29
Figure 59 Final Conditional Branch .. 29

file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392298
file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392299
file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392300
file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392322
file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392323
file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392325
file:///O:/ish/Conference/athcon/Complete%20Report/Athcon%202011.docx%23_Toc296392342

Chapter 1. Introduction
Hello and welcome to the submitted report document on Athcon 2011 Capture the Flag Reversing Part.

This year’s challenge includes three (3) files:

1. %s%s%sAthcon_2011%s%s%s

2. %s%s%sGet_It_All%s%s%s.exe

3. Passes.rar

The solution requirements included inside the challenge archive state the following:

Solution: Find the password to unlock the Passes.rar file. In case you solve it, in order to claim the

ticket you have to write a proper documentation about how you did it and the key points of the protection.

In case you just send the correct password, you will *not* have the right to claim the ticket which will be

given at the next person that will send a proper documentation along with a valid password.

Our laboratory includes:

 Windows 7 x32 running on VirtualBox

 OllyDBG Debugger v1.10 (slightly modified)

 ODBGScript Plugin

 OllyAdvanced Plugin

In order to identify and explore the possible anti-reversing methodologies used in this challenge, all

“additional” features incorporated with our tools were disabled prior to analysis.

This report is divided into two parts, first the analysis of %s%s%sGet_It_All%s%s%s executable module

in Chapter 2, and then the analysis of %s%s%sAthcon_2011%s%s%s module in Chapter 3. Both chapters

contain visual and textual information explaining the functionality of each module and its contribution to

the challenge. Please note that each section must be read in the appearing order for a less confusing and

clearer understanding. The final chapter of this report, Chapter 4 Appendix, contains the scripts and data

structures used in this challenge. If something is unfamiliar to you or you believe that the scripts are

poorly commented you will most likely find what you are looking within the two main chapters.

Chapter 2. Executable “%s%s%sGet_It_All%s%s%s.exe”
This chapter includes the analysis steps taken to identify the purpose of the

%s%s%sGet_It_All%s%s%s.exe application which will be referred to as GIA for the remainder of this

report. Before actually engaging in any actual analysis, we identified that the two files (excluding the .rar

file) were actually PE executables. This led us to the conclusion that the GIA application was either a

process loader or a dynamic linker.

2.1 Anti-Reversing Techniques
Our first step was to load the GIA in Olly. Unfortunately we received the error message in Figure 1 with

Olly unexpectedly breaking inside the Windows loader procedure.

Figure 1 Initial Error Message

Such an error indicates possible tampering with the executable’s PE header. This can also be verified by

opening the Memory View window in Olly, as shown in Figure 2. There are a number of tools and

libraries (eg the pefile project) that identify inconsistencies with the PE header structure. However, we

decided to stick with Olly and verify the PE header manually.

Figure 2 Memory View

During the header analysis we identified that the NumberOfRvaAndSizes element had an invalid value, as

shown in Figure 3.

Figure 3 GIA PE Header

By default, this element displays the number of directory entries in the header and its value is equal to the

defined IMAGE_NUMBEROF_DIRECTORY_ENTRIES of the programmer’s linker. For this specific

executable, PE Header version and almost for all executables the number of entries is 16 decimal and

0x10 hexadecimal. To bypass this protection all we have to do is load our favorite hex editor navigate to

the offset 0x16C from the beginning of the file, since NumberOfRvaAndSizes Address = 0040016c and

BaseAddress = 00400000 therefore,

and patch the number 0x00000010 in the appropriate little-endian format as shown in Figure 4.

Figure 4 Patching NumberOfRvaAndSizes

Reloading the executable we came across another issue that has to do with a bug in Olly debugger. That is

the confusion of the interpreter when it comes across executables that contain the “%s%s%s” pattern in

their name. This is shown in Figure 5.

Figure 5 %s%s%s Bug

To overcome this issue you might consider renaming the executable. However, that could be proven to be

a bad solution since the author of this challenge would most likely have a reason for naming the files in

such a way. Other proper solutions include using a plugin (such as OllyAdvanced) to repair the bug, or

even running an additional analysis of this module using Analysis > Analyse Code. We decided to use the

OllyAdvanced plugin that patches both of the NumberOfRvaAndSizes and format string issue.

The next step was to identify the actual WinMain function of the executable, since the entry point at

00402652 is the entry point of the compiler and linker generated executable file. In order to locate it, you

mostly have to rely on experience. Once you load the code and hit the Entry Point, experience will tell

you that this program was compiled using Visual Studio, next (for VS) you follow the jump instruction

until you find the appropriate call matching the number of arguments and argument types for this

compiler. The CALL to the WinMain function is illustrated in Figure 6.

Figure 6 WinMain Called at 0040252C

Viewing the WinMain function we immediately understand that the program is constructed in such a way

thus confusing the recursive traversal algorithm used by OllyDBG. This algorithm identifies control

transfer instructions such as branches (JMP, JNE, JE, etc), procedure CALL and RET instructions during

the sequential analysis of the code and once they are reached, the analysis continues at the address pointed

by them. The resulting code inside the WinMain procedure is illustrated in Figure 7.

Figure 7 WinMain Procedure of GIA

Following the first call (see Figure 8) we come across a function that alters the dword element pointed by

the stack register by adding the number 1 to it. That element is actually the return address to the caller

procedure right after the CALL instruction. Therefore, by adding the number one to the return address the

program is instructed to return one byte after the address specified by the CALL instruction from the

caller procedure thus skip one byte.

This technique, other than the fact that it

confuses OllyDBG’s code analyzer, it also

confuses it’s tracing mechanisms since stepping

over the call involves placing a breakpoint at the

next instruction, which is skipped when

returning from that function. Therefore, the breakpoint would never be hit and the program will continue

execution. The usage of such functions can be proven quite annoying during the dynamic analysis process

which requires single stepping through the code and identifying its purpose. In order to avoid accidentally

stepping over such a call you would have to replace them with the appropriate NOP instructions. In this

case, we’ll have to remove the CALL instruction which is 5 bytes long, plus the number of bytes it skips

which is 1 byte as shown in Figure 8.

Replacing the obfuscation function call and an additional byte with the 6 NOP instructions, another

function call reveals itself (see Figure 9). Following the CALL (see Figure 10) we come across a similar

function to the one seen in Figure 8.

This function CALLS the first function we’ve seen in

Figure 8, skips the single byte after the CALL which is

translated as a PUSHAD instruction, then adds the number

two to the return address pointed by the stack register.

Therefore, this function whenever called, skips the next two

bytes from the return address specified by the CALL

instruction. In order to remove this obfuscation function

we’d have to replace 5 bytes for the CALL instruction and

the 2 bytes skipped. Doing this reveals another obfuscation instruction that skips the next 3 bytes;

replacing that reveals the actual code. However, such obfuscation calls exist in most parts of the program

and can be proven to be extremely annoying during analysis.

Figure 10 Inside Obfuscation Function 2

Figure 8 Obfuscation Function 1

Figure 9 NOP-ing Obfuscation

Function

Coding your own obfuscation function is not that hard; all you have to do is instruct the compiler to skip

the standard function header and footer instructions that deal with frame instantiation by declaring the

function as “naked” and finally adding the necessary assembly instructions.

Removing each of the obfuscation functions manually can be proven to be a time consuming process.

Therefore, using the ODBGScript plugin we wrote a script (see Get_It_All De-obfuscation Script for

ODBGScript in Appendix) that automatically de-obfuscates the GIA executable. We’ve identified the

following obfuscation functions shown in Table 1 and by retrieving the list of references to those

functions we made the appropriate patches.

Function Address Bytes Skipped Actual Bytes Patched

00401EE0 1 5 + 1 = 6

00401EF0 2 5 + 2 = 7

00401F00 3 5 + 3 = 8

004010F0 4 5 + 4 = 9

00401F10 5 5 + 5 = 10

Table 1 Obfuscation Function Addresses

By running the script multiple times (about 5 times) until no references to the above functions are found

we’ve managed to successfully remove the obfuscation protection of GIA.

2.2 GIA Analysis
Our initial analysis began by inspecting all references to external library functions and strings. However,

the biggest proportion of anti-reversing techniques attempt to eliminate such information by dereferencing

or dynamically loading them. In the case of GIA we can easily identify (after removing any obfuscation

traces) a number of key API functions calls such as:

1. CreateProcessA
http://msdn.microsoft.com/en-us/library/ms682425%28v=vs.85%29.aspx

2. OpenProcess
http://msdn.microsoft.com/en-us/library/ms684320%28v=vs.85%29.aspx

3. WaitForDebugEvent
http://msdn.microsoft.com/en-us/library/ms681423%28v=vs.85%29.aspx

4. GetThreadContext
http://msdn.microsoft.com/en-us/library/ms679362%28v=vs.85%29.aspx

5. SetThreadContext
http://msdn.microsoft.com/en-us/library/ms680632%28v=vs.85%29.aspx

6. WriteProcessMemory
http://msdn.microsoft.com/en-us/library/ms681674%28v=vs.85%29.aspx

7. ContinueDebugEvent
http://msdn.microsoft.com/en-us/library/ms679285%28v=vs.85%29.aspx

#define add2junks obfuscate_2(); __asm _emit 0x43 __asm _emit 0x60

void __declspec(naked) obfuscate_2()

{

 __asm {

 add dword ptr [esp], 2

 }

}

void foo(void)

{

 //code omitted

 add2junks;

 //code omitted

}

Figure 11 Creating your own Junk Code-Obfuscation Function

http://msdn.microsoft.com/en-us/library/ms682425%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms684320%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681423%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms679362%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms680632%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms679285%28v=vs.85%29.aspx

Reviewing the purpose of these functions one can easily deduct the functionality of GIA as a loader

program that executes a process and acts as a debugger for it.

We began our dynamic analysis by reviewing the code step by step beginning from the WinMain

function. The first instruction block we came across (illustrated in Figure 12) deals with printing out the

message "Hello Reverser...so you think you can get it all?!?! (Athcon 2011 - CTF)".

Figure 12 Print Message Block

The second instruction block (see Figure 13) instructs the system to pause the thread for 0x3E8 (=1000)

milliseconds using the Sleep function.

Figure 13 Sleep(1000)

The next block (see Figure 14) is not that interesting since it appears to initialize a class object. We will

later see that this object is essentially used for storing information such as the child’s process handle, the

thread’s context retrieved using the GetThreadContext function and so on. For the moment all we need to

know is that the size of this class/object is equal to 0x3A4 (=932) bytes. We note down the address of the

allocated object in order to observe and understand its structure.

Figure 14 Object Allocation

The final code analysis block (see Figure 15) is our main point of interest for this program. It invokes two

functions responsible for creating the process and debugging it, thus communicating the required

information for the execution of %s%s%sAthcon_2011%s%s%s. The final pages of this chapter will

explore that process in detail revealing some of the secrets behind the anti-reversing protections of this

challenge.

Figure 15 GIA Execution and Debugging Functions

Having noted the address allocated for the identified object, we follow the call located at 00401F9F which

leads into a stub function (possibly a constructor). Following the second call we reach the entry point of

the header-less function located at 004011E0 (shown in Figure 16). The first three instructions handle

spilling the EBX register to the stack and moving the value in EAX into the EBX and ECX registers.

EAX contains the pointer to the allocated object given by the code analysis block in Figure 14 and

assigned to during the execution of the stub function in 00401ED0.

There are two CALL instructions inside this function, the first is still unknown to us at the moment and

appears to be calling a function within the current executable module. The second one appears to be

calling an address, within the Import Address Table of the executable located at 00403000, which points

to the OpenProcess function inside the kernel32.dll module.

Figure 16 GIA CreateProcess & OpenProcess Function

Following the first CALL instruction we land in a function, protected by the /GS buffer security check

cookie. Figure 17 and 18 display the initialization and checking process of the cookie. The GS protection

in this function reveals the existence of local buffer arguments or buffer manipulation intends, with the

most likely scenario being a string initialization used when creating the %s%s%sAthcon_2011%s%s%s

process.

Figure 17 GS Cookie Initialization

Figure 18 Stack Cookie Check

The first code analysis block we define (see Figure 19) loads to ESI the address of EBX+34 (EBX

containing the base address of the allocated object and was assigned to in 004011E1, see Figure 16) and

assigns the value 0x44 (=68) to it. Additionally, the same element pointed to by ESI has 0x44 of its bytes

set to 0x00 using the memset function. This reveals that the element at unknown_object+34 is most likely

a buffer of size 48 and possibly a DWORD array of 17 elements.

Figure 19 Function 00401110 First Code Analysis Block

The next code analysis block handles the rest of the initializations for the unknown object. EDI is set to

the address of EBX+24 (base address of allocated object) and the four adjacent DWORD values are set to

the value of EAX that was XORed at the beginning of this block. Additionally the DWORD value

pointed to by EBX+60 as well as the WORD value pointed to be EBX+64 are set to 1.

Figure 20 Function 00401110 Second Code Analysis Block

The next code analysis block (see Figure 21) contains a "string" class type initialization function (CALL

004010C0) which allocates a string structure and copies to it the "%s%s%sAthcon_2011%s%s%s" ASCII

string. Next the CreateProcessA API function is called with the following arguments:

 CreateProcessA(

 lpApplicationName = "%s%s%sAthcon_2011%s%s%s",

 lpCommandLine = NULL,

 lpProcessAttributes = NULL,

 lpThreadAttributes = NULL,,

 bInheritHandles = TRUE,

 dwCreationFlags = DEBUG_PROCESS | CREATE_SUSPENDED,

 lpEnvironment = NULL,

 lpCurrentDirectory = NULL,

 lpStartupInfo = unknown_struct + 24

 lpProcessInformation = uknown_struct + 34

);

Therefore we deduct that the element at unknown_struct+34 is a STARTUPINFO structure and the

element at unknown_struct+34 is a PROCESS_INFORMATION structure. Finally, the next CALL to

function 00401A30 doesn't appear to be doing anything worth mentioning. Exiting this function the GS

stack cookie is checked for any possible stack based overflows, the stack is rebalanced and the function

returns to its caller.

Figure 21 Function 00401110 Third Code Analysis Block

Revisiting Figure 16 we can clearly identify the call to OpenProcess with the following arguments:

 OpenProcess(

 dwDesiredAccess = VM_OPERATION | VM_WRITE,

 bInheritHandle = FALSE,

 dwProcessId = EBX+2C

);

Where EBX+2C contains the dwProcessId given by the PROCESS_INFORMATION structure set by the

CreateProcessA function. Additionally, the result of OpenProcess (returned in EAX) is stored inside the

first element of the unknown_structure. Finally, the process returns to the stub function which returns to

WinMain preserving the OpenProcess result in EAX.

2.3 Function 00401240
Next the value of EAX is PUSHed as an argument to the function located at 00401240 (see Figure 15)

which is executed next. This function's header (see Figure 22) reveals three things; the first being the

large number of allocated bytes inside the stack (SUB ESP, 0x220), second the initialization of a GS

stack cookie and third the storage of the first argument (EBP+8) inside the first declared local variable

(EBP-220).

Figure 22 00401240 Header

The second code analysis block for this function initializes the second unknown_struct+4 element

(ESI+4) and two local variables at EBP-21C and EBP-218 to NULL by XORing EDI with itself and

assigning it to them.

Figure 23 00401240 Second Code Analysis Block

Next, the function initializes a set of addresses (see Figure 24) and numbers (see Figure 25) by storing

them inside the pre-allocated stack space for local variables. Tracing your debuggee up to the point

located right after the initialization allows you to view a nicely structured memory dump of the initialized

variables.

The second analysis block contains a number of debugging API calls. First, the thread id given in

unknown_struct+28 (ESI+28) which contains the handle hThread retrieved by the CreateProcessA

PROCESS_INFORMATION structure is send to the ResumeThread API function thus resuming the

created process. Next, the WaitForDebugEvent API is called with the unknown_struct+78 (ESI+78) as a

pointer to a DEBUG_EVENT structure and -1 representing the INFINITE waiting time thus blocking the

current GIA thread until a debug event occurs.

Figure 24 00401240 Init Addresses

Figure 25 00401240 Init Numbers

Figure 26 00401240 Second Code Analysis Block

Next, the DWORD value pointed to by EDI which is the first element dwDebugEventCode of the

DEBUG_EVENT structure is checked against number 5 (EXIT_PROCESS_DEBUG_EVENT) and if

equal the code jumps to the location 00401996 which exits the function.

The next call to OpenThread receives the dwThreadId (ESI+80) located inside unknown_struct+80 (after

the call to WaitForDebugEvent), with a FALSE (0) bInheritHandle and

THREAD_SUSPEND_RESUME, THREAD_GET_CONTEXT, THREAD_SET_CONTEXT and

THREAD_QUERY_INFORMATION flags set in dwDesiredAccess. The result is stored inside

unknown_struct+4.

Next (see Figure 27), the element at location unknown_struct+84 (ESI+84), which resides within the

DEBUG_EVENT structure and contains the first element of the union "u" which is an

EXCEPTION_RECORD structure inside a EXCEPTION_DEBUG_INFO structure with element name

ExceptionCode, is checked with the value 80000003 that stands for the EXCEPTION_BREAKPOINT

definition. If the two checking values are not equal then the code branches at location 0040195F where

the DBG_EXCEPTION_NOT_HANDLED message is send back to the system.

Figure 27 00401240 EXCEPTION_BREAKPOINT check

If the exception code is equal to a breakpoint then the program enters a looping state (see Figure 28) in

which the value inside unknown_struct+90 (ESI+90) that contains the ExceptionAddress pointer is

checked against the local DWORD address elements beginning from EBP-10C and ending at EBP-8. You

can clearly see that EDI acts as a counter and an array index pointer calculating the location of each

element by multiplying the number of DWORDs (since each element is of DWORD length) to the

address of the first element. (see 00401827 CMP EAX, DWORD PTR SS:[EBP+EDI*4-10C]). If no such

item is found then the program branches to location 00401933 where the DBG_CONTINUE message is

send back to the system. This information reveals that the addresses in Figure 24 are actually expected

exception addresses in the "%s%s%sAthcon_2011%s%s%s" module.

Figure 28 00401240 Loop

When a matching address is found the JE 00401842 instruction branches the execution flow onto the next

code analysis block (see Figure 29). There, the address of unknown_struct+D8 is moved into EBX and

the element pointed to by that address is set to 0x1003F. Next, the GetThreadContext API function is

called with EBX and ECX as its arguments. ECX is set to unknown_struct+4 (ESI+4), which is already

known to us from Figure 26. In addition, we've just identified EBX as an element in unknown_struct+D8

and given the definition of GetThreadContext that memory location contains a CONTEXT structure.

Therefore, the value 0x1003F is a set of flags (defined as CONTEXT_ALL) assigned to the first element of

CONTEXT named ContextFlags. Note that this program was compiled under the i386 architecture

therefore, all references to CONTEXT and flags are intended for that architecture.

Figure 29 00401240 GetThreadContext Code Analysis Block

Figure 30 illustrates the next steps taken by the program right after the CONTEXT structure is populated

by the GetThreadContext function. The value in unknown_struct+19C (ESI+19C) which is the element at

location 0x19C - 0xD8 = 0xC4 from the beginning of the CONTEXT structure is decremented by 0x04.

Reviewing the definition of the structure, we identify that this element is the stack pointer (ESP) of the

debuggee. Next, the local table address element pointed to by the EDI index (which hasn't changed since

Figure 28) and contains the exception address, is assigned to the element in unknown_struct+190

(ESI+190) which points to the instruction pointer (EIP) in the CONTEXT struct. Next, the same address

(ESI+190) is moved into EAX, incremented by 5 and assigned to local variable located at EBP-218.

Finally, the same index number in EDI is used to retrieve a value from the second table (illustrated in

Figure 25) which is then added to unknown_struct+190 (ESI+190) containing the EIP register of the

debuggee.

Figure 30 00401240 Managing CONTEXT flags

The next code analysis block contains calls to two API functions. First, the SetThreadContext function is

called with EDX, containing the thread's handle (assigned to from ESI+4) and EBX, containing the

CONTEXT structure address, therefore effectively changing the altered registers. Next, the

WriteProcessMemory function is called, with the 5th argument being the address of a local variable in

EBP-21C, which by definition of WriteProcessMemory is a SIZE_T lpNumberOfBytesWritten value; the

4th argument being the number of bytes to write, which is set to 4; the 3rd argument being the local

variable/buffer at EBP-218, which is assigned to in Figure 30 and is the exception address plus 5 bytes;

the second argument being the address in unknown_struct+19C, which is the altered stack pointer (ESP)

of the debuggee; finally, the first argument in EAX is loaded from the local variable in EBP-220 which is

assigned to in Figure 22 from the first and only argument of this function and contains the process handle.

Figure 31 00401240 SetThreadContext and WriteProcessMemory

Finally, the next code analysis block (see Figure 32) continues the debugged process with a

DBG_CONTINUE (0x10002) status and carries on the debug loop.

Figure 32 00401240 ContinueDebugEvent

2.4 Conclusions
Reviewing GIA module's behavior one can clearly validate some of the assumptions made in previous

sections. The Get/SetThreadContext process is essentially "emulating" the state of a program right after

the execution of a CALL instruction. Just like the return address is calculated as being the immediate

address after the call instruction, then PUSHed inside the stack as a piece of procedural linking

information within the newly constructed stack frame. So does GIA subtracts from the stack pointer a

value equal to the stack width (namely 4 bytes in x86) and assigns to the element pointed by it a value

equal to the exception address plus 5 bytes (the return address). Therefore, the 5 bytes could stand for a

CALL instruction that was replaced or removed intentionally to render the debuggee useless without the

use of GIA module.

Chapter 3. Executable %s%s%sAthcon_2011%s%s%s
This chapter covers the dynamic and static analysis of "%s%s%sAthcon_2011%s%s%s" module. For the

remainder of this report we will refer to it as "Athcon module".

Loading up the module in OllyDBG we come across the same PE anti-reversing techniques

(NumberOfRvaAndSizes and format string) as GIA. Refer to previous section 2.1 which describes how to

bypass them. In addition, the WinMain function is partially encrypted from address 00402F96 until it's

exit.

3.1 INT3 Exceptions
Navigating to the WinMain function (located at 00402E50) of the application we observe a number of

INT3 instructions inlined along with the code. A simple analysis can reveal the following:

1. All INT3 inline blocks have size equal to 5 bytes.

2. The first INT3 instruction of each block is located in an address contained inside the array

initialized by GIA (see Figure 24).

Since there were no apparent indications

that the INT3 blocks served any purpose

other than signaling the GIA module we

decided to calculate the emulated CALL

addresses and manually replace each

block with them. Initially, we reversed

engineered from the debug loop function,

the necessary information to calculate

programmatically each address (see

Appendix 4.3).

However, we eventually decided to use

ODBGScript to reduce the amount of

time required to calculate and patch. The

resulting script initializes the two tables

from Figure 24 and Figure 25, takes the

address currently pointed to by EIP,

locates INT3 blocks of size 5 bytes, looks

up the table and finally patches the

required CALL instruction. For the

purpose of simplicity and genericality the

script pops up a message asking for the

user's permission before continuing,

whenever a block doesn't match an

address inside the address table. The

script's source code is located in Appendix 4.4. In order to execute the script, navigate to WinMain and

run it until the Yes/No message box appears. This should sufficient enough to patch the first batch of

INT3 blocks.

Once the script finishes executing the following messages should

appear in OllyDBG's Log window. Each one denotes the address of

the patch and the call instruction that replaced the INT3 block.

Figure 33 Athcon WinMain

Figure 34 ODBGScript Log

3.2 Analysis of WinMain Unencrypted Body
The following analysis is rather slightly abstract in comparison to the one reported for GIA in previous

sections. Most of the internal and somewhat irrelevant structures and functions are not covered in detail

since they are not specifically required for the completion of this challenge. A number of function calls

have been labeled according to their functionality and a short description is given whenever they come

up.

The first code analysis block in Figure 35 calls a function (00402E81) labeled by us as "VirtualProtect"

since inside it the VirtualProtect API is invoked with the following arguments:

 VirtualProtect(

 lpAddress = 00401000 (beginning of the code section),

 dwSize = 0x4000,

 flNewProtect = 0x40 (= PAGE_EXECUTE_READWRITE),

 EBP-24 (A local variable discarded on return)

);

The reason behind this API call is to allow the program to self-alter or polymorph it's code. In short,

polymorphism is the intended incorporation of encryption and/or code manipulation within a program,

allowing it to decrypt and/or alter its own code dynamically while executing in memory.

Figure 35 WinMain First Code Analysis Block

The CALL instructions labeled as "decrypt_function" take as an argument the address of an encrypted

function in ECX and applies a byte by byte XOR decryption loop (see Figure 36) with a key equal to the

high 8bit byte of AH (assigned to at 00403876 by EDI which at that point holds the function's address).

For example, if the function's address is 00401234 then the decryption key is 0x12.

The loop ends when BL is not equal to 0,

that is when the instruction at 0040389E is

executed. This is possible only if the

execution flow follows blocks 0040388F

and/or 00403899. To do so the byte pointed

to by EAX (currently decrypted byte) must

be equal to 0x86 when XORed with the

number 0x45. The byte satisfying this

equation is 0xC3 (RETN instruction

mnemonic). Next, if the byte pointed to by

EAX+1 is equal to 0x89 when XORed with

0x45 (therefore equal to 0xCC) then jump

to location 0040389E setting the byte in BL

to 1.

Figure 36 00403850 Decrypt_Function Function

Next, the decrypted function (00404200) is called with a stack address as an argument. Its purpose is to

retrieve the name of the application, hash it using the SHA-512 algorithm, allocate a buffer, convert the

hash into an ASCII string inside that buffer and return it. The buffer is then used in function 00403470

(called at 00402EB8) to bitwise XOR the rest of the WinMain function (which is currently encrypted).

However, this is just the first of many chained decryption functions that make use of hash values to

decrypt the remaining instructions of WinMain, making this algorithm the main protection used in

Athcon_2011. The first valid hash signature is:

"59d9dfa6e92f95f281e4bbb7ec6b15bd495d7e12bc26fd3e9ee281856781b4100ce596eb4f294ef1e00735e4

6c3e1bf43b7a6110332652d08eda8da6523e0041"

Another interesting function is the one called at address 00402EC2 (in WinMain) and is labeled

"GetFunctionSize". This function works in a similar way with decryption_function, it takes a single

argument in the stack which is the pointer to a function and returns its size in bytes.

Next, the function located at 00404200 is "destroyed" by the function located at 004037E0 and labeled

"Destroy_Function". The destroy function takes two arguments, first the function's address in ECX and

second the function's size in bytes as a PUSHed argument. Inside, the rand function from msvcr100.dll is

called to determine the bytes to replace the function's instructions with.

The function labeled Decrypt_Function2 and illustrated in Figure 37, decrypts a single function pointed

to by EAX (see address 00403DE3). The pointer to that function is set in EAX from EBP-28 which in

turn is set at 00403DCD. At that point EAX holds the resulting value from XOR EAX, ESI. EAX is equal

to 0x23BC (set at 00403DC0) and ESI holds the address 004067FC (set at 00403DB3). The resulting

function's address is 00404440; we labeled it "Parenting" for obvious reasons that will be revealed later.

The XOR key currently residing in [EBP-21] is set to the low EAX value (AL) at 00403DD1; that value

in turn is being set (before the PUSHAD/POPAD instructions) to the address of EBP-20 (not its contents).

Since the low address bytes of the stack remain the same even after address randomization, the XOR key

remains the same and equal to 0xF0. Finally, by observing the loop factors, we can identify the length (in

bytes) of the decrypted function. Since ECX acts as a counter to the loop and is set to 0x315, we

immediately assume that the function is equal to or more than 0x314 bytes.

Figure 37 403DA0 Decrypt_Function2

The next call inside WinMain (from Figure 35) decrypts the function located at 00403A50.

Figure 38 WinMain Second Code Analysis Block

The second code analysis block (see Figure 38) calls the newly decrypted function at 00403A50. The

result of that function is (at this moment) assumed to be a hash-string value due to the immediate call at

DecryptFromHash.

This function contains two interesting CALLs (see Figure 39):

1. A call to 00404440 (labeled "Parenting") at address 00403AEE.

2. A call to EDX (at 00403B25) which, through dynamic analysis, revealed itself to be an SHA-512

hashing function.

Figure 39 00403A50 Function, POI

3.2.1 Analysis of Parenting Function 1
The "parenting" function located at 00404440 uses a number of API calls to enumerate information about

the currently running processes on the host system. That information is then used to retrieve and later

assess (outside this function) the parent process id of AthCon_2011.

The APIs invoked are:

 CreateToolhelp32Snapshot
http://msdn.microsoft.com/en-us/library/ms682489%28v=vs.85%29.aspx

 Process32FirstW
http://msdn.microsoft.com/en-us/library/ms684834%28v=vs.85%29.aspx

 Process32NextW
http://msdn.microsoft.com/en-us/library/ms684836%28v=vs.85%29.aspx

The latter APIs take as argument a pointer to a PROCESSENTRY32 structure containing the required

information about the process.

Initially, the function's header (see Figure 40) establishes it's stack frame with 0x274 (=628) bytes

allocated for local variables (see 00404451). It then set's up the GS stack cookie (see 0040444A to

0040445E) and a local structured exception handler (see 0040445E and 00404465 to 00404468).

Figure 40 00404440 Parenting Function First Code Analysis Block

http://msdn.microsoft.com/en-us/library/ms682489%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms684834%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms684836%28v=vs.85%29.aspx

Next (see Figure 41), the memset function is called with ECX being the buffer, located at EBP-274 (local

variable), EDI containing the setting value which is equal to zero (see XOR EDI, EDI at 00404477 in

Figure 40) and the value 0x22C (=556) as the number of bytes to set the value. This reveals that EBP-274

is a buffer or structure with a size equal to 0x22C (=556) and that its first DWORD element is set to that

size. This also hints that the structure we are investigating is actually a PROCESSENTRY32 structure

which has to have its first element (dwSize) equal to sizeof(PROCESSENTRY32). Additionally, the

GetCurrentProcessId function is called and the result is stored in EBP-280 (at address 004044D8).

Finally, CreateToolhelp32Snapshot is called with th32ProcessId argument equal to 0 (for current process)

and dwFlags equal to 2 (TH32CS_SNAPPROCESS); if the result is equal to -1

(INVALID_HANDLE_VALUE) then the function exits.

Figure 41 00404440 Parenting Function Second Code Analysis Block

If the process snapshot was successful, the execution flow continues (see Figure 42) by retrieving the first

process from it using the Process32FirstW API call with EDI (the snapshot handle) and EDX

(PROCESSENTRY32 structure address) as arguments.

 Process32FirstW(

 hSnapshot = EDI (assigned to at 004044E0 from resulting EAX),

 lppe = EDX (assigned to as the address of EBP-274 at 004044EB)

);

If unsuccessful, the jump located at 004044FB will branch to a call at CloseHandle(hSnapshot = EDI) and

then exit the function. If successful, the WORD value at [EBP-250] which falls inside the

PROCESSENTRY32 structure at offset +24 (0x274-0x250) from its base address and contains the first

wide character of szExeFile element will be compared with 0. In essence, the program validates that the

executable file name is present.

Figure 42 00404440 Parenting Function Third Code Analysis Block

If so, execution moves into a loop block (from 00404509 to 00404520) which translates the wide

characters in szExeFile to their ASCII equivalent. Next the DWORD value in [EBP-26C], that falls inside

the PROCESSENTRY32 structure and contains the th32ProcessId element (at offset +8 = 0x274 -

0x26C), is loaded into EAX and compared against the current process Id stored in a local variable inside

[EBP-280]. This reveals that the program is looking for the process snapshot of itself. If the two values

match (thus we are "looking" at the PROCESSENTRY32 snapshot of the current process) then the

program retrieves the value in [EBP-25C], which is in offset +18 (0x274 - 0x25C) of the structure (which

contains the th32ParentProcessID element) and stores it in a local variable located at EBP-27C. The

whole process loops again and again using the Process32NextW API, until the parent thread Id is found.

In order to bypass this protection one could simply alter the structure object passed to the function.

However a much simpler and more generic way of doing so is to set a breakpoint on Process32Next and

patch the appropriate parent process id number inside the PROCESSENTRY32 structure. We've drafted

an ODBGScript (see ODBGScript AthCon_2011 module Parent ID Hook in Appendix) that:

1. Requests the parent PID we wish to patch

2. Retrieves the current process id

3. Hooks the Process32Next function

Whenever the hook is hit:

1. Compare the current PROCESSENTRY32 structure's th32ProcessId element with the current

process id

2. If equal then patch the th32ParentProcessId given by the user

3. Continue execution

Once all processes are accounted for, the same GetToolhelp32Snapshot + Process32Next/First is executed

again to verify that the given results are the same. Once the appropriate parent process is located, the

function returns to function 00403A50 where the name of the parent process is hashed using SHA-512 to

retrieve the next decryption signature which is:

"7433bffcd1b34f1b61d9d304f5a9e6f4b4a88281c7db6e3826a0534c0212c559447a1fbcea4a56f3908be173

b8d75baaeb571b63301d01db2b0e55f2a3b80cfa"

3.2.2 Analysis of Parenting Function 2
The second code analysis block for WinMain function (see Figure 43) contains nothing more than a

number of function decryptions and destructions as well as the remaining DecryptFromHash functions.

The most interesting part is a call to 00403B70 which contains yet another "Parenting" function slightly

different than the first.

Figure 43 WinMain Second Code Analysis Block

Within the 00403B70 function's body (see Figure 44), we discovered two interesting calls. First, a call to

the parenting function (at address 00403C01) and then a call to a file handling function (at address

00403C25). As mentioned above, the parenting function is somewhat similar to the one in "Analysis of

Parenting Function 1" subsection. However, the only difference is that this function retrieves the parent

module's file name by invoking the GetModuleFileNameExA Windows API. This protection can be

bypassed by using the same script as before.

Figure 44 00403B70 Parenting and File Handling Functions

Next, the module's file name is passed to the file handling function which opens the parent module file as

shown in Figure 45, with the "rb" flag.

 fopen(

 filename = parentPathname,

 mode = "rb"

);

Figure 45 00402250 fopen Call

Next in Figure 46, the file handle is send to the fread function (at 0040231C), retrieving 0x400 (=1024)

bytes from the beginning of the file.

 fread(

 ptr = EAX,

 size = 1,

 count = 0x400,

 stream = EDI

);

Once the first fread call is successful, the program enters a looping state in which the function located in

EDX (a hashing function) is called, with the fread buffer as an argument. Next, the rest 0x400 (=1024)

bytes of the same file stream are read (see CALL EBX at 00402345) and the program loops until the

entire file is read and hashed.

On exit, the next SHA-512 digest hash which is send to the DecryptFromHash function chain, is equal to:

"5acae9beaa8b8e99d01849c654ad16770f5ea0c5ff085aac7d4614eb056ab1d84e0a3020bc6e38493f4c7f0c

32b8e32e1777215e0b95c87d5c42a85558dee4ba"

Figure 46 00402250 fread and Hash

3.2.3 Analysis of Parenting Function 3
Moving back to WinMain from Figure 43, we identify the final DecryptFromHash function located at

00402F91. Above it, is (yet again) the last Parenting function located in 00403C80. In a similar way, this

function compares the parent name retrieved from a previous parenting function against each process in

the system (see Figure 47). If the two strings match then the parent id is stored and compared to in a loop

below, whose goal is to retrieve the parent's parent process name (the parent process of

%s%s%sGet_It_All%s%s%s.exe). This is an effective technique against debugging the GIA module

while Athcon_2011 is running.

Figure 47 00404c10 Parenting Function 3 Loop 1

Once the parent's parent module name is retrieved, the function exits and the result is send to the SHA-

512 hashing function at the CALL instruction located at 00403D5A. The expected argument to the

hashing function is "explorer.exe" and the resulting hash digest must be equal to:

"0c3dc6a9d88ac98ee08a6aac028a1cf72e6d736227d36904a9daec84b30c2fccfd57a41daa4d73384bb9133

9482e98e226578eb0d87c958c2bfd2353181b680b"

Figure 48 00403C80 Parent and Hash

3.3 Analysis of WinMain Decrypted Body
After the final DecryptFromHash function we come across the same INT3 exception inline instructions

previously described in section 3.1. We abuse "ODBGScript AthCon_2011 module INT3 block Patcher"

once more to clear out and patch all remaining traces of this annoying protection. The script should finish

with a message box reporting that 0x2A CALLs were patched.

Figure 49 WinMain Decrypted Body

After repairing the rest of the code, we come across a number of functions (see Figure 50) that mainly

destroy the DecryptFromHash function (see 00402FC0) and decrypt the rest of the anti-debugging

functions.

Figure 50 WinMain Third Code Analysis Block

The function labeled "Mess_With_RemoteDebugging" is rather interesting. It effectively disables the

standard remote debugging capabilities of the current process making it impossible for a number of

debuggers (such as OllyDBG) to attach and debug the process. A simple analysis with OllyDBG reveals

that the functions "DbgUiRemoteBreakin" and "DbgBreakPoint" from within the ntdll module have their

first byte replaced with a 0x0C3 (RETN) instruction (see assignment at 0040101E and usage at

0040107F).

Figure 51 00401010 Mess_With_RemoteDebugging Function

Next, the immediate function called right after Mess_With_RemoteDebugging (see CALL instruction at

0040301E in Figure 50) is yet another Destroy_Function function for the previous CALL.

Figure 52 WinMain Fourth Code Analysis Block

The next code analysis block begins with a call to a GetTickCount stub function which invokes the

GetTickCount API function to retrieve a counter that indicates the number of seconds elapsed since the

system was booted. This is a common

technique to detect code debugging by

invoking the same API twice within a

code block, taking the difference in

seconds from both resulting values, thus

retrieving the number of seconds needed to execute that code block and finally, comparing that number

with the expected number of seconds required to execute that block. If time difference between the two

calls are greater than the expected number then something or someone paused the execution of the

program during analysis. Indeed, in later analysis of the code we've identified a secondary GetTickCount

stub (see Figure 53) and a comparing function that compares the time required to execute the block with

the number 0x3E8 (=1000). In order to bypass this, one could hook GetTickCount and control the number

of seconds returned in EAX or even patch the conditional branch located at 0040317E with NOP

instructions.

Next, the GetCurrentProcessId and OpenProcess windows API functions are invoked. Their purpose is to

provide information for the function labeled CheckForHWBreakpoints which calls the GetThreadContext

function (see Figure 54) with a locally allocated (in the stack) CONTEXT structure located at EBP-2D0

and check if the elements at offsets +4 (Dr0), +8 (Dr1), +C (Dr2), +10 (Dr3) are equal to zero. These

"elements" control hardware breakpoints (actually Dr0-Dr3 contain the breakpoint addresses) and are

special debug registers within the processor. If one of these registers is not equal to zero, the conditional

branch is taken and the function returns 1 in EAX which is then checked at 004030D0 in WinMain and

results to the unsuccessful message box if a hardware breakpoint is detected.

Figure 53 GetTickCount Check

Figure 54 00401180 CheckForHWBreakpoints

The next function labeled "Init_Table" takes the first step towards generating the required archive key to

unlock the text files containing the system passwords. Within it, an array of global DWORD values inside

the .data section, beginning at address 00408040 and containing 0x210 / 0x04 = 0x84 (=132) entries, is

XORed with the value 004030C0.

Figure 55 00403910 Init Table Function

The original table values along with the resulting XORed values are listed at "Init_Table Values

(Addresses)" section within the Appendix. Notice that the patch values refer to address locations within

the program's code section.

Next, the function labeled ConstructKey is called which uses the newly created table to finally construct

the key solution to this challenge. Inside, the function makes use of the ReadProcessMemory API to read

a single byte from the locations inside the table we've just seen.

 ReadProcessMemory(

 hProcess = EDI (Given as an argument and is located at EBP+8),

 lpBaseAddress = Patched_Table[i] (i = 0; i < 0x84; i++),

 lpBuffer = ECX (Local buffer located at EBP-21),

 nSize = 1,

 lpNumberOfBytesRead = EAX (Local value)

);

Each time the loop iterates, the byte value located at address ESI+00408630 (where ESI = 0 and is

incremented each time) is set to the byte read using ReadProcessMemory from the program's code.

Figure 56 004039E0 Key Construction Function

It is worth noting that the addresses within the table point to locations inside the code that were patched

during the execution of the script in Appendix 4.4. The byte values retrieved using the

ReadProcessMemory function are therefore the changed bytes and not the original CC (INT3)

instructions. However, during a normal program execution (eg, no debuggers attached) those bytes remain

unchanged thus creating a small paradoxical scenario; this is because the key required to open the archive

is only valid when the INT3 instructions are replaced with the appropriate CALL instructions. Failure to

replace them will result in an invalid key filled with 0xCC bytes.

For example, when remote debugging functionality is restored and AthCon_2011 can be attached to, the

resulting key is illustrated in Figure 57.

Figure 57 Key When AthCon_2011 Not Patched

The correct key for the archive is illustrated in Figure 57. To unlock it you would have to binary copy the

ASCII representation of each byte in the long binary string:

9005B30572053005DA041402350271038003B90873083108DB07C607CB06910662061F06A50468042

804FB030E09C808860830081B082007E606B7067406FA04BD047D045004B609AC096F092909E708

B30770074907FE06B40560052305E00417082B081908CF085A0B380CF20CC90E0D0F630FAB0F011

03510780F710F07116D114B00

Figure 58 Archive Key

This concludes the analysis of Athcon_2011 module. If you wish to continue the program's execution to

the end you just need to bypass the GetTickCount check illustrated in Figure 53 and patch the conditional

branch at address 0040328C (see Figure 58) thus allowing the program to generate a file named

"Athcon.ctf" containing the key.

Figure 59 Final Conditional Branch

3.4 Conclusions
The analysis of Athcon_2011 module provided quite the challenge due to its polymorphic features that

forced us to revert to dynamic analysis, since a static analysis approach would have been inefficient and

time consuming. However, the archive key "paradox" we've just seen raises a number of questions about

the programmers intensions in regards to the approach vector for successful completion of this challenge.

We'd like to extend our thanks to Kyriakos Economou for his amazing job on creating this challenge and

for his contributions to the community. Hopefully, the three of us will meet next year for the completion

of a personal challenge involving an unspecified number of beer pints.

-

Chapter 4. Appendix

4.1 Get_It_All De-obfuscation Script for ODBGScript
var cnt

var loop

var obf

var nob

var ret_to

mov loop,0

mov cnt,0

redo:

 an eip //Analyze current module

 mov obf, 00401ee0 //Obfuscation Handler 1

 mov nob, 6

 call deobfuscate

 mov obf, 00401ef0 //Obfuscation Handler 2

 mov nob,7

 call deobfuscate

 mov obf, 00401f00 //Obfuscation Handler 3

 mov nob,8

 call deobfuscate

 mov obf, 004010f0 //Obfuscation Handler 4

 mov nob,9

 call deobfuscate

 mov obf, 00401f10 //Obfuscation Handler 5

 mov nob,A

 call deobfuscate

 inc loop

 cmp loop,4

 je exit

 jmp redo

deobfuscate:

 REF obf //Find references to address

 cmp $RESULT, 0 //Check if we have a valid reference

 je out

 inc cnt //Increase counter

 fill $RESULT, nob, 90 //Fill refferer with nob * 0x90 (NOP)

 jmp deobfuscate //Continue

out:

 ret

exit:

 eval "Patched {cnt} calls to obfsc functions"

 MSG $RESULT

 ret

4.2 GIA Unknown Object structure
Address Displacement (Decimal) Type Comments

+0x00 (0) DWORD HANDLE hOfProcess

+0x04 (4) HANDLE hThread 004017E5 OpenThread

 struct { //PROCESS_INFORMATION

+0x24 (36) DWORD HANDLE hProcess;

+0x28 (40) DWORD HANDLE hThread;

+0x2C (44) DWORD DWORD dwProcessId;

+0x30 (48) DWORD DWORD dwThreadId;

 }

 struct { //STARTUPINFO

+0x34 (52) DWORD[17]

 }

+0x60 (96) DWORD

+0x64 (100) WORD

 DEBUG_EVENT

+0x78 (120) DWORD DWORD dwDebugEventCode

+0x7C (124) DWORD DWORD dwProcessId

+0x80 (128) DWORD DWORD dwThreadId

 struct { // EXCEPTION_DEBUG_INFO

 struct { // EXCEPTION_RECORD

+0x84 (132) DWORD ExceptionCode

+0x88 (136) DWORD ExceptionFlags

+0x8C (140) struct EXCEPTION_RECORD

*ExceptionRecord

+0x90 (144) PVOID ExceptionAddress

 struct { //CONTEXT

+D8 (216) DWORD ContextFlags

+190 (400) DWORD Eip

+19C (412) DWORD Esp

4.3 INT3 Address Lookup Program

unsigned long SomeVars[66] = {

 0x00000595, 0x000005B8, 0x00000577, 0x00000535, 0x000004DF, 0x00000219,

 0x0000023A, 0x00000376, 0x00000385, 0x000008BE, 0x00000878, 0x00000836,

 0x000007E0, 0x000007CB, 0x000006D0, 0x00000696, 0x00000667, 0x00000624,

 0x000004AA, 0x0000046D, 0x0000042D, 0x00000400, 0x00000913, 0x000008CD,

 0x0000088B, 0x00000835, 0x00000820, 0x00000725, 0x000006EB, 0x000006BC,

 0x00000679, 0x000004FF, 0x000004C2, 0x00000482, 0x00000455, 0x000009BB,

 0x000009B1, 0x00000974, 0x0000092E, 0x000008EC, 0x000007B8, 0x00000775,

 0x0000074E, 0x00000703, 0x000005B9, 0x00000565, 0x00000528, 0x000004E5,

 0x0000081C, 0x00000830, 0x0000081E, 0x000008D4, 0x00000B5F, 0x00000C3D,

 0x00000CF7, 0x00000ECE, 0x00000F12, 0x00000F68, 0x00000FB0, 0x00001006,

 0x0000103A, 0x00000F7D, 0x00000F76, 0x0000110C, 0x00001172, 0x00001350

};

unsigned long EIPTable[66] = {

 0x00402E8B, 0x00402EB8, 0x00402EF9, 0x00402F3B, 0x00402F91, 0x00403307,

 0x00403376, 0x004032AA, 0x0040333B, 0x00402EC2, 0x00402F08, 0x00402F4A,

 0x00402FA0, 0x00402FB5, 0x004030B0, 0x004030EA, 0x00403119, 0x0040315C,

 0x004032D6, 0x00403313, 0x00403353, 0x00403380, 0x00402ECD, 0x00402F13,

 0x00402F55, 0x00402FAB, 0x00402FC0, 0x004030BB, 0x004030F5, 0x00403124,

 0x00403167, 0x004032E1, 0x0040331E, 0x0040335E, 0x0040338B, 0x00402E95,

 0x00402E9F, 0x00402EDC, 0x00402F22, 0x00402F64, 0x00403098, 0x004030DB,

 0x00403102, 0x0040314D, 0x00403297, 0x004032EB, 0x00403328, 0x0040336B,

 0x004030A4, 0x004030E0, 0x00403152, 0x0040310C, 0x00402EF1, 0x00402F33,

 0x00402F89, 0x00402ED2, 0x00402EFE, 0x00402F18, 0x00402F40, 0x00402F5A,

 0x00402F96, 0x004030C3, 0x0040313A, 0x00403014, 0x0040301E, 0x00402EB0

};

int main()

{

 char number[11] = {0};

 unsigned long n, raddr;

 int i;

 printf("Address?: ");

 scanf("%10s",number);

 n = (unsigned long)strtol(number, NULL, 16);

 for(i=0;i<sizeof(EIPTable);i++) {

 if(n == EIPTable[i]) {

 raddr = EIPTable[i] + 5;

 printf("EIP: 0x%08X\nStack WPM: 0x%08X", EIPTable[i]+SomeVars[i],raddr);

 break;

 }

 }

}

4.4 ODBGScript AthCon_2011 module INT3 block Patcher
push ebp

mov ebp,esp

sub esp,214

mov [ebp-10C],0402E8B

mov [ebp-108],0402EB8

mov [ebp-0104],0402EF9

mov [ebp-0100],0402F3B

mov [ebp-0FC],0402F91

mov [ebp-0F8],0403307

mov [ebp-0F4],0403376

mov [ebp-0F0],04032AA

mov [ebp-0EC],040333B

mov [ebp-0E8],0402EC2

mov [ebp-0E4],0402F08

mov [ebp-0E0],0402F4A

mov [ebp-0DC],0402FA0

mov [ebp-0D8],0402FB5

mov [ebp-0D4],04030B0

mov [ebp-0D0],04030EA

mov [ebp-0CC],0403119

mov [ebp-0C8],040315C

mov [ebp-0C4],04032D6

mov [ebp-0C0],0403313

mov [ebp-0BC],0403353

mov [ebp-0B8],0403380

mov [ebp-0B4],0402ECD

mov [ebp-0B0],0402F13

mov [ebp-0AC],0402F55

mov [ebp-0A8],0402FAB

mov [ebp-0A4],0402FC0

mov [ebp-0A0],04030BB

mov [ebp-09C],04030F5

mov [ebp-098],0403124

mov [ebp-094],0403167

mov [ebp-090],04032E1

mov [ebp-08C],040331E

mov [ebp-088],040335E

mov [ebp-084],040338B

mov [ebp-080],0402E95

mov [ebp-07C],0402E9F

mov [ebp-078],0402EDC

mov [ebp-074],0402F22

mov [ebp-070],0402F64

mov [ebp-06C],0403098

mov [ebp-068],04030DB

mov [ebp-064],0403102

mov [ebp-060],040314D

mov [ebp-05C],0403297

mov [ebp-058],04032EB

mov [ebp-054],0403328

mov [ebp-050],040336B

mov [ebp-04C],04030A4

mov [ebp-048],04030E0

mov [ebp-044],0403152

mov [ebp-040],040310C

mov [ebp-03C],0402EF1

mov [ebp-038],0402F33

mov [ebp-034],0402F89

mov [ebp-030],0402ED2

mov [ebp-02C],0402EFE

mov [ebp-028],0402F18

mov [ebp-024],0402F40

mov [ebp-020],0402F5A

mov [ebp-01C],0402F96

mov [ebp-018],04030C3

mov [ebp-014],040313A

mov [ebp-010],0403014

mov [ebp-0C],040301E

mov [ebp-8],0402EB0

mov [ebp-0214],0595

mov [ebp-0210],05B8

mov [ebp-020C],0577

mov [ebp-0208],0535

mov [ebp-0204],04DF

mov [ebp-0200],0219

mov [ebp-01FC],023A

mov [ebp-01F8],0376

mov [ebp-01F4],0385

mov [ebp-01F0],08BE

mov [ebp-01EC],0878

mov [ebp-01E8],0836

mov [ebp-01E4],07E0

mov [ebp-01E0],07CB

mov [ebp-01DC],06D0

mov [ebp-01D8],0696

mov [ebp-01D4],0667

mov [ebp-01D0],0624

mov [ebp-01CC],04AA

mov [ebp-01C8],046D

mov [ebp-01C4],042D

mov [ebp-01C0],0400

mov [ebp-01BC],0913

mov [ebp-01B8],08CD

mov [ebp-01B4],088B

mov [ebp-01B0],0835

mov [ebp-01AC],0820

mov [ebp-01A8],0725

mov [ebp-01A4],06EB

mov [ebp-01A0],06BC

mov [ebp-019C],0679

mov [ebp-0198],04FF

mov [ebp-0194],04C2

mov [ebp-0190],0482

mov [ebp-018C],0455

mov [ebp-0188],09BB

mov [ebp-0184],09B1

mov [ebp-0180],0974

mov [ebp-017C],092E

mov [ebp-0178],08EC

mov [ebp-0174],07B8

mov [ebp-0170],0775

mov [ebp-016C],074E

mov [ebp-0168],0703

mov [ebp-0164],05B9

mov [ebp-0160],0565

mov [ebp-015C],0528

mov [ebp-0158],04E5

mov [ebp-0154],081C

mov [ebp-0150],0830

mov [ebp-014C],081E

mov [ebp-0148],08D4

mov [ebp-0144],0B5F

mov [ebp-0140],0C3D

mov [ebp-013C],0CF7

mov [ebp-0138],0ECE

mov [ebp-0134],0F12

mov [ebp-0130],0F68

mov [ebp-012C],0FB0

mov [ebp-0128],01006

mov [ebp-0124],0103A

mov [ebp-0120],0F7D

mov [ebp-011C],0F76

mov [ebp-0118],0110C

mov [ebp-0114],01172

mov [ebp-0110],01350

mov cnt,0

pusha

main_loop:

 mov ebx, eip ; ebx = current position we want to patch

 next:

 call findCC

 cmp $RESULT,0

 je next

 mov eax, $RESULT

 mov ecx,eax

 call find_index

 inc cnt

 cmp eax,0

 jne continue

 eval "Patched {cnt} CALLs, continue?"

 msgyn $RESULT

 cmp $RESULT,0

 je exit

 continue:

 jmp next

exit:

 popa

 mov esp,ebp

 pop ebp

 ;add esp,214

 ret

findCC:

 cmp [ebx+4], CC, 1

 je l1

 add ebx,5

 jmp findCC_exit

 l1:

 cmp [ebx+3], CC, 1

 je l2

 add ebx,4

 jmp findCC_exit

 l2:

 cmp [ebx+2], CC, 1

 je l3

 add ebx,3

 jmp findCC_exit

 l3:

 cmp [ebx+1], CC, 1

 je l4

 add ebx,2

 jmp findCC_exit

 l4:

 cmp [ebx], CC, 1

 je l5

 add ebx,1

 jmp findCC_exit

 l5:

 mov $RESULT,ebx

 ret

findCC_exit:

 mov $RESULT,0

 ret

find_index:

 xor edi,edi

 find_index_loop:

 mov edx, edi*4

 add edx, ebp

 sub edx, 10c

 cmp eax, [edx] ; [ebp+edi*4-10c]

 je out

 inc edi

 cmp edi, 42

 je fail

 jmp find_index_loop

out:

 mov edx, edi*4

 add edx, ebp

 sub edx, 214

 add eax, [edx]

 eval "call {eax}"

 mov tmp, $RESULT

 asm ecx, $RESULT

 eval "{ecx} -> {tmp}"

 log $RESULT, ""Patched: "

 ret

fail:

 xor eax,eax

 ret

4.5 ODBGScript AthCon_2011 module Parent ID Hook
var pid

ask "Parent PID (in hex)?"

mov ppid, $RESULT

jmp main

Pr32Next:

 mov pentry, [esp+8]

 rtr

 cmp [pentry+8], pid

 je patch_parent

 run

patch_parent:

 eval "{pentry->th32ProcessID (= {pentry+8})"

 log $RESULT, "For: "

 eval "{pentry}->th32ParentProcessID = {ppid}"

 log $RESULT, "Patched: "

 mov [pentry+18], ppid

 run

main:

gpa "GetCurrentProcessId", "kernel32.dll"

mov gcpid, $RESULT

exec

 push eax

 call GetCurrentProcessId

ende

;call gcpid

mov pid,eax

pop eax

gpa "Process32NextW", "kernel32.dll"

mov p32n, $RESULT

bp p32n

bpgoto p32n, Pr32Next

4.6 Init_Table Values (Addresses)
const

 unsigned long Original_Values[84] = {

 0x00001E4C, 0x00001E4D, 0x00001E79, 0x00001E7A, 0x00001E3A, 0x00001E3B,

 0x00001FFC, 0x00001FFD, 0x00001F52, 0x00001F53, 0x000003C8, 0x000003C9,

 0x000003B7, 0x000003B8, 0x0000026B, 0x0000026C, 0x000003FC, 0x000003FD,

 0x00001E03, 0x00001E04, 0x00001FC9, 0x00001FCA, 0x00001F8B, 0x00001F8C,

 0x00001F61, 0x00001F62, 0x00001F76, 0x00001F77, 0x00000071, 0x00000072,

 0x0000002B, 0x0000002C, 0x000001DA, 0x000001DB, 0x0000019D, 0x0000019E,

 0x00000217, 0x00000218, 0x000003D4, 0x000003D5, 0x00000394, 0x00000395,

 0x00000341, 0x00000342, 0x00001E0E, 0x00001E0F, 0x00001FD4, 0x00001FD5,

 0x00001F96, 0x00001F97, 0x00001F6C, 0x00001F6D, 0x00001F01, 0x00001F02,

 0x0000007C, 0x0000007D, 0x00000036, 0x00000037, 0x000001E5, 0x000001E6,

 0x000001A8, 0x000001A9, 0x00000222, 0x00000223, 0x000003DF, 0x000003E0,

 0x0000039F, 0x000003A0, 0x0000034C, 0x0000034D, 0x00001E56, 0x00001E57,

 0x00001E60, 0x00001E61, 0x00001E1D, 0x00001E1E, 0x00001FE3, 0x00001FE4,

 0x00001FA5, 0x00001FA6, 0x00000059, 0x0000005A, 0x0000001C, 0x0000001D

 };

const

 unsigned long PatchedValues[84] = {

 0x00402E8C, 0x00402E8D, 0x00402EB9, 0x00402EBA, 0x00402EFA, 0x00402EFB,

 0x00402F3C, 0x00402F3D, 0x00402F92, 0x00402F93, 0x00403308, 0x00403309,

 0x00403377, 0x00403378, 0x004032AB, 0x004032AC, 0x0040333C, 0x0040333D,

 0x00402EC3, 0x00402EC4, 0x00402F09, 0x00402F0A, 0x00402F4B, 0x00402F4C,

 0x00402FA1, 0x00402FA2, 0x00402FB6, 0x00402FB7, 0x004030B1, 0x004030B2,

 0x004030EB, 0x004030EC, 0x0040311A, 0x0040311B, 0x0040315D, 0x0040315E,

 0x004032D7, 0x004032D8, 0x00403314, 0x00403315, 0x00403354, 0x00403355,

 0x00403381, 0x00403382, 0x00402ECE, 0x00402ECF, 0x00402F14, 0x00402F15,

 0x00402F56, 0x00402F57, 0x00402FAC, 0x00402FAD, 0x00402FC1, 0x00402FC2,

 0x004030BC, 0x004030BD, 0x004030F6, 0x004030F7, 0x00403125, 0x00403126,

 0x00403168, 0x00403169, 0x004032E2, 0x004032E3, 0x0040331F, 0x00403320,

 0x0040335F, 0x00403360, 0x0040338C, 0x0040338D, 0x00402E96, 0x00402E97,

 0x00402EA0, 0x00402EA1, 0x00402EDD, 0x00402EDE, 0x00402F23, 0x00402F24,

 0x00402F65, 0x00402F66, 0x00403099, 0x0040309A, 0x004030DC, 0x004030DD

 };

Original Values Patched Values

00001E4C 00402E8C

00001E4D 00402E8D

00001E79 00402EB9

00001E7A 00402EBA

00001E3A 00402EFA

00001E3B 00402EFB

00001FFC 00402F3C

00001FFD 00402F3D

00001F52 00402F92

00001F53 00402F93

000003C8 00403308

000003C9 00403309

000003B7 00403377

000003B8 00403378

0000026B 004032AB

0000026C 004032AC

000003FC 0040333C

000003FD 0040333D

00001E03 00402EC3

00001E04 00402EC4

00001FC9 00402F09

00001FCA 00402F0A

00001F8B 00402F4B

00001F8C 00402F4C

00001F61 00402FA1

00001F62 00402FA2

00001F76 00402FB6

00001F77 00402FB7

00000071 004030B1

00000072 004030B2

0000002B 004030EB

0000002C 004030EC

000001DA 0040311A

000001DB 0040311B

0000019D 0040315D

0000019E 0040315E

00000217 004032D7

00000218 004032D8

000003D4 00403314

000003D5 00403315

00000394 00403354

00000395 00403355

00000341 00403381

00000342 00403382

00001E0E 00402ECE

00001E0F 00402ECF

00001FD4 00402F14

00001FD5 00402F15

00001F96 00402F56

00001F97 00402F57

00001F6C 00402FAC

00001F6D 00402FAD

00001F01 00402FC1

00001F02 00402FC2

0000007C 004030BC

0000007D 004030BD

00000036 004030F6

00000037 004030F7

000001E5 00403125

000001E6 00403126

000001A8 00403168

000001A9 00403169

00000222 004032E2

00000223 004032E3

000003DF 0040331F

000003E0 00403320

0000039F 0040335F

000003A0 00403360

0000034C 0040338C

0000034D 0040338D

00001E56 00402E96

00001E57 00402E97

00001E60 00402EA0

00001E61 00402EA1

00001E1D 00402EDD

00001E1E 00402EDE

00001FE3 00402F23

00001FE4 00402F24

00001FA5 00402F65

00001FA6 00402F66

00000059 00403099

0000005A 0040309A

0000001C 004030DC

0000001D 004030DD

