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Chapter 1. Introduction 
Hello and welcome to the submitted report document on Athcon 2011 Capture the Flag Reversing Part. 

This year’s challenge includes three (3) files: 

1. %s%s%sAthcon_2011%s%s%s 

2. %s%s%sGet_It_All%s%s%s.exe 

3. Passes.rar 

 

The solution requirements included inside the challenge archive state the following: 

***Solution***: Find the password to unlock the Passes.rar file. In case you solve it, in order to claim the 

ticket you have to write a proper documentation about how you did it and the key points of the protection.  

In case you just send the correct password, you will *not* have the right to claim the ticket which will be 

given at the next person that will send a proper documentation along with a valid password. 

 

Our laboratory includes: 

 Windows 7 x32 running on VirtualBox 

 OllyDBG Debugger v1.10 (slightly modified) 

 ODBGScript Plugin 

 OllyAdvanced Plugin 

In order to identify and explore the possible anti-reversing methodologies used in this challenge, all 

“additional” features incorporated with our tools were disabled prior to analysis. 

 

This report is divided into two parts, first the analysis of %s%s%sGet_It_All%s%s%s executable module 

in Chapter 2, and then the analysis of %s%s%sAthcon_2011%s%s%s module in Chapter 3. Both chapters 

contain visual and textual information explaining the functionality of each module and its contribution to 

the challenge. Please note that each section must be read in the appearing order for a less confusing and 

clearer understanding. The final chapter of this report, Chapter 4 Appendix, contains the scripts and data 

structures used in this challenge. If something is unfamiliar to you or you believe that the scripts are 

poorly commented you will most likely find what you are looking within the two main chapters. 

 

  



Chapter 2. Executable “%s%s%sGet_It_All%s%s%s.exe” 
This chapter includes the analysis steps taken to identify the purpose of the 

%s%s%sGet_It_All%s%s%s.exe application which will be referred to as GIA for the remainder of this 

report. Before actually engaging in any actual analysis, we identified that the two files (excluding the .rar 

file) were actually PE executables. This led us to the conclusion that the GIA application was either a 

process loader or a dynamic linker. 

2.1 Anti-Reversing Techniques 
Our first step was to load the GIA in Olly. Unfortunately we received the error message in Figure 1 with 

Olly unexpectedly breaking inside the Windows loader procedure. 

 

Figure 1 Initial Error Message 

Such an error indicates possible tampering with the executable’s PE header. This can also be verified by 

opening the Memory View window in Olly, as shown in Figure 2. There are a number of tools and 

libraries (eg the pefile project) that identify inconsistencies with the PE header structure. However, we 

decided to stick with Olly and verify the PE header manually. 

 

Figure 2  Memory View 

During the header analysis we identified that the NumberOfRvaAndSizes element had an invalid value, as 

shown in Figure 3. 

 

Figure 3 GIA PE Header 



By default, this element displays the number of directory entries in the header and its value is equal to the 

defined IMAGE_NUMBEROF_DIRECTORY_ENTRIES of the programmer’s linker. For this specific 

executable, PE Header version and almost for all executables the number of entries is 16 decimal and 

0x10 hexadecimal. To bypass this protection all we have to do is load our favorite hex editor navigate to 

the offset 0x16C from the beginning of the file, since NumberOfRvaAndSizes Address = 0040016c and 

BaseAddress = 00400000 therefore, 

                      

and patch the number 0x00000010 in the appropriate little-endian format as shown in Figure 4. 

 

Figure 4 Patching NumberOfRvaAndSizes 

Reloading the executable we came across another issue that has to do with a bug in Olly debugger. That is 

the confusion of the interpreter when it comes across executables that contain the “%s%s%s” pattern in 

their name. This is shown in Figure 5. 

 

Figure 5 %s%s%s Bug 

To overcome this issue you might consider renaming the executable. However, that could be proven to be 

a bad solution since the author of this challenge would most likely have a reason for naming the files in 

such a way. Other proper solutions include using a plugin (such as OllyAdvanced) to repair the bug, or 

even running an additional analysis of this module using Analysis > Analyse Code. We decided to use the 

OllyAdvanced plugin that patches both of the NumberOfRvaAndSizes and format string issue. 

The next step was to identify the actual WinMain function of the executable, since the entry point at 

00402652 is the entry point of the compiler and linker generated executable file. In order to locate it, you 

mostly have to rely on experience. Once you load the code and hit the Entry Point, experience will tell 

you that this program was compiled using Visual Studio, next (for VS) you follow the jump instruction 

until you find the appropriate call matching the number of arguments and argument types for this 

compiler. The CALL to the WinMain function is illustrated in Figure 6. 

 

Figure 6 WinMain Called at 0040252C 

Viewing the WinMain function we immediately understand that the program is constructed in such a way 

thus confusing the recursive traversal algorithm used by OllyDBG. This algorithm identifies control 

transfer instructions such as branches (JMP, JNE, JE, etc), procedure CALL and RET instructions during 

the sequential analysis of the code and once they are reached, the analysis continues at the address pointed 

by them. The resulting code inside the WinMain procedure is illustrated in Figure 7. 



 

Figure 7 WinMain Procedure of GIA 

Following the first call (see Figure 8) we come across a function that alters the dword element pointed by 

the stack register by adding the number 1 to it. That element is actually the return address to the caller 

procedure right after the CALL instruction. Therefore, by adding the number one to the return address the 

program is instructed to return one byte after the address specified by the CALL instruction from the 

caller procedure thus skip one byte. 

This technique, other than the fact that it 

confuses OllyDBG’s code analyzer, it also 

confuses it’s tracing mechanisms since stepping 

over the call involves placing a breakpoint at the 

next instruction, which is skipped when 

returning from that function. Therefore, the breakpoint would never be hit and the program will continue 

execution. The usage of such functions can be proven quite annoying during the dynamic analysis process 

which requires single stepping through the code and identifying its purpose. In order to avoid accidentally 

stepping over such a call you would have to replace them with the appropriate NOP instructions. In this 

case, we’ll have to remove the CALL instruction which is 5 bytes long, plus the number of bytes it skips 

which is 1 byte as shown in Figure 8. 

Replacing the obfuscation function call and an additional byte with the 6 NOP instructions, another 

function call reveals itself (see Figure 9). Following the CALL (see Figure 10) we come across a similar 

function to the one seen in Figure 8. 

This function CALLS the first function we’ve seen in 

Figure 8, skips the single byte after the CALL which is 

translated as a PUSHAD instruction, then adds the number 

two to the return address pointed by the stack register. 

Therefore, this function whenever called, skips the next two 

bytes from the return address specified by the CALL 

instruction. In order to remove this obfuscation function 

we’d have to replace 5 bytes for the CALL instruction and 

the 2 bytes skipped. Doing this reveals another obfuscation instruction that skips the next 3 bytes; 

replacing that reveals the actual code. However, such obfuscation calls exist in most parts of the program 

and can be proven to be extremely annoying during analysis. 

 

Figure 10 Inside Obfuscation Function 2 

Figure 8 Obfuscation Function 1 

Figure 9 NOP-ing Obfuscation 

Function 



Coding your own obfuscation function is not that hard; all you have to do is instruct the compiler to skip 

the standard function header and footer instructions that deal with frame instantiation by declaring the 

function as “naked” and finally adding the necessary assembly instructions. 

Removing each of the obfuscation functions manually can be proven to be a time consuming process. 

Therefore, using the ODBGScript plugin we wrote a script (see Get_It_All De-obfuscation Script for 

ODBGScript in Appendix) that automatically de-obfuscates the GIA executable. We’ve identified the 

following obfuscation functions shown in Table 1 and by retrieving the list of references to those 

functions we made the appropriate patches. 

Function Address Bytes Skipped Actual Bytes Patched 

00401EE0 1 5 + 1 = 6 

00401EF0 2 5 + 2 = 7 

00401F00 3 5 + 3 = 8 

004010F0 4 5 + 4 = 9 

00401F10 5 5 + 5 = 10 

Table 1  Obfuscation Function Addresses 

By running the script multiple times (about 5 times) until no references to the above functions are found 

we’ve managed to successfully remove the obfuscation protection of GIA. 

2.2 GIA Analysis 
Our initial analysis began by inspecting all references to external library functions and strings. However, 

the biggest proportion of anti-reversing techniques attempt to eliminate such information by dereferencing 

or dynamically loading them. In the case of GIA we can easily identify (after removing any obfuscation 

traces) a number of key API functions calls such as: 

1. CreateProcessA 
http://msdn.microsoft.com/en-us/library/ms682425%28v=vs.85%29.aspx 

2. OpenProcess 
http://msdn.microsoft.com/en-us/library/ms684320%28v=vs.85%29.aspx 

3. WaitForDebugEvent 
http://msdn.microsoft.com/en-us/library/ms681423%28v=vs.85%29.aspx 

4. GetThreadContext 
http://msdn.microsoft.com/en-us/library/ms679362%28v=vs.85%29.aspx 

5. SetThreadContext 
http://msdn.microsoft.com/en-us/library/ms680632%28v=vs.85%29.aspx 

6. WriteProcessMemory 
http://msdn.microsoft.com/en-us/library/ms681674%28v=vs.85%29.aspx 

7. ContinueDebugEvent 
http://msdn.microsoft.com/en-us/library/ms679285%28v=vs.85%29.aspx 

#define add2junks obfuscate_2(); __asm _emit 0x43 __asm _emit 0x60 

 

void  __declspec(naked) obfuscate_2() 

{ 

 __asm { 

  add dword ptr [esp], 2 

 } 

} 

 

void foo(void) 

{ 

 //code omitted 

 add2junks; 

 //code omitted  

} 

Figure 11 Creating your own Junk Code-Obfuscation Function 

http://msdn.microsoft.com/en-us/library/ms682425%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms684320%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681423%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms679362%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms680632%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms679285%28v=vs.85%29.aspx


Reviewing the purpose of these functions one can easily deduct the functionality of GIA as a loader 

program that executes a process and acts as a debugger for it. 

We began our dynamic analysis by reviewing the code step by step beginning from the WinMain 

function. The first instruction block we came across (illustrated in Figure 12) deals with printing out the 

message "Hello Reverser...so you think you can get it all?!?! (Athcon 2011 - CTF)". 
 

 

Figure 12 Print Message Block 

The second instruction block (see Figure 13) instructs the system to pause the thread for 0x3E8 (=1000) 

milliseconds using the Sleep function. 

 

 
Figure 13 Sleep(1000) 

The next block (see Figure 14) is not that interesting since it appears to initialize a class object. We will 

later see that this object is essentially used for storing information such as the child’s process handle, the 

thread’s context retrieved using the GetThreadContext function and so on. For the moment all we need to 

know is that the size of this class/object is equal to 0x3A4 (=932) bytes. We note down the address of the 

allocated object in order to observe and understand its structure. 

 

 
Figure 14 Object Allocation 

The final code analysis block (see Figure 15) is our main point of interest for this program. It invokes two 

functions responsible for creating the process and debugging it, thus communicating the required 

information for the execution of %s%s%sAthcon_2011%s%s%s. The final pages of this chapter will 

explore that process in detail revealing some of the secrets behind the anti-reversing protections of this 

challenge. 

 
Figure 15 GIA Execution and Debugging Functions 

Having noted the address allocated for the identified object, we follow the call located at 00401F9F which 

leads into a stub function (possibly a constructor). Following the second call we reach the entry point of 

the header-less function located at 004011E0 (shown in Figure 16). The first three instructions handle 

spilling the EBX register to the stack and moving the value in EAX into the EBX and ECX registers. 

EAX contains the pointer to the allocated object given by the code analysis block in Figure 14 and 

assigned to during the execution of the stub function in 00401ED0. 

There are two CALL instructions inside this function, the first is still unknown to us at the moment and 

appears to be calling a function within the current executable module. The second one appears to be 

calling an address, within the Import Address Table of the executable located at 00403000, which points 

to the OpenProcess function inside the kernel32.dll module. 



 
Figure 16 GIA CreateProcess & OpenProcess Function 

Following the first CALL instruction we land in a function, protected by the /GS buffer security check 

cookie. Figure 17 and 18 display the initialization and checking process of the cookie. The GS protection 

in this function reveals the existence of local buffer arguments or buffer manipulation intends, with the 

most likely scenario being a string initialization used when creating the %s%s%sAthcon_2011%s%s%s 

process. 

 

 
Figure 17 GS Cookie Initialization 

 

Figure 18 Stack Cookie Check 

The first code analysis block we define (see Figure 19) loads to ESI the address of EBX+34 (EBX 

containing the base address of the allocated object and was assigned to in 004011E1, see Figure 16) and 

assigns the value 0x44 (=68) to it. Additionally, the same element pointed to by ESI has 0x44 of its bytes 

set to 0x00 using the memset function. This reveals that the element at unknown_object+34 is most likely 

a buffer of size 48 and possibly a DWORD array of 17 elements. 

 

 
Figure 19 Function 00401110 First Code Analysis Block 

  



The next code analysis block handles the rest of the initializations for the unknown object. EDI is set to 

the address of EBX+24 (base address of allocated object) and the four adjacent DWORD values are set to 

the value of EAX that was XORed at the beginning of this block. Additionally the DWORD value 

pointed to by EBX+60 as well as the WORD value pointed to be EBX+64 are set to 1. 

 

 
Figure 20 Function 00401110 Second Code Analysis Block 

The next code analysis block (see Figure 21) contains a "string" class type initialization function ( CALL 

004010C0) which allocates a string structure and copies to it the "%s%s%sAthcon_2011%s%s%s" ASCII 

string. Next the CreateProcessA API function is called with the following arguments: 

 CreateProcessA( 

  lpApplicationName = "%s%s%sAthcon_2011%s%s%s", 

  lpCommandLine = NULL, 

  lpProcessAttributes = NULL, 

  lpThreadAttributes = NULL,, 

  bInheritHandles = TRUE, 

  dwCreationFlags =  DEBUG_PROCESS | CREATE_SUSPENDED, 

  lpEnvironment = NULL, 

  lpCurrentDirectory = NULL, 

  lpStartupInfo = unknown_struct + 24 

  lpProcessInformation = uknown_struct + 34 

 ); 

Therefore we deduct that the element at unknown_struct+34 is a STARTUPINFO structure and the 

element at unknown_struct+34 is a PROCESS_INFORMATION structure. Finally, the next CALL to 

function 00401A30 doesn't appear to be doing anything worth mentioning. Exiting this function the GS 

stack cookie is checked for any possible stack based overflows, the stack is rebalanced and the function 

returns to its caller. 

 

Figure 21 Function 00401110 Third Code Analysis Block 

  



Revisiting Figure 16 we can clearly identify the call to OpenProcess with the following arguments: 

 OpenProcess( 

  dwDesiredAccess = VM_OPERATION | VM_WRITE, 

  bInheritHandle = FALSE, 

  dwProcessId = EBX+2C 

 ); 

Where EBX+2C contains the dwProcessId given by the PROCESS_INFORMATION structure set by the 

CreateProcessA function. Additionally, the result of OpenProcess ( returned in EAX ) is stored inside the 

first element of the unknown_structure. Finally, the process returns to the stub function which returns to 

WinMain preserving the OpenProcess result in EAX. 

 

2.3 Function 00401240 
Next the value of EAX is PUSHed as an argument to the function located at 00401240 ( see Figure 15 ) 

which is executed next. This function's header (see Figure 22) reveals three things; the first being the 

large number of allocated bytes inside the stack ( SUB ESP, 0x220 ), second the initialization of a GS 

stack cookie and third the storage of the first argument ( EBP+8 ) inside the first declared local variable 

(EBP-220). 

 
Figure 22 00401240 Header 

The second code analysis block for this function initializes the second unknown_struct+4 element  

(ESI+4) and two local variables at EBP-21C and EBP-218 to NULL by XORing EDI with itself and 

assigning it to them. 

 
Figure 23 00401240 Second Code Analysis Block 

Next, the function initializes a set of addresses (see Figure 24) and numbers (see Figure 25) by storing 

them inside the pre-allocated stack space for local variables. Tracing your debuggee up to the point 

located right after the initialization allows you to view a nicely structured memory dump of the initialized 

variables.   

The second analysis block contains a number of debugging API calls. First, the thread id given in 

unknown_struct+28 ( ESI+28 ) which contains the handle hThread retrieved by the CreateProcessA 

PROCESS_INFORMATION structure is send to the ResumeThread API function thus resuming the 

created process. Next, the WaitForDebugEvent API is called with the unknown_struct+78 (ESI+78) as a 

pointer to a DEBUG_EVENT structure and -1 representing the INFINITE waiting time thus blocking the 

current GIA thread until a debug event occurs.   



 
Figure 24 00401240 Init Addresses 

 
Figure 25  00401240 Init Numbers 

 
Figure 26 00401240 Second Code Analysis Block 



Next, the DWORD value pointed to by EDI which is the first element dwDebugEventCode of the 

DEBUG_EVENT structure is checked against number 5 (EXIT_PROCESS_DEBUG_EVENT) and if 

equal the code jumps to the location 00401996 which exits the function. 

The next call to OpenThread receives the dwThreadId (ESI+80) located inside unknown_struct+80 (after 

the call to WaitForDebugEvent),  with a FALSE (0) bInheritHandle and 

THREAD_SUSPEND_RESUME, THREAD_GET_CONTEXT, THREAD_SET_CONTEXT and 

THREAD_QUERY_INFORMATION flags set in dwDesiredAccess. The result is stored inside 

unknown_struct+4. 

Next (see Figure 27), the element at location unknown_struct+84 (ESI+84), which resides within the 

DEBUG_EVENT structure and contains the first element of the union "u" which is an 

EXCEPTION_RECORD structure inside a EXCEPTION_DEBUG_INFO structure with element name 

ExceptionCode, is checked with the value 80000003 that stands for the EXCEPTION_BREAKPOINT 

definition. If the two checking values are not equal then the code branches at location 0040195F where 

the DBG_EXCEPTION_NOT_HANDLED message is send back to the system. 

  

 

Figure 27 00401240 EXCEPTION_BREAKPOINT check 

If the exception code is equal to a breakpoint then the program enters a looping state (see Figure 28) in 

which the value inside unknown_struct+90 (ESI+90) that contains the ExceptionAddress pointer is 

checked against the local DWORD address elements beginning from EBP-10C and ending at EBP-8. You 

can clearly see that EDI acts as a counter and an array index pointer calculating the location of each 

element by multiplying the number of DWORDs (since each element is of DWORD length) to the 

address of the first element. (see 00401827 CMP EAX, DWORD PTR SS:[EBP+EDI*4-10C]). If no such 

item is found then the program branches to location 00401933 where the DBG_CONTINUE message is 

send back to the system. This information reveals that the addresses in Figure 24 are actually expected 

exception addresses in the "%s%s%sAthcon_2011%s%s%s" module. 

 

Figure 28 00401240 Loop 

When a matching address is found the JE 00401842 instruction branches the execution flow onto the next 

code analysis block (see Figure 29). There, the address of unknown_struct+D8 is moved into EBX and 

the element pointed to by that address is set to 0x1003F. Next, the GetThreadContext API function is 

called with EBX and ECX as its arguments. ECX is set to unknown_struct+4 (ESI+4), which is already 

known to us from Figure 26. In addition, we've just identified EBX as an element in unknown_struct+D8 

and given the definition of GetThreadContext that memory location contains a CONTEXT structure. 

Therefore, the value 0x1003F is a set of flags (defined as CONTEXT_ALL) assigned to the first element of 

CONTEXT named ContextFlags. Note that this program was compiled under the i386 architecture 

therefore, all references to CONTEXT and flags are intended for that architecture.  



 

Figure 29 00401240 GetThreadContext Code Analysis Block 

Figure 30 illustrates the next steps taken by the program right after the CONTEXT structure is populated 

by the GetThreadContext function. The value in unknown_struct+19C (ESI+19C) which is the element at 

location 0x19C - 0xD8 = 0xC4 from the beginning of the CONTEXT structure is decremented by 0x04. 

Reviewing the definition of the structure, we identify that this element is the stack pointer (ESP) of the 

debuggee. Next, the local table address element pointed to by the EDI index (which hasn't changed since 

Figure 28)  and contains the exception address, is assigned to the element in unknown_struct+190 

(ESI+190) which points to the instruction pointer (EIP) in the CONTEXT struct. Next, the same address 

(ESI+190) is moved into EAX, incremented by 5 and assigned to local variable located at EBP-218. 

Finally, the same index number in EDI is used to retrieve a value from the second table (illustrated in 

Figure 25) which is then added to unknown_struct+190 (ESI+190) containing the EIP register of the 

debuggee.  

 

Figure 30 00401240  Managing CONTEXT flags 

The next code analysis block contains calls to two API functions. First, the SetThreadContext function is 

called with EDX, containing the thread's handle (assigned to from ESI+4) and EBX, containing the 

CONTEXT structure address, therefore effectively changing the altered registers. Next, the 

WriteProcessMemory function is called, with the 5th argument being the address of a local variable in 

EBP-21C, which by definition of WriteProcessMemory is a SIZE_T lpNumberOfBytesWritten value; the 

4th argument being the number of bytes to write, which is set to 4; the 3rd argument being the local 

variable/buffer at EBP-218, which is assigned to in Figure 30 and is the exception address plus 5 bytes; 

the second argument being the address in unknown_struct+19C, which is the altered stack pointer (ESP) 

of the debuggee; finally, the first argument in EAX is loaded from the local variable in EBP-220 which is 

assigned to in Figure 22 from the first and only argument of this function and contains the process handle. 



 

Figure 31 00401240 SetThreadContext and WriteProcessMemory 

Finally, the next code analysis block (see Figure 32) continues the debugged process with a 

DBG_CONTINUE (0x10002) status and carries on the debug loop. 

 

Figure 32 00401240 ContinueDebugEvent 

2.4 Conclusions 
Reviewing GIA module's behavior one can clearly validate some of the assumptions made in previous 

sections. The Get/SetThreadContext process is essentially "emulating" the state of a program right after 

the execution of a CALL instruction. Just like the return address is calculated as being the immediate 

address after the call instruction, then PUSHed inside the stack as a piece of procedural linking 

information within the newly constructed stack frame. So does GIA subtracts from the stack pointer a 

value equal to the stack width (namely 4 bytes in x86) and assigns to the element pointed by it a value 

equal to the exception address plus 5 bytes (the return address). Therefore, the 5 bytes could stand for a 

CALL instruction that was replaced or removed intentionally to render the debuggee useless without the 

use of GIA module. 

  



Chapter 3. Executable %s%s%sAthcon_2011%s%s%s 
This chapter covers the dynamic and static analysis of "%s%s%sAthcon_2011%s%s%s" module. For the 

remainder of this report we will refer to it as "Athcon module". 

Loading up the module in OllyDBG we come across the same PE anti-reversing techniques 

(NumberOfRvaAndSizes and format string) as GIA. Refer to previous section 2.1 which describes how to 

bypass them. In addition, the WinMain function is partially encrypted from address 00402F96 until it's 

exit. 

3.1 INT3 Exceptions 
Navigating to the WinMain function (located at 00402E50) of the application we observe a number of 

INT3 instructions inlined along with the code. A simple analysis can reveal the following: 

1. All INT3 inline blocks have size equal to 5 bytes. 

2. The first INT3 instruction of each block is located in an address contained inside the array 

initialized by GIA (see Figure 24). 

Since there were no apparent indications 

that the INT3 blocks served any purpose 

other than signaling the GIA module we 

decided to calculate the emulated CALL 

addresses and manually replace each 

block with them. Initially, we reversed 

engineered from the debug loop function, 

the necessary information to calculate 

programmatically each address (see 

Appendix 4.3). 

However, we eventually decided to use 

ODBGScript to reduce the amount of 

time required to calculate and patch. The 

resulting script initializes the two tables 

from Figure 24 and Figure 25, takes the 

address currently pointed to by EIP, 

locates INT3 blocks of size 5 bytes, looks 

up the table and finally patches the 

required CALL instruction. For the 

purpose of simplicity and genericality the 

script pops up a message asking for the 

user's permission before continuing, 

whenever a block doesn't match an 

address inside the address table. The 

script's source code is located in Appendix 4.4. In order to execute the script, navigate to WinMain and 

run it until the Yes/No message box appears. This should sufficient enough to patch the first batch of 

INT3 blocks. 

Once the script finishes executing the following messages should 

appear in OllyDBG's Log window. Each one denotes the address of 

the patch and the call instruction that replaced the INT3 block. 

  

Figure 33 Athcon WinMain 

Figure 34 ODBGScript Log 



3.2 Analysis of WinMain Unencrypted Body 
The following analysis is rather slightly abstract in comparison to the one reported for GIA in previous 

sections. Most of the internal and somewhat irrelevant structures and functions are not covered in detail 

since they are not specifically required for the completion of this challenge. A number of function calls 

have been labeled according to their functionality and a short description is given whenever they come 

up. 

The first code analysis block in Figure 35 calls a function (00402E81) labeled by us as "VirtualProtect" 

since inside it the VirtualProtect API is invoked with the following arguments: 

 VirtualProtect( 

  lpAddress = 00401000 (beginning of the code section), 

  dwSize = 0x4000, 

  flNewProtect = 0x40 (= PAGE_EXECUTE_READWRITE), 

  EBP-24 (A local variable discarded on return) 

 ); 

The reason behind this API call is to allow the program to self-alter or polymorph it's code. In short, 

polymorphism is the intended incorporation of encryption and/or code manipulation within a program, 

allowing it to decrypt and/or alter its own code dynamically while executing in memory. 

 

 

Figure 35 WinMain First Code Analysis Block 

The CALL instructions labeled as "decrypt_function" take as an argument the address of an encrypted 

function in ECX and applies a byte by byte XOR decryption loop (see Figure 36) with a key equal to the 

high 8bit byte of AH (assigned to at 00403876 by EDI which at that point holds the function's address). 

For example, if the function's address is 00401234 then the decryption key is 0x12. 

The loop ends when BL is not equal to 0, 

that is when the instruction at 0040389E is 

executed. This is possible only if the 

execution flow follows blocks 0040388F 

and/or 00403899. To do so the byte pointed 

to by EAX (currently decrypted byte) must 

be equal to 0x86 when XORed with the 

number 0x45. The byte satisfying this 

equation is 0xC3 (RETN instruction 

mnemonic). Next, if the byte pointed to by 

EAX+1 is equal to 0x89 when XORed with 

0x45 (therefore equal to 0xCC) then jump 

to location 0040389E setting the byte in BL 

to 1. 

 

Figure 36 00403850 Decrypt_Function Function 



Next, the decrypted function (00404200) is called with a stack address as an argument. Its purpose is to 

retrieve the name of the application, hash it using the SHA-512 algorithm, allocate a buffer, convert the 

hash into an ASCII string inside that buffer and return it. The buffer is then used in function 00403470 

(called at 00402EB8) to bitwise XOR the rest of the WinMain function (which is currently encrypted). 

However, this is just the first of many chained decryption functions that make use of  hash values to 

decrypt the remaining instructions of WinMain, making this algorithm the main protection used in 

Athcon_2011. The first valid hash signature is:  

"59d9dfa6e92f95f281e4bbb7ec6b15bd495d7e12bc26fd3e9ee281856781b4100ce596eb4f294ef1e00735e4

6c3e1bf43b7a6110332652d08eda8da6523e0041" 

Another interesting function is the one called at address 00402EC2 (in WinMain) and is labeled 

"GetFunctionSize". This function works in a similar way with decryption_function, it takes a single 

argument in the stack which is the pointer to a function and returns its size in bytes. 

Next, the function located at 00404200 is "destroyed" by the function located at 004037E0 and labeled 

"Destroy_Function". The destroy function takes two arguments, first the function's address in ECX and 

second the function's size in bytes as a PUSHed argument. Inside, the rand function from msvcr100.dll is 

called to determine the bytes to replace the function's instructions with. 

The function labeled Decrypt_Function2 and illustrated in Figure 37, decrypts a single function pointed 

to by EAX (see address 00403DE3). The pointer to that function is set in EAX from EBP-28 which in 

turn is set at 00403DCD. At that point EAX holds the resulting value from XOR EAX, ESI. EAX is equal 

to 0x23BC (set at 00403DC0) and ESI holds the address 004067FC (set at 00403DB3). The resulting 

function's address is 00404440; we labeled it "Parenting" for obvious reasons that will be revealed later. 

The XOR key currently residing in [EBP-21] is set to the low EAX value (AL) at 00403DD1; that value 

in turn is being set (before the PUSHAD/POPAD instructions) to the address of EBP-20 (not its contents). 

Since the low address bytes of the stack remain the same even after address randomization, the XOR key 

remains the same and equal to 0xF0. Finally, by observing the loop factors, we can identify the length (in 

bytes) of the decrypted function. Since ECX acts as a counter to the loop and is set to 0x315, we 

immediately assume that the function is equal to or more than 0x314 bytes. 

 

Figure 37 403DA0 Decrypt_Function2 

The next call inside WinMain (from Figure 35) decrypts the function located at 00403A50. 

 

Figure 38 WinMain Second Code Analysis Block 

The second code analysis block (see Figure 38) calls the newly decrypted function at 00403A50. The 

result of that function is (at this moment) assumed to be a hash-string value due to the immediate call at 

DecryptFromHash. 

  



This function contains two interesting CALLs (see Figure 39):  

1. A call to 00404440 (labeled "Parenting") at address 00403AEE. 

2. A call to EDX (at 00403B25) which, through dynamic analysis, revealed itself to be an SHA-512 

hashing function. 

 
Figure 39 00403A50 Function, POI 

3.2.1 Analysis of Parenting Function 1 
The "parenting" function located at 00404440 uses a number of API calls to enumerate information about 

the currently running processes on the host system. That information is then used to retrieve and later 

assess (outside this function) the parent process id of AthCon_2011. 

The APIs invoked are: 

 CreateToolhelp32Snapshot 
http://msdn.microsoft.com/en-us/library/ms682489%28v=vs.85%29.aspx 

 Process32FirstW 
http://msdn.microsoft.com/en-us/library/ms684834%28v=vs.85%29.aspx 

 Process32NextW 
http://msdn.microsoft.com/en-us/library/ms684836%28v=vs.85%29.aspx 

The latter APIs take as argument a pointer to a PROCESSENTRY32 structure containing the required 

information about the process. 

Initially, the function's header (see Figure 40) establishes it's stack frame with 0x274 (=628) bytes 

allocated for local variables (see 00404451). It then set's up the GS stack cookie (see 0040444A to 

0040445E) and a local structured exception handler (see 0040445E and 00404465 to 00404468).  

 

Figure 40 00404440 Parenting Function First Code Analysis Block 

  

http://msdn.microsoft.com/en-us/library/ms682489%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms684834%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms684836%28v=vs.85%29.aspx


Next (see Figure 41), the memset function is called with ECX being the buffer, located at EBP-274 (local 

variable), EDI containing the setting value which is equal to zero (see XOR EDI, EDI at 00404477 in 

Figure 40) and the value 0x22C (=556) as the number of bytes to set the value. This reveals that EBP-274 

is a buffer or structure with a size equal to 0x22C (=556) and that its first DWORD element is set to that 

size. This also hints that the structure we are investigating is actually a PROCESSENTRY32 structure 

which has to have its first element (dwSize) equal to sizeof(PROCESSENTRY32). Additionally, the 

GetCurrentProcessId function is called and the result is stored in EBP-280 (at address 004044D8). 

Finally, CreateToolhelp32Snapshot is called with th32ProcessId argument equal to 0 (for current process) 

and dwFlags equal to 2 (TH32CS_SNAPPROCESS); if the result is equal to -1 

(INVALID_HANDLE_VALUE) then the function exits. 

 

Figure 41 00404440 Parenting Function Second Code Analysis Block 

If the process snapshot was successful, the execution flow continues (see Figure 42) by retrieving the first 

process from it using the Process32FirstW API call with EDI (the snapshot handle) and EDX 

(PROCESSENTRY32 structure address) as arguments. 

 Process32FirstW( 

  hSnapshot = EDI (assigned to at 004044E0 from resulting EAX), 

  lppe = EDX (assigned to as the address of EBP-274 at 004044EB) 

 ); 

If unsuccessful, the jump located at 004044FB will branch to a call at CloseHandle(hSnapshot = EDI) and 

then exit the function. If successful, the WORD value at [EBP-250] which falls inside the 

PROCESSENTRY32 structure at offset +24 (0x274-0x250) from its base address and contains the first 

wide character of szExeFile element will be compared with 0. In essence, the program validates that the 

executable file name is present. 

 

Figure 42 00404440 Parenting Function Third Code Analysis Block 

 



If so, execution moves into a loop block (from 00404509 to 00404520) which translates the wide 

characters in szExeFile to their ASCII equivalent. Next the DWORD value in [EBP-26C], that falls inside 

the PROCESSENTRY32 structure and contains the th32ProcessId element (at offset +8 = 0x274 - 

0x26C), is loaded into EAX and compared against the current process Id stored in a local variable inside 

[EBP-280]. This reveals that the program is looking for the process snapshot of itself. If the two values 

match (thus we are "looking" at the PROCESSENTRY32 snapshot of the current process) then the 

program retrieves the value in [EBP-25C], which is in offset +18 (0x274 - 0x25C) of the structure (which 

contains the th32ParentProcessID element) and stores it in a local variable located at EBP-27C. The 

whole process loops again and again using the Process32NextW API, until the parent thread Id is found. 

In order to bypass this protection one could simply alter the structure object passed to the function. 

However a much simpler and more generic way of doing so is to set a breakpoint on Process32Next and 

patch the appropriate parent process id number inside the PROCESSENTRY32 structure. We've drafted 

an ODBGScript (see ODBGScript AthCon_2011 module Parent ID Hook in Appendix) that: 

1. Requests the parent PID we wish to patch 

2. Retrieves the current process id 

3. Hooks the Process32Next function 

Whenever the hook is hit: 

1. Compare the current PROCESSENTRY32 structure's th32ProcessId element with the current 

process id 

2. If equal then patch the th32ParentProcessId given by the user 

3. Continue execution 

Once all processes are accounted for, the same GetToolhelp32Snapshot + Process32Next/First is executed 

again to verify that the given results are the same. Once the appropriate parent process is located, the 

function returns to function 00403A50 where the name of the parent process is hashed using SHA-512 to 

retrieve the next decryption signature which is: 

"7433bffcd1b34f1b61d9d304f5a9e6f4b4a88281c7db6e3826a0534c0212c559447a1fbcea4a56f3908be173

b8d75baaeb571b63301d01db2b0e55f2a3b80cfa" 

 

3.2.2 Analysis of Parenting Function 2 
The second code analysis block for WinMain function (see Figure 43) contains nothing more than a 

number of function decryptions and destructions as well as the remaining DecryptFromHash functions. 

The most interesting part is a call to 00403B70 which contains yet another "Parenting" function slightly 

different than the first. 

 

Figure 43 WinMain Second Code Analysis Block 



Within the 00403B70 function's body (see Figure 44), we discovered two interesting calls. First, a call to 

the parenting function (at address 00403C01) and then a call to a file handling function (at address 

00403C25). As mentioned above, the parenting function is somewhat similar to the one in "Analysis of 

Parenting Function 1" subsection. However, the only difference is that this function retrieves the parent 

module's file name by invoking the GetModuleFileNameExA Windows API. This protection can be 

bypassed by using the same script as before. 

 

Figure 44  00403B70 Parenting and File Handling Functions 

Next, the module's file name is passed to the file handling function which opens the parent module file as 

shown in Figure 45, with the "rb" flag. 

 fopen( 

  filename = parentPathname, 

  mode = "rb" 

 );  

 

Figure 45 00402250 fopen Call 

Next in Figure 46, the file handle is send to the fread function (at 0040231C), retrieving 0x400 (=1024) 

bytes from the beginning of the file.  

 fread( 

  ptr = EAX, 

  size = 1, 

  count = 0x400, 

  stream = EDI 

 ); 

Once the first fread call is successful, the program enters a looping state in which the function located in 

EDX (a hashing function) is called, with the fread buffer as an argument. Next, the rest 0x400 (=1024) 

bytes of the same file stream are read (see CALL EBX at 00402345) and the program loops until the 

entire file is read and hashed. 

On exit, the next SHA-512 digest hash which is send to the DecryptFromHash function chain, is equal to: 

"5acae9beaa8b8e99d01849c654ad16770f5ea0c5ff085aac7d4614eb056ab1d84e0a3020bc6e38493f4c7f0c

32b8e32e1777215e0b95c87d5c42a85558dee4ba" 



 

Figure 46 00402250 fread and Hash 

3.2.3 Analysis of Parenting Function 3 
Moving back to WinMain from Figure 43, we identify the final DecryptFromHash function located at 

00402F91. Above it, is (yet again) the last Parenting function located in 00403C80. In a similar way, this 

function compares the parent name retrieved from a previous parenting function against each process in 

the system (see Figure 47). If the two strings match then the parent id is stored and compared to in a loop 

below, whose goal is to retrieve the parent's parent process name (the parent process of 

%s%s%sGet_It_All%s%s%s.exe). This is an effective technique against debugging the GIA module 

while Athcon_2011 is running. 

 

Figure 47 00404c10 Parenting Function 3 Loop 1 

  



Once the parent's parent module name is retrieved, the function exits and the result is send to the SHA-

512 hashing function at the CALL instruction located at 00403D5A. The expected argument to the 

hashing function is "explorer.exe" and the resulting hash digest must be equal to: 

"0c3dc6a9d88ac98ee08a6aac028a1cf72e6d736227d36904a9daec84b30c2fccfd57a41daa4d73384bb9133

9482e98e226578eb0d87c958c2bfd2353181b680b" 

 

Figure 48 00403C80 Parent and Hash 

3.3 Analysis of WinMain Decrypted Body 
After the final DecryptFromHash function we come across the same INT3 exception inline instructions 

previously described in section 3.1. We abuse "ODBGScript AthCon_2011 module INT3 block Patcher" 

once more to clear out and patch all remaining traces of this annoying protection. The script should finish 

with a message box reporting that 0x2A CALLs were patched. 

 

Figure 49 WinMain Decrypted Body 

  



After repairing the rest of the code, we come across a number of functions (see Figure 50) that mainly 

destroy the DecryptFromHash function (see 00402FC0) and decrypt the rest of the anti-debugging 

functions.  

 

Figure 50 WinMain Third Code Analysis Block 

The function labeled "Mess_With_RemoteDebugging" is rather interesting. It effectively disables the 

standard remote debugging capabilities of the current process making it impossible for a number of 

debuggers (such as OllyDBG) to attach and debug the process. A simple analysis with OllyDBG reveals 

that the functions "DbgUiRemoteBreakin" and "DbgBreakPoint" from within the ntdll module have their 

first byte replaced with a 0x0C3 (RETN) instruction (see assignment at 0040101E and usage at 

0040107F). 

 

Figure 51 00401010 Mess_With_RemoteDebugging Function 



Next, the immediate function called right after Mess_With_RemoteDebugging (see CALL instruction at 

0040301E in Figure 50) is yet another Destroy_Function function for the previous CALL. 

 

 

Figure 52 WinMain Fourth Code Analysis Block 

The next code analysis block begins with a call to a GetTickCount stub function which invokes the 

GetTickCount API function to retrieve a counter that indicates the number of seconds elapsed since the 

system was booted. This is a common 

technique to detect code debugging by 

invoking the same API twice within a 

code block, taking the difference in 

seconds from both resulting values, thus 

retrieving the number of seconds needed to execute that code block and finally, comparing that number 

with the expected number of seconds required to execute that block. If time difference between the two 

calls are greater than the expected number then something or someone paused the execution of the 

program during analysis. Indeed, in later analysis of the code we've identified a secondary GetTickCount 

stub (see Figure 53) and a comparing function that compares the time required to execute the block with 

the number 0x3E8 (=1000). In order to bypass this, one could hook GetTickCount and control the number 

of seconds returned in EAX or even patch the conditional branch located at 0040317E with NOP 

instructions. 

Next, the GetCurrentProcessId and OpenProcess windows API functions are invoked. Their purpose is to 

provide information for the function labeled CheckForHWBreakpoints which calls the GetThreadContext 

function (see Figure 54) with a locally allocated (in the stack) CONTEXT structure located at EBP-2D0 

and check if the elements at offsets +4 (Dr0), +8 (Dr1), +C (Dr2), +10 (Dr3) are equal to zero. These 

"elements" control hardware breakpoints (actually Dr0-Dr3 contain the breakpoint addresses) and are 

special debug registers within the processor. If one of these registers is not equal to zero, the conditional 

branch is taken and the function returns 1 in EAX which is then checked at 004030D0 in WinMain and 

results to the unsuccessful message box if a hardware breakpoint is detected. 

Figure 53 GetTickCount Check 



 

Figure 54 00401180 CheckForHWBreakpoints 

The next function labeled "Init_Table" takes the first step towards generating the required archive key to 

unlock the text files containing the system passwords. Within it, an array of global DWORD values inside 

the .data section, beginning at address 00408040 and containing 0x210 / 0x04 = 0x84 (=132) entries, is 

XORed with the value 004030C0. 

 

Figure 55 00403910 Init Table Function 

The original table values along with the resulting XORed values are listed at "Init_Table Values 

(Addresses)" section within the Appendix. Notice that the patch values refer to address locations within 

the program's code section. 

Next, the function labeled ConstructKey is called which uses the newly created table to finally construct 

the key solution to this challenge. Inside, the function makes use of the ReadProcessMemory API to read 

a single byte from the locations inside the table we've just seen. 

 ReadProcessMemory( 

  hProcess = EDI (Given as an argument and is located at EBP+8), 

  lpBaseAddress = Patched_Table[i] (i = 0; i < 0x84; i++), 

  lpBuffer = ECX (Local buffer located at EBP-21), 

  nSize = 1, 

  lpNumberOfBytesRead = EAX (Local value) 

 ); 

Each time the loop iterates, the byte value located at address ESI+00408630 (where ESI = 0 and is 

incremented each time) is set to the byte read using ReadProcessMemory from the program's code. 

 

Figure 56 004039E0 Key Construction Function 



It is worth noting that the addresses within the table point to locations inside the code that were patched 

during the execution of the script in Appendix 4.4. The byte values retrieved using the 

ReadProcessMemory function are therefore the changed bytes and not the original CC (INT3) 

instructions. However, during a normal program execution (eg, no debuggers attached) those bytes remain 

unchanged thus creating a small paradoxical scenario; this is because the key required to open the archive 

is only valid when the INT3 instructions are replaced with the appropriate CALL instructions. Failure to 

replace them will result in an invalid key filled with 0xCC bytes. 

For example, when remote debugging functionality is restored and AthCon_2011 can be attached to, the 

resulting key is illustrated in Figure 57. 

 

Figure 57 Key When AthCon_2011 Not Patched 

The correct key for the archive is illustrated in Figure 57. To unlock it you would have to binary copy the 

ASCII representation of each byte in the long binary string: 

9005B30572053005DA041402350271038003B90873083108DB07C607CB06910662061F06A50468042

804FB030E09C808860830081B082007E606B7067406FA04BD047D045004B609AC096F092909E708

B30770074907FE06B40560052305E00417082B081908CF085A0B380CF20CC90E0D0F630FAB0F011

03510780F710F07116D114B00 

 

Figure 58 Archive Key 

This concludes the analysis of Athcon_2011 module. If you wish to continue the program's execution to 

the end you just need to bypass the GetTickCount check illustrated in Figure 53 and patch the conditional 

branch at address 0040328C (see Figure 58) thus allowing the program to generate a file named 

"Athcon.ctf" containing the key. 

 

Figure 59 Final Conditional Branch 

3.4 Conclusions 
The analysis of Athcon_2011 module provided quite the challenge due to its polymorphic features that 

forced us to revert to dynamic analysis, since a static analysis approach would have been inefficient and 

time consuming. However, the archive key "paradox" we've just seen raises a number of questions about 

the programmers intensions in regards to the approach vector for successful completion of this challenge. 

 

We'd like to extend our thanks to Kyriakos Economou for his amazing job on creating this challenge and 

for his contributions to the community. Hopefully, the three of us will meet next year for the completion 

of a personal challenge involving an unspecified number of beer pints. 
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Chapter 4. Appendix 

4.1 Get_It_All De-obfuscation Script for ODBGScript 
var cnt 

var loop 

var obf 

var nob 

var ret_to 

 

mov loop,0 

mov cnt,0 

redo: 

 an eip //Analyze current module 

 mov obf, 00401ee0 //Obfuscation Handler 1 

 mov nob, 6 

 call deobfuscate 

 mov obf, 00401ef0 //Obfuscation Handler 2 

 mov nob,7 

 call deobfuscate 

 mov obf, 00401f00 //Obfuscation Handler 3 

 mov nob,8 

 call deobfuscate 

 mov obf, 004010f0 //Obfuscation Handler 4 

 mov nob,9 

 call deobfuscate 

 mov obf, 00401f10 //Obfuscation Handler 5 

 mov nob,A 

 call deobfuscate 

 inc loop 

  cmp loop,4 

 je exit  

 jmp redo 

 

 

deobfuscate: 

 REF obf //Find references to address 

 cmp $RESULT, 0 //Check if we have a valid reference 

 je out 

 inc cnt //Increase counter 

 fill $RESULT, nob, 90 //Fill refferer with nob * 0x90 (NOP) 

 jmp deobfuscate //Continue 

out: 

 ret 

exit: 

 eval "Patched {cnt} calls to obfsc functions" 

 MSG $RESULT 

 ret 

  



4.2 GIA Unknown Object structure 
Address Displacement (Decimal) Type Comments 

+0x00 (0) DWORD HANDLE hOfProcess 

+0x04 (4) HANDLE hThread 004017E5 OpenThread 

 struct  { //PROCESS_INFORMATION 

+0x24 (36) DWORD HANDLE hProcess; 

+0x28 (40) DWORD HANDLE hThread; 

+0x2C (44) DWORD DWORD  dwProcessId; 

+0x30 (48) DWORD DWORD  dwThreadId; 

 } 

 struct { //STARTUPINFO 

+0x34 (52) DWORD[17]  

 } 

+0x60 (96) DWORD  

+0x64 (100) WORD  

 DEBUG_EVENT 

+0x78 (120) DWORD DWORD dwDebugEventCode 

+0x7C (124) DWORD DWORD dwProcessId 

+0x80 (128) DWORD DWORD dwThreadId 

 struct { // EXCEPTION_DEBUG_INFO 

    struct { // EXCEPTION_RECORD 

+0x84 (132) DWORD ExceptionCode  

+0x88 (136) DWORD ExceptionFlags  

+0x8C (140) struct EXCEPTION_RECORD 

*ExceptionRecord 

 

+0x90 (144) PVOID ExceptionAddress  

   

 struct { //CONTEXT 

+D8 (216) DWORD ContextFlags  

+190 (400) DWORD Eip  

+19C (412) DWORD Esp  

 

  



4.3 INT3 Address Lookup Program 
 

unsigned long SomeVars[66] = { 

 0x00000595, 0x000005B8, 0x00000577, 0x00000535, 0x000004DF, 0x00000219, 

 0x0000023A, 0x00000376, 0x00000385, 0x000008BE, 0x00000878, 0x00000836,  

 0x000007E0, 0x000007CB, 0x000006D0, 0x00000696, 0x00000667, 0x00000624,  

 0x000004AA, 0x0000046D, 0x0000042D, 0x00000400, 0x00000913, 0x000008CD,  

 0x0000088B, 0x00000835, 0x00000820, 0x00000725, 0x000006EB, 0x000006BC,  

 0x00000679, 0x000004FF, 0x000004C2, 0x00000482, 0x00000455, 0x000009BB,  

 0x000009B1, 0x00000974, 0x0000092E, 0x000008EC, 0x000007B8, 0x00000775,  

 0x0000074E, 0x00000703, 0x000005B9, 0x00000565, 0x00000528, 0x000004E5,  

 0x0000081C, 0x00000830, 0x0000081E, 0x000008D4, 0x00000B5F, 0x00000C3D,  

 0x00000CF7, 0x00000ECE, 0x00000F12, 0x00000F68, 0x00000FB0, 0x00001006,  

 0x0000103A, 0x00000F7D, 0x00000F76, 0x0000110C, 0x00001172, 0x00001350 

}; 

unsigned long EIPTable[66] = { 

 0x00402E8B, 0x00402EB8, 0x00402EF9, 0x00402F3B, 0x00402F91, 0x00403307,  

 0x00403376, 0x004032AA, 0x0040333B, 0x00402EC2, 0x00402F08, 0x00402F4A,  

 0x00402FA0, 0x00402FB5, 0x004030B0, 0x004030EA, 0x00403119, 0x0040315C,  

 0x004032D6, 0x00403313, 0x00403353, 0x00403380, 0x00402ECD, 0x00402F13,  

 0x00402F55, 0x00402FAB, 0x00402FC0, 0x004030BB, 0x004030F5, 0x00403124,  

 0x00403167, 0x004032E1, 0x0040331E, 0x0040335E, 0x0040338B, 0x00402E95,  

 0x00402E9F, 0x00402EDC, 0x00402F22, 0x00402F64, 0x00403098, 0x004030DB,  

 0x00403102, 0x0040314D, 0x00403297, 0x004032EB, 0x00403328, 0x0040336B,  

 0x004030A4, 0x004030E0, 0x00403152, 0x0040310C, 0x00402EF1, 0x00402F33,  

 0x00402F89, 0x00402ED2, 0x00402EFE, 0x00402F18, 0x00402F40, 0x00402F5A,  

 0x00402F96, 0x004030C3, 0x0040313A, 0x00403014, 0x0040301E, 0x00402EB0 

}; 

int main() 

{ 

 char number[11] = {0}; 

 unsigned long n, raddr; 

 int i; 

 printf("Address?: "); 

 scanf("%10s",number); 

 n = (unsigned long)strtol(number, NULL, 16); 

 for(i=0;i<sizeof(EIPTable);i++) { 

  if(n == EIPTable[i]) { 

   raddr = EIPTable[i] + 5; 

   printf("EIP: 0x%08X\nStack WPM: 0x%08X", EIPTable[i]+SomeVars[i],raddr); 

   break; 

  } 

 } 

} 

  



4.4 ODBGScript AthCon_2011 module INT3 block Patcher 
push ebp 

mov ebp,esp 

sub esp,214 

mov [ebp-10C],0402E8B 

mov [ebp-108],0402EB8 

mov [ebp-0104],0402EF9 

mov [ebp-0100],0402F3B 

mov [ebp-0FC],0402F91 

mov [ebp-0F8],0403307 

mov [ebp-0F4],0403376 

mov [ebp-0F0],04032AA 

mov [ebp-0EC],040333B 

mov [ebp-0E8],0402EC2 

mov [ebp-0E4],0402F08 

mov [ebp-0E0],0402F4A 

mov [ebp-0DC],0402FA0 

mov [ebp-0D8],0402FB5 

mov [ebp-0D4],04030B0 

mov [ebp-0D0],04030EA 

mov [ebp-0CC],0403119 

mov [ebp-0C8],040315C 

mov [ebp-0C4],04032D6 

mov [ebp-0C0],0403313 

mov [ebp-0BC],0403353 

mov [ebp-0B8],0403380 

mov [ebp-0B4],0402ECD 

mov [ebp-0B0],0402F13 

mov [ebp-0AC],0402F55 

mov [ebp-0A8],0402FAB 

mov [ebp-0A4],0402FC0 

mov [ebp-0A0],04030BB 

mov [ebp-09C],04030F5 

mov [ebp-098],0403124 

mov [ebp-094],0403167 

mov [ebp-090],04032E1 

mov [ebp-08C],040331E 

mov [ebp-088],040335E 

mov [ebp-084],040338B 

mov [ebp-080],0402E95 

mov [ebp-07C],0402E9F 

mov [ebp-078],0402EDC 

mov [ebp-074],0402F22 

mov [ebp-070],0402F64 

mov [ebp-06C],0403098 

mov [ebp-068],04030DB 

mov [ebp-064],0403102 

mov [ebp-060],040314D 

mov [ebp-05C],0403297 

mov [ebp-058],04032EB 

mov [ebp-054],0403328 

mov [ebp-050],040336B 

mov [ebp-04C],04030A4 

mov [ebp-048],04030E0 

mov [ebp-044],0403152 

mov [ebp-040],040310C 

mov [ebp-03C],0402EF1 



mov [ebp-038],0402F33 

mov [ebp-034],0402F89 

mov [ebp-030],0402ED2 

mov [ebp-02C],0402EFE 

mov [ebp-028],0402F18 

mov [ebp-024],0402F40 

mov [ebp-020],0402F5A 

mov [ebp-01C],0402F96 

mov [ebp-018],04030C3 

mov [ebp-014],040313A 

mov [ebp-010],0403014 

mov [ebp-0C],040301E 

mov [ebp-8],0402EB0 

  

mov [ebp-0214],0595 

mov [ebp-0210],05B8 

mov [ebp-020C],0577 

mov [ebp-0208],0535 

mov [ebp-0204],04DF 

mov [ebp-0200],0219 

mov [ebp-01FC],023A 

mov [ebp-01F8],0376 

mov [ebp-01F4],0385 

mov [ebp-01F0],08BE 

mov [ebp-01EC],0878 

mov [ebp-01E8],0836 

mov [ebp-01E4],07E0 

mov [ebp-01E0],07CB 

mov [ebp-01DC],06D0 

mov [ebp-01D8],0696 

mov [ebp-01D4],0667 

mov [ebp-01D0],0624 

mov [ebp-01CC],04AA 

mov [ebp-01C8],046D 

mov [ebp-01C4],042D 

mov [ebp-01C0],0400 

mov [ebp-01BC],0913 

mov [ebp-01B8],08CD 

mov [ebp-01B4],088B 

mov [ebp-01B0],0835 

mov [ebp-01AC],0820 

mov [ebp-01A8],0725 

mov [ebp-01A4],06EB 

mov [ebp-01A0],06BC 

mov [ebp-019C],0679 

mov [ebp-0198],04FF 

mov [ebp-0194],04C2 

mov [ebp-0190],0482 

mov [ebp-018C],0455 

mov [ebp-0188],09BB 

mov [ebp-0184],09B1 

mov [ebp-0180],0974 

mov [ebp-017C],092E 

mov [ebp-0178],08EC 

mov [ebp-0174],07B8 

mov [ebp-0170],0775 

mov [ebp-016C],074E 



mov [ebp-0168],0703 

mov [ebp-0164],05B9 

mov [ebp-0160],0565 

mov [ebp-015C],0528 

mov [ebp-0158],04E5 

mov [ebp-0154],081C 

mov [ebp-0150],0830 

mov [ebp-014C],081E 

mov [ebp-0148],08D4 

mov [ebp-0144],0B5F 

mov [ebp-0140],0C3D 

mov [ebp-013C],0CF7 

mov [ebp-0138],0ECE 

mov [ebp-0134],0F12 

mov [ebp-0130],0F68 

mov [ebp-012C],0FB0 

mov [ebp-0128],01006 

mov [ebp-0124],0103A 

mov [ebp-0120],0F7D 

mov [ebp-011C],0F76 

mov [ebp-0118],0110C 

mov [ebp-0114],01172 

mov [ebp-0110],01350 

 

mov cnt,0 

pusha 

 

main_loop: 

 mov ebx, eip ; ebx = current position we want to patch 

  

 next: 

  call findCC 

  cmp $RESULT,0 

  je next 

  mov eax, $RESULT 

  mov ecx,eax 

  call find_index 

  inc cnt 

  cmp eax,0 

  jne continue 

  eval "Patched {cnt} CALLs, continue?" 

  msgyn $RESULT 

  cmp $RESULT,0 

  je exit 

 continue: 

  jmp next 

exit: 

  popa 

  mov esp,ebp 

  pop ebp 

  ;add esp,214 

  ret 

findCC: 

 cmp [ebx+4], CC, 1 

 je l1 

 add ebx,5 

 jmp findCC_exit 



 l1: 

 cmp [ebx+3], CC, 1 

 je l2 

 add ebx,4 

 jmp findCC_exit 

 l2: 

 cmp [ebx+2], CC, 1 

 je l3 

 add ebx,3 

 jmp findCC_exit 

 l3: 

 cmp [ebx+1], CC, 1 

 je l4 

 add ebx,2 

 jmp findCC_exit 

 l4: 

 cmp [ebx], CC, 1 

 je l5 

 add ebx,1 

 jmp findCC_exit 

 l5: 

 mov $RESULT,ebx 

 ret 

  

findCC_exit: 

 mov $RESULT,0 

 ret 

  

find_index: 

 

 xor edi,edi 

 find_index_loop: 

  mov edx, edi*4 

  add edx, ebp 

  sub edx, 10c 

  cmp eax, [edx] ; [ebp+edi*4-10c] 

  je out 

  inc edi 

  cmp edi, 42 

  je fail 

  jmp find_index_loop 

  

out: 

 mov edx, edi*4 

 add edx, ebp 

 sub edx, 214 

 add eax, [edx] 

 eval "call {eax}" 

 mov tmp, $RESULT 

 asm ecx, $RESULT 

 eval "{ecx} -> {tmp}" 

 log $RESULT, ""Patched: " 

 ret 

fail: 

 xor eax,eax 

 ret 

 



4.5 ODBGScript AthCon_2011 module Parent ID Hook 
var pid 

ask "Parent PID (in hex)?" 

mov ppid, $RESULT 

 

jmp main 

 

Pr32Next: 

 mov pentry, [esp+8] 

 rtr 

 cmp [pentry+8], pid 

 je patch_parent 

 run 

 

patch_parent: 

 eval "{pentry->th32ProcessID (= {pentry+8} )" 

 log $RESULT, "For: " 

 eval "{pentry}->th32ParentProcessID = {ppid}" 

 log $RESULT, "Patched: " 

 mov [pentry+18], ppid 

 run 

 

main: 

gpa "GetCurrentProcessId", "kernel32.dll" 

mov gcpid, $RESULT 

exec 

 push eax 

 call GetCurrentProcessId 

ende 

 

;call gcpid 

mov pid,eax 

pop eax 

 

gpa "Process32NextW", "kernel32.dll" 

mov p32n, $RESULT 

bp p32n 

bpgoto p32n, Pr32Next 

  



4.6 Init_Table Values (Addresses) 
const 

  unsigned long Original_Values[84] = { 

      0x00001E4C, 0x00001E4D, 0x00001E79, 0x00001E7A, 0x00001E3A, 0x00001E3B,  

      0x00001FFC, 0x00001FFD, 0x00001F52, 0x00001F53, 0x000003C8, 0x000003C9,  

      0x000003B7, 0x000003B8, 0x0000026B, 0x0000026C, 0x000003FC, 0x000003FD,  

      0x00001E03, 0x00001E04, 0x00001FC9, 0x00001FCA, 0x00001F8B, 0x00001F8C,  

      0x00001F61, 0x00001F62, 0x00001F76, 0x00001F77, 0x00000071, 0x00000072,  

      0x0000002B, 0x0000002C, 0x000001DA, 0x000001DB, 0x0000019D, 0x0000019E,  

      0x00000217, 0x00000218, 0x000003D4, 0x000003D5, 0x00000394, 0x00000395,  

      0x00000341, 0x00000342, 0x00001E0E, 0x00001E0F, 0x00001FD4, 0x00001FD5,  

      0x00001F96, 0x00001F97, 0x00001F6C, 0x00001F6D, 0x00001F01, 0x00001F02,  

      0x0000007C, 0x0000007D, 0x00000036, 0x00000037, 0x000001E5, 0x000001E6,  

      0x000001A8, 0x000001A9, 0x00000222, 0x00000223, 0x000003DF, 0x000003E0,  

      0x0000039F, 0x000003A0, 0x0000034C, 0x0000034D, 0x00001E56, 0x00001E57,  

      0x00001E60, 0x00001E61, 0x00001E1D, 0x00001E1E, 0x00001FE3, 0x00001FE4,  

      0x00001FA5, 0x00001FA6, 0x00000059, 0x0000005A, 0x0000001C, 0x0000001D 

    };  

 

const 

  unsigned long PatchedValues[84] = { 

      0x00402E8C, 0x00402E8D, 0x00402EB9, 0x00402EBA, 0x00402EFA, 0x00402EFB,  

      0x00402F3C, 0x00402F3D, 0x00402F92, 0x00402F93, 0x00403308, 0x00403309,  

      0x00403377, 0x00403378, 0x004032AB, 0x004032AC, 0x0040333C, 0x0040333D,  

      0x00402EC3, 0x00402EC4, 0x00402F09, 0x00402F0A, 0x00402F4B, 0x00402F4C,  

      0x00402FA1, 0x00402FA2, 0x00402FB6, 0x00402FB7, 0x004030B1, 0x004030B2,  

      0x004030EB, 0x004030EC, 0x0040311A, 0x0040311B, 0x0040315D, 0x0040315E,  

      0x004032D7, 0x004032D8, 0x00403314, 0x00403315, 0x00403354, 0x00403355,  

      0x00403381, 0x00403382, 0x00402ECE, 0x00402ECF, 0x00402F14, 0x00402F15,  

      0x00402F56, 0x00402F57, 0x00402FAC, 0x00402FAD, 0x00402FC1, 0x00402FC2,  

      0x004030BC, 0x004030BD, 0x004030F6, 0x004030F7, 0x00403125, 0x00403126,  

      0x00403168, 0x00403169, 0x004032E2, 0x004032E3, 0x0040331F, 0x00403320,  

      0x0040335F, 0x00403360, 0x0040338C, 0x0040338D, 0x00402E96, 0x00402E97,  

      0x00402EA0, 0x00402EA1, 0x00402EDD, 0x00402EDE, 0x00402F23, 0x00402F24,  

      0x00402F65, 0x00402F66, 0x00403099, 0x0040309A, 0x004030DC, 0x004030DD 

    }; 

 



Original Values Patched Values 

00001E4C 00402E8C 

00001E4D 00402E8D 

00001E79 00402EB9 

00001E7A 00402EBA 

00001E3A 00402EFA 

00001E3B 00402EFB 

00001FFC 00402F3C 

00001FFD 00402F3D 

00001F52 00402F92 

00001F53 00402F93 

000003C8 00403308 

000003C9 00403309 

000003B7 00403377 

000003B8 00403378 

0000026B 004032AB 

0000026C 004032AC 

000003FC 0040333C 

000003FD 0040333D 

00001E03 00402EC3 

00001E04 00402EC4 

00001FC9 00402F09 

00001FCA 00402F0A 

00001F8B 00402F4B 

00001F8C 00402F4C 

00001F61 00402FA1 

00001F62 00402FA2 

00001F76 00402FB6 

00001F77 00402FB7 

00000071 004030B1 

00000072 004030B2 

0000002B 004030EB 

0000002C 004030EC 

000001DA 0040311A 

000001DB 0040311B 

0000019D 0040315D 

0000019E 0040315E 

00000217 004032D7 

00000218 004032D8 

000003D4 00403314 

000003D5 00403315 

00000394 00403354 

00000395 00403355 

00000341 00403381 

00000342 00403382 

00001E0E 00402ECE 

00001E0F 00402ECF 

00001FD4 00402F14 

00001FD5 00402F15 

00001F96 00402F56 

00001F97 00402F57 

00001F6C 00402FAC 

00001F6D 00402FAD 

00001F01 00402FC1 

00001F02 00402FC2 

0000007C 004030BC 

0000007D 004030BD 

00000036 004030F6 

00000037 004030F7 

000001E5 00403125 

000001E6 00403126 

000001A8 00403168 

000001A9 00403169 

00000222 004032E2 

00000223 004032E3 

000003DF 0040331F 

000003E0 00403320 

0000039F 0040335F 

000003A0 00403360 

0000034C 0040338C 

0000034D 0040338D 

00001E56 00402E96 

00001E57 00402E97 

00001E60 00402EA0 

00001E61 00402EA1 

00001E1D 00402EDD 

00001E1E 00402EDE 

00001FE3 00402F23 

00001FE4 00402F24 

00001FA5 00402F65 

00001FA6 00402F66 

00000059 00403099 

0000005A 0040309A 

0000001C 004030DC 

0000001D 004030DD 

 

 


