

 Rubén Santamarta
 Reversemode

 December 2007

 1.01
 Revised (January 2008)

 ..
In memory of Carlos J.P.
You'll never walk alone.

 ..

1. Abstract

 This paper explains an attack vector inherent to certain WDM audio drivers running on
Windows Vista, XP, 2000 and 2003. Successful exploitation could lead to local escalation of
privileges.

It is oriented towards researchers and developers with the aim of helping them to keep their
code safe and/or to identify vulnerabilities.

Disclaimer
The author does not assume any responsibility for the illegal usage of the information provided.

2. Introduction

Nowadays, writing drivers for sound cards is even not necessary in some cases, whenever
the manufactured device is fully compliant with the industry standards already implemented by
Microsoft Windows. Anyway, if a driver is still necessary, Microsoft provides the WDM to reduce
the complexity of the task (among other things). Specifically, for audio and video drivers,
Windows includes the Kernel Streaming Architecture which allows developers to develop drivers in
an easy way since most of the logic is implemented within Windows core components.

Image 1. Kernel Streaming architecture (msdn).

As the above image shows, those driver writers who face a WDM audio driver development should
choose between drivers binded to the Port Class driver(portcls.sys) or directly to the KS (ks.sys) .
In many cases, PortCls.sys is the preferred one.

So, let's see how would be the common initialization sequence for these drivers:

1. Bind to the desired driver, I.e PortCls.sys , at Driver's entry point.

extern “C” NTSTATUS DriverEntry
(

PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath

)

{
return PcInitializeAdapterDriver (DriverObject,

 RegistryPath,
 XpAddDevice);

}

 Reversing PcInitializeAdapterDriver we see the following:

 module: portcls.sys
1.
2. mov ecx, [edi+18h]
3. push esi
4. mov esi, ds:__imp__KsSetMajorFunctionHandler@8 ;

KsSetMajorFunctionHandler(x,x)
5. mov [ecx+4], eax
6. push 0Eh ; MajorFunction
7. push edi ; DriverObject
8. mov dword ptr [edi+34h], offset ?KsoNullDriverUnload@@YGXPAU_DRIVER_OBJECT@@@Z

; KsoNullDriverUnload(_DRIVER_OBJECT *)
9. mov dword ptr [edi+0A4h], offset ?

DispatchPnp@@YGJPAU_DEVICE_OBJECT@@PAU_IRP@@@Z ; DispatchPnp(_DEVICE_OBJECT *,_IRP
*)

10. mov dword ptr [edi+90h], offset ?
DispatchPower@@YGJPAU_DEVICE_OBJECT@@PAU_IRP@@@Z ; DispatchPower(_DEVICE_OBJECT
*,_IRP *)

11. mov dword ptr [edi+94h], offset ?
PerfWmiDispatch@@YGJPAU_DEVICE_OBJECT@@PAU_IRP@@@Z ;
PerfWmiDispatch(_DEVICE_OBJECT *,_IRP *)

12. mov dword ptr [edi+38h], offset ?
DispatchCreate@@YGJPAU_DEVICE_OBJECT@@PAU_IRP@@@Z ; DispatchCreate(_DEVICE_OBJECT
*,_IRP *)

13. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
14. push 3 ; MajorFunction
15. push edi ; DriverObject
16. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
17. push 4 ; MajorFunction
18. push edi ; DriverObject
19. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
20. push 9 ; MajorFunction
21. push edi ; DriverObject
22. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
23. push 2 ; MajorFunction
24. push edi ; DriverObject
25. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
26. push 14h ; MajorFunction
27. push edi ; DriverObject
28. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
29. push 15h ; MajorFunction
30. push edi ; DriverObject
31. call esi ; KsSetMajorFunctionHandler(x,x) ; KsSetMajorFunctionHandler(x,x)
32. xor eax, eax
33. pop esi
34. jmp short loc_25F74

The function installs directly IRP handlers for :
● IRP_MJ_PNP (9)
● IRP_MJ_POWER (10)
● IRP_MJ_SYSTEM_CONTROL (11)
● IRP_MJ_CREATE (12)

Another seven remaining handlers are installed by using KsSetMajorFunctionHandler. It's
interesting to see what the msdn says about this function:

The KsSetMajorFunctionHandler function sets the handler for a specified major function to use
the internal dispatching. It routes through a KSDISPATCH_TABLE contained in the opaque
object header to be the first element within a structure pointed to by an FsContext within a file
object. The dispatching assumes the table and FsContext structure are initialized by the device
using KsAllocateObjectHeader.

The verb “to assume” probably sounds really scary for all of you. Historically, software assuming
things like fixed buffer sizes, inputs... has lead to important vulnerabilities.

How does the structure KSDISPATCH_TABLE look like?

Typedef struct{
 PDRIVER_DISPATCH DeviceIoControl; // IRP_MJ_DEVICE_CONTROL
 PDRIVER_DISPATCH Read; // IRP_MJ_READ
 PDRIVER_DISPATCH Write; // IRP_MJ_WRITE
 PDRIVER_DISPATCH Flush; // IRP_MJ_FLUSH
 PDRIVER_DISPATCH Close; // IRP_MJ_CLOSE
 PDRIVER_DISPATCH QuerySecurity; // IRP_MJ_QUERY_SECURITY
 PDRIVER_DISPATCH SetSecurity; // IRP_MJ_SET_SECURITY
 PFAST_IO_DEVICE_CONTROL FastDeviceIoControl; //
DriverObject.FastIoDispatch.FastIoDeviceControl
 PFAST_IO_READ FastRead; // DriverObject.FastIoDispatch.FastRead
 PFAST_IO_WRITE FastWrite; // DriverObject.FastIoDispatch.FastWrite
}KSDISPATCH_TABLE, *PKSDISPATCH_TABLE;

KsSetMajorFunctionHandler(
IN PDRIVER_OBJECT DriverObject,
IN ULONG MajorFunction
);

KsSetMajorFunctionHandler is quite simple, it installs the proper IRP handler for MajorFunction
>= 0, otherwise installing the FastIo handlers.

module ks.sys
[...]

PAGE:00026FA2
PAGE:00026FA2 loc_26FA2: ; CODE XREF: KsSetMajorFunctionHandler(x,x)+6Bj
PAGE:00026FA2 mov ecx, offset _DispatchRead@8 ; DispatchRead(x,x)
PAGE:00026FA7 jmp short loc_26FE4
PAGE:00026FA9 ;

PAGE:00026FA9
PAGE:00026FA9 loc_26FA9: ; CODE XREF: KsSetMajorFunctionHandler(x,x)+68j
PAGE:00026FA9 mov ecx, offset _DispatchClose@8 ; DispatchClose(x,x)
PAGE:00026FAE jmp short loc_26FE4
PAGE:00026FB0 ;

PAGE:00026FB0
PAGE:00026FB0 loc_26FB0: ; CODE XREF: KsSetMajorFunctionHandler(x,x)+64j
PAGE:00026FB0 mov ecx, offset _DispatchCreate@8 ;
DispatchCreate(x,x)
PAGE:00026FB5 jmp short loc_26FE4
PAGE:00026FB7 ;

PAGE:00026FB7
PAGE:00026FB7 loc_26FB7: ; CODE XREF: KsSetMajorFunctionHandler(x,x)+5Dj
PAGE:00026FB7 mov ecx, offset _DispatchFlush@8 ; DispatchFlush(x,x)
PAGE:00026FBC jmp short loc_26FE4

[...]

PAGE:00026FE4 mov edx, [ebp+DriverObject]
PAGE:00026FE7 mov [edx+eax*4+38h], ecx

 ; DrvObj->MajorFunction[IRP_MJ_XXX] = DispatchXXXXX
[...]
PAGE:00026F74 mov eax, [ebp+DriverObject]
PAGE:00026F77 mov eax, [eax+28h] ; DriverObject->FastIoDispatch
PAGE:00026F7A mov dword ptr [eax+8], offset _DispatchFastRead@32 ;
DispatchFastRead(x,x,x,x,x,x,x,x)

[...]

The interesting part is the content of the installed IRP handlers: DispatchRead,DispatchWrite...

Let's see an example:

module: ks.sys
PAGE:0002B578 _DispatchWrite@8 proc near ; DATA XREF:
KsSetMajorFunctionHandler(x,x)+70o
PAGE:0002B578
PAGE:0002B578 PDEVICE_OBJECT = dword ptr 8
PAGE:0002B578 PIRP = dword ptr 0Ch
PAGE:0002B578
PAGE:0002B578 mov edi, edi
PAGE:0002B57A push ebp
PAGE:0002B57B mov ebp, esp
PAGE:0002B57D mov ecx, [ebp+PIRP]
PAGE:0002B580 mov eax, [ecx+60h]; Irp->CurrentStackLocation
PAGE:0002B583 mov eax, [eax+18h]; IrpSp->FileObject
PAGE:0002B586 mov eax, [eax+0Ch]; FileObject->FsContext
PAGE:0002B589 mov eax, [eax] ; *FsContext
PAGE:0002B58B mov eax, [eax] ; KSDISPATCH_TABLE
PAGE:0002B58D push ecx
PAGE:0002B58E push [ebp+PDEVICE_OBJECT]
PAGE:0002B591 call dword ptr [eax+8];KsDsp->Write(pDev,pIrp);
PAGE:0002B594 pop ebp
PAGE:0002B595 retn 8
PAGE:0002B595 _DispatchWrite@8 endp

These handlers are merely a wrapper that uses the KSDISPATCH_TABLE for routing the IRP.
Now, remember what the MSDN said:

The dispatching assumes the table and FsContext structure are initialized by the device
using KsAllocateObjectHeader.

What would happen if the device, by any reason, has not properly initialized FsContext ? EAX = =
NULL.

Therefore, by issuing a I/O request (Read, Write,DeviceIoControl...) in the exposed device, the
default driver's IRP handler DispatchWrite will dereference the pointer to the
KSDISPATCH_TABLE at FsContext, which is defaulted to NULL within the kernel at the
FILE_OBJECT's creation stage. Thus the trick seems obvious, user-mode processes can allocate
memory at 0x00000000 with no restriction, so finally we are controlling the pointer that is being
dereferencing. Exploit it is a trivial task:

1. Allocate user-mode memory at 0
2. Set a fake FsContext pointer at 0 pointing to any other user-mode memory address.
3. Copy into the desired address our fake KSDISPATCH_TABLE
4. Issue a Write,Read... operation in the vulnerable device.

But wait, things are not so simple. WDM Drivers that bind to either PortCls.sys or Ks.sys through
the proper supplied API will get their devices correctly initialized. The real problem occurs when
the WDM driver creates additional devices since then all of them share a unique driver object
which, in this particular case, may turn out into a potential vulnerability.

At this point, we have covered just one piece of the puzzle. Perhaps the more simple part. In the
second stage of this paper we are going to explain those cases in which a WDM Driver may need to
create additional devices and finally, how an apparently safe driver becomes a vulnerable one.

3. Second Stage

We have seen the root of the issue. Once these concepts have been assimilated we are in disposition
to dig deeply, explaining those common driver programming methods that make a driver suitable
for being abused.

Devices whose purpose is not directly related with the Kernel Streaming API (KSA from now on)
can be considered as “stranger” devices . We may define this term more globally as a device that
has not been created or registered through the KSA so the KSA is not aware of it in any manner.
These “stranger“ devices share the same driver object with other KSA-related devices so default
KSA's IRP handlers pose a potential vulnerability.

Scenario 1

One common practice in driver programming is to create devices that act as an interface to user-
mode applications. Nothing new but let's think for a while about the new situation we face when
writing WDM audio drivers. We have initialized our driver object and its n devices through the
KSA, so several IRP handlers which are fully, although uniquely, compliant with the KSA are
installed. If we create additional device(s) for our user-mode service without notifying this event
to the KSA we will be creating a potential attack vector as well.

Scenario 2

This one is the most interesting. Some relatively-old soundcards include a Gameport embedded.
The Game Port connector used to be used by joysticks and that type of peripherals. Nowadays, USB
is preferred for almost every modern gaming hardware so Microsoft has discontinued Game port
support in Windows Vista. However , it still maintains a “user friendly incompatibility” in order to
avoid being rude with older hardware.

Vista gameport.inf

 ; gameport.inf - Hooks up known gameports with a NULL service.
; Displays a name so the user can understand the device
; is not supported out of the box.
; This avoids the '!' in device manager.
;
; Copyright (C) Microsoft Corporation. All rights reserved.

WDM means stability and backward compatibility
and uniform architecture. This is the reason by
which a driver, that was coded more than 8 years
ago, can still be working in a Windows version
for which it was not designed.

However, some WDM drivers may face now
a different scenario while running on Microsoft
Windows Vista. The Game port is no longer
supported so this fact leads to important changes,
not in the way the driver behaves but in
the interfaces exposed by the driver.

Let's see the schema below to clear things up.
Image 2. Gameport Connector . Wikipedia.

Image 3. Devices commonly exposed by a SoundCard/Driver

Within the blued “Microsoft Kernel Streaming Related Area” shape we can find all those device(s)
the OS creates to identify the SoundCard, moreover we see the FDO(s) our driver will create
through the KSA for interfacing with these PDOs. We assume that these devices are properly
initialized since there is no reason for not doing so (a driver incorrectly binded to the KS will not
simply work).

On the other hand , the “Third-Party Driver Area” comprises those “stranger” devices we have been
talking about previously. The startup sequence would be as follows:

In Versions prior to Vista

1. The PnP Manager issues a Query Relations request to our Driver that should create the
GamePort PDO upon receiving this request.

2. The PnP loads gameenum.sys, creating an unnamed FDO for interfacing with the Gameport
PDO , this FDO is attached to the stack. Thus, the access (its original IRP handlers we
mean) to the PDO from user-mode is not possible, despite the fact the PDO could be a
named device.

In Windows Vista

1. The PnP Manager issues a Query Relations request to our Driver that will create the
GamePort PDO upon receiving this request.

2. The PnP does not creates any FDO for interfacing with the Gameport PDO since the
Game Port is not supported . Therefore, the PDO remains exposed to user-mode
applications.

3. If the developer has not implemented the logic for routing correctly the IRPs sent to this
device, we can reach the installed KSA's IRP handlers that will dereference our controlled
FsContext pointer, leading to arbitrary code execution in the Kernel.

4. We have fun.

All the stuff above is just a theoretical approach, but now we are going to see the second scenario
in action.

The es1371mp.sys issue

This driver was created by CreativeLabs in the late 90's for widely extended “Ensoniq PCI 1371”
based Sound Cards. Even today, this driver is actively used since several VMware products emulate
that soundcard. In fact, the driver is automatically installed through Microsoft Windows Update.
We are talking about a WDM driver with near ten years of life...and it works. Amazing.
Unfortunately, Creative is no longer supporting neither the hardware nor the driver so don't expect a
patch.

Let's begin.

Binding to the PortCls.sys:

module: es1371mp.sys

1. PAGE:00014CE8 start proc near
2. PAGE:00014CE8
3. PAGE:00014CE8 arg_0 = dword ptr 4
4. PAGE:00014CE8 arg_4 = dword ptr 8
5. PAGE:00014CE8
6. PAGE:00014CE8 push ebx
7. PAGE:00014CE9 xor ebx, ebx
8. [...]
9. PAGE:00014D2C mov esi, [esp+8+arg_0]
10.PAGE:00014D30 push offset sub_14CCC ; AddDevice
11.PAGE:00014D35 push [esp+0Ch+arg_4]
12.PAGE:00014D39 push esi
13.PAGE:00014D3A call PcInitializeAdapterDriver

14.PAGE:00014D3F cmp eax, ebx
15.PAGE:00014D41 mov dword ptr [esi+34h], offset sub_14780
16.PAGE:00014D48 jl short loc_14D7A
17.PAGE:00014D4A mov dword ptr [esi+38h], offset sub_1803C

;overrides IRP_MJ_CREATE
18.PAGE:00014D51 mov dword ptr [esi+40h], offset sub_1803C ;

overrides IRP_MJ_CLOSE
19.PAGE:00014D58 mov dword ptr [esi+0A4h], offset

sub_17FC0;overrides IRP_MJ_PNP
20.PAGE:00014D62 mov dword ptr [esi+90h], offset sub_17FE4; ...
21.PAGE:00014D6C mov dword ptr [esi+70h], offset

sub_18072;overrides IRP_MJ_DEVICE_CONTROL
22.PAGE:00014D73 mov dword ptr [esi+74h], offset sub_180AE;...

The driver is overriding several default KSA's IRP handlers, later on we'll see why.

Let's take a look at the new DispatchCreate (line 17)

module: es1371mp.sys
1. PAGE:0001803C sub_1803C proc near ; DATA XREF: start

+62o
2. PAGE:0001803C ; start+69o
3. PAGE:0001803C
4. PAGE:0001803C arg_0 = dword ptr 4
5. PAGE:0001803C Irp = dword ptr 8
6. PAGE:0001803C
7. PAGE:0001803C mov eax, [esp+arg_0]
8. PAGE:00018040 mov ecx, [eax+28h]
9. PAGE:00018043 push esi
10.PAGE:00018044 xor esi, esi
11.PAGE:00018046 cmp byte ptr [ecx+111h], 0 ;

Discriminate device by checking certain flag within the DeviceExtension
12.PAGE:0001804D jz short loc_18060
13.PAGE:0001804F mov ecx, [esp+4+Irp] ; Irp
14.PAGE:00018053 and [ecx+18h], esi
15.PAGE:00018056 xor dl, dl ; PriorityBoost
16.PAGE:00018058 call ds:IofCompleteRequest
17.PAGE:0001805E jmp short loc_1806C
18.PAGE:00018060 ;

--
-

19.PAGE:00018060
20.PAGE:00018060 loc_18060: ; CODE XREF:

sub_1803C+11j
21.PAGE:00018060 push [esp+4+Irp]
22.PAGE:00018064 push eax
23.PAGE:00018065
24.PAGE:00018065 loc_18065:
25.PAGE:00018065 call PcDispatchIrp
26.PAGE:0001806A mov esi, eax
27.PAGE:0001806C
28.PAGE:0001806C loc_1806C: ; CODE XREF:

sub_1803C+22j
29.PAGE:0001806C mov eax, esi
30.PAGE:0001806E pop esi
31.PAGE:0001806F retn 8
32.PAGE:0001806F sub_1803C endp

We see how the routine discriminates between the upcoming GamePort PDO and the KSA device
by checking a flag at the DeviceExtension. Thus, if the device receiving the IRP_MJ_CREATE is
the KSA's device, the function routes it by calling PortCls!PcDispatchIrp which, at certain point,
will initialize the FsContext. Otherwise, the IRP is completed.

Now, time to EsDispatchPnp (Line 19)

module: es1371mp.sys
PAGE:00017FC0 sub_17FC0 proc near ; DATA XREF: start+70o
PAGE:00017FC0
PAGE:00017FC0 arg_0 = dword ptr 4
PAGE:00017FC0 Irp = dword ptr 8
PAGE:00017FC0
PAGE:00017FC0 mov eax, [esp+arg_0]
PAGE:00017FC4 mov ecx, [eax+28h]
PAGE:00017FC7 cmp byte ptr [ecx+111h], 0 ; Discriminates
Device by checking certain offset within the DeviceExtension
PAGE:00017FCE push [esp+Irp] ; Irp
PAGE:00017FD2 push eax ; int
PAGE:00017FD3 jz short loc_17FDC
PAGE:00017FD5 call sub_188F2
PAGE:00017FDA jmp short locret_17FE1
PAGE:00017FDC ;

PAGE:00017FDC
PAGE:00017FDC loc_17FDC: ; CODE XREF: sub_17FC0+13j
PAGE:00017FDC call sub_18314
PAGE:00017FE1
PAGE:00017FE1 locret_17FE1: ; CODE XREF: sub_17FC0+1Aj
PAGE:00017FE1 retn 8
PAGE:00017FE1 sub_17FC0 endp

The same implementation, it checks the device that is receiving the IRP and routes it. Digging into
the handler for the IRP_MJ_PNP we find out where the PDO is created

PAGE:00018314 sub_18314 proc near ; CODE XREF:
sub_17FC0:loc_17FDCp
PAGE:00018314
PAGE:00018314 arg_0 = dword ptr 8
PAGE:00018314 arg_4 = dword ptr 0Ch
PAGE:00018314
PAGE:00018314 push ebp
PAGE:00018315 mov ebp, esp
PAGE:00018317 push esi
PAGE:00018318 mov esi, [ebp+arg_4]
PAGE:0001831B mov eax, [esi+60h]
PAGE:0001831E movzx ecx, byte ptr [eax+1] ;MinorFunction
IRP_MN_QUERY_DEVICE_RELATIONS == 7
PAGE:00018322 sub ecx, 0
PAGE:00018325 jz short loc_18370
PAGE:00018327 dec ecx
PAGE:00018328 dec ecx
PAGE:00018329 jz short loc_18365
PAGE:0001832B sub ecx, 5
PAGE:0001832E jz short loc_1835A

[...]

PAGE:0001835A loc_1835A: ; CODE XREF: sub_18314+1Aj
PAGE:0001835A push esi
PAGE:0001835B push [ebp+arg_0]
PAGE:0001835E call sub_181AA

[...]
PAGE:00018110 sub_18110 proc near ; CODE XREF: sub_181AA+45p
PAGE:00018110

PAGE:00018110 var_8 = dword ptr -8
PAGE:00018110 var_4 = dword ptr -4
PAGE:00018110 arg_0 = dword ptr 8
PAGE:00018110
[...]
PAGE:0001811E push ebx ; DeviceObject
PAGE:0001811F push 1 ; Exclusive
PAGE:00018121 push 80h ; DeviceCharacteristics
PAGE:00018126 push 2Ah ; DeviceType
PAGE:00018128 push 0 ; DeviceName
PAGE:0001812A push 180h ; DeviceExtensionSize
PAGE:0001812F push dword ptr [eax+8] ; DriverObject
PAGE:00018132 mov [ebp+var_4], ecx
PAGE:00018135 call ds:IoCreateDevice
PAGE:0001813B test eax, eax
[...]
PAGE:00018158 mov [esi+164h], eax
PAGE:0001815E mov byte ptr [esi+111h], 1 ; Sets Device Flag

Ok, all is up and running. This scenario has been working pretty well for years since you could not
access the PDO. Nevertheless, in Vista the PDO is now exposed so the things have changed.

This PDO shares its driver object with the KSA's Device. Since the handlers Ks!DispatchCreate
(ks.sys) and ks!DispatchRead has not been overridden after calling PcInitializeAdapterDriver, if we
issue an I/O request (I.e IRP_MJ_WRITE (WriteFile) or IRP_MJ_READ (ReadFile)) in the PDO
we'll reach the vulnerable scenario we talked about in the first few pages.

The final outcome is that even guest users might elevate privileges to SYSTEM on affected
installations.

So...
Where is the vulnerability?

In this paper we have just presented the facts supported by the technical details everyone can
verify. You decide where the vulnerability is and who could be blamed for it. Following a
responsible policy disclosure Microsoft and VMware were contacted . They showed no interest.

How many drivers are affected?

We cannot say how many drivers are affected out there, but we strongly think there would be
several affected. Check your computer and if you want, contact us. The code presented in this
paper belongs to the following driver.

Creative Ensoniq PCI ES1371 WDM Driver
es1371mp.sys
v 5.1.3612.0
Only vulnerable when running on Microsoft Windows Vista.

What's the solution?

From a developer standpoint the solution is not too complex, if you are writing a WDM driver that
needs to create “stranger” devices you have to override every IRP handler included in the
KSDISPATCH_TABLE. Anyway, KSA provides the proper mechanism for creating additional
devices securely. On the other side, Microsoft could avoid future problems by checking for a
NULL FsContext pointer before dereferencing it.

4. Conclusion

Writing secure drivers (secure code really) is not an easy task, there are dozens of important
concepts involved, moreover a strong knowledge of the OS you are programming for is highly
recommended. There is a method for modeling risks in complex systems known as the “Swiss
Cheese Theory”. This model is widely used in Aeronautical Industry and is also suitable for
analyzing risk factors within the IT security Industry. Imagine several slices of Swiss Cheese, with
all those tiny holes, each of these slices is a layer that is potentially avoiding that the threat can go
forward through the holes, finally reaching the last stage of system. If all the layers fail, the whole
system gets compromised and you may face an airplane crashing, a building collapsing or an
attacker taking the control of your computer. This paper is the story of what happens when all those
“cheese” layers fails...

5. Downloads

http://kartoffel.reversemode.com/downloads.php
Ksdispatch_plugin.zip
Exploit for es1371mp.sys + WDM Audio Drivers checker.

6. Vulnerable Drivers/Products

Latest update: 01/07/2008

Products:

VMware Server - Guest OS: Vista + sound enabled
VMware WorkStation - Guest OS: Vista + sound enabled

Drivers:

Creative Ensoniq PCI ES1371 WDM Driver
es1371mp.sys
v 5.1.3612.0

7. Contact

Reversemode
Advanced Reverse Engineering Services
contact (at) reversemode (dot) com
www.reversemode.com

http://kartoffel.reversemode.com/downloads/
http://www.reversemode.com/
http://www.reversemode.com/

