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Abstract 

The paper shows that Microsoft Windows DNS Server outgoing queries are 

predictable – i.e. that the source UDP port and DNS transaction ID can be 

effectively predicted, for the Windows DNS server (part of Microsoft Windows 

Server 2003 platforms and of Microsoft Windows 2000 Server platforms) in 

caching mode. A predictability algorithm is described that, in optimal conditions 

provides 8 possible guesses for the next transaction ID value, thereby 

overcoming whatever protection offered by the transaction ID mechanism. This 

enables a much more effective DNS cache poisoning than the currently known 

attacks against Windows DNS Server. The net effect is that pharming attacks are 

feasible against Windows caching DNS servers, without the need to directly attack 

neither DNS servers nor clients (PCs). 
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1. Introduction 

This paper describes a DNS cache poisoning attack on Windows DNS server. For a 

general historic overview of DNS cache poisoning, as well as relevant prior works 

and references, please refer to [1]. Hereby are listed only Windows DNS server -

specific issues: 

 

1. UDP source ports - UDP source ports are predictable for Windows DNS server 

implementation (the UDP port is unchanged, as briefly mentioned in [2] for 

Windows and was verified in the author’s experiments). In fact, the source UDP 

port for outgoing queries from Windows DNS Server is static. 

 

2. Historic notes and prior works pertaining specifically to Windows DNS Server: 

• In April 1997, a paper (whose title is specific to BIND) was released [3], 

mentioning the problem of sequential transaction IDs in Windows NT 4.0 

SP3 DNS server (this was reported to Microsoft by the authors of [3]). The 

issue was fixed in Windows NT 4.0 SP4 ([4]).  

• In April 2001 a paper ([5]) was released, describing the use of a method 

called “attractors” to outline anomalies and predictability in numeric 

sequences. The paper mentioned that the Windows DNS server has a 

predictable transaction ID. This research was probably conducted for 

Windows NT Server 4.0 SP6a and/or Windows 2000 Server (those 

operating systems were used in the TCP sequence number research in the 

same paper). The “attractors” attack requires around 40,000 consecutive 

observations (transaction IDs) and 5,000 forged answers1, which are 

usually not feasible (as explained in [1]), due to the combination of the 

attacker bandwidth limit and the race condition with the genuine DNS 

server. 

 

To clarify: the rest of this discussion assumes Windows Server 2003 (or Windows 

2000 Server SP4) DNS server, wherein all the old DNS vulnerabilities are fixed. 

 

The attacks described in this paper make use of the predictable nature of 

Windows DNS Server transaction IDs to poison its cache. It is assumed that the 

DNS server can be forced to perform DNS queries using a malicious web page. 

This is a real-life condition, but of course it limits the attacker's activity scope – 

the attacker, for example, cannot force a burst of hundreds of queries all for the 

same hostname to be emitted from the same client. Nevertheless, it will be 

shown that since the transaction ID (and the UDP source port) is predictable 

enough, this suffices to mount a successful attack. 

 

                                           

1 Note that the original research in [5] made use of software which was later 

shown to contain 2 bugs. According to [5]’s author, those bugs turn out not to 

significantly affect the results of the paper 

(http://lcamtuf.coredump.cx/oldtcp/tcpseq/vseq-notice.txt). 
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2. Attacking the Windows DNS Server 

1. Observations on the Windows DNS server 

 

The Windows Server 2003 (and Windows 2000 Server) DNS Server (implemented 

as a service named “DNS Server”) uses static UDP source port. This port number 

is acquired at the beginning of the service’s run, and remains unchanged 

throughout the lifetime of the service. The DNS server generates a very 

predictable transaction ID. A partial analysis of the transaction ID was conducted, 

with the following results (results obtained for Windows 2003 Server Standard 

Edition SP2 and SP1, Windows 2003 for Small Business Server SP1): 

 

Let n be a global counter, incremented on every DNS query to a new hostname. 

This counter is not advanced when the same hostname is queried in multiple 

name servers2 (e.g. root name server, TLD name server, etc., as well as when 

the same query is sent to alternative name servers). The counter is set to 0 upon 

service startup and is advanced before it is polled for the ID calculation (so the 

first ID has n value 1) 

 

Let t be the time (in integral seconds) at the DNS server. 

 

Then the Transaction ID (16 bits quantity) is as following: 

 

Bits 14…15 (2 bits) – zero (0) 

Bits 11…13 (3 bits) – pseudo random data (M) 

Bits 3…10 (8 bits) – n mod 256 (C) 

Bits 0…2 (3 bits) – specified below (L). 

 

That is, ID=M·211+C·23+L 

 

ID is serialized into the DNS ID header field as big-endian, i.e. bits 15…8 in the 

first byte and bits 7…0 in the second byte. 

 

                                           

2 This is an important observation. If DNS transaction IDs are extracted and 

analyzed by mathematical/statistical anomaly detection utility, these repeating 

values (due to the Windows DNS server reuse of the same transaction ID during 

the resolution of a single query, and due to retransmissions) may seriously skew 

the results and make them appear more anomalous (predictable) than they 

actually are. That happens because they “train” the utility to predict the same 

transaction ID for the next query. In real life, however, the attacker needs to 

predict the transaction ID of a query he/she never saw before, as opposed to the 

“follow-up” resolutions from an earlier query. 
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L is as following. Assume a 8×7 table T[8][7] with values in the range 0…7. Then 

  

L=(T[n mod 8][n mod 7]+n·t) mod 8 

 

Note that since C = (n mod 256), it follows that C mod 8 = n mod 8, therefore: 

 

L=(T[C mod 8][n mod 7]+(C mod 8)·t) mod 8 

 

The table T changes every few seconds. However, some invariants were observed 

(empirically), most notably among them is T[0][i]=0. This is a very important 

and useful result, since it guarantees that if (C mod 8)=0, then L=0. 

 

Additional results are presented in appendix A. No significant results were 

obtained for the field M, so for the scope of this article, it can be treated as 3 

random bits. 

 

2. The basic attack 

 

The attack target is an organization (e.g. a corporate, an ISP or an academic 

institute) with an internal Windows Server 2003 (or Windows 2000 Server) DNS 

caching server. This server does not answer DNS queries from the Internet, and 

no direct access to the internal network is available to the attacker. The goal of 

the attack is to poison the cache entry for the domain example.com. It is 

assumed that this domain is not yet cached (or that its cache entry has expired). 

The attacker needs to make the cache server cache the authoritative name server 

entry for example.com as the attacker’s IP address, rather than the IP address of 

the real authoritative name server for example.com. 

 

The attacker uses the predictability of the counter field (C), together with the 

predictability (in some cases) of the field L. Note that if, for example, the attacker 

can ensure that the DNS query to be spoofed is issued when (C mod 8) = 0 then 

it is guaranteed that L=0 in the query whose answer is to be spoofed. In the 

same way, if the attacker observes an L value of a DNS query with (C mod 8)=1, 

then the attacker knows that the next query will have an L value twice that much 

(mod 8), unless the server timer advanced by one second (or more). In 

information theoretic terms, when (C mod 8) = 7, the entropy of the next 

transaction ID (whose C mod 8 will be 0) is 3 bits (the 3 bits of M), instead of the 

theoretic maximum of 16 bits. 

 

The attacker lures one of the network users to visit the attacker’s web page. This 

page contains an image URL to, say, www1.attacker.com. Let’s skip the part 

where the name server obtains the authoritative name-server for attacker.com 

and focus on the query for www1.attacker.com. It is sent to the attacker’s name 

server. This name server observes the (C mod 8) value of the DNS transaction 
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ID. If it is not 7, it sends back a CNAME record for the next host name (i.e. a 

CNAME that points at www2.attacker.com). The Windows DNS server will then 

request www2.attacker.com with the next ID value. This process repeats itself 

(up to 7 times) until the (C mod 8) value is 7. At this point, the attacker name 

server returns a CNAME record that points to www.example.com. Note that 

altogether up to (and possibly including) 8 CNAME “redirections” were performed. 

Fortunately for the attacker, the Windows DNS server follows up to (and 

including) 9 CNAME redirections. 

 

The above technique is called CNAME chains3. Windows DNS server handles 

CNAME chains (up to 9 “redirections”) well, but will only return the first 8 CNAME 

records (i.e. the 9th CNAME will not be included in the response returned to the 

client). Therefore, when the chain contains up to (and including) 8 redirections, 

the response to the client will be functional, i.e. will include the IP address of the 

final CNAME.  

 

Once the attacker redirects to www.example.com, the second phase begins. The 

attacker knows that the next (C mod 8) value will be 0, and hence L will be 0. So 

now the attacker needs to prepare 8 possible DNS answers, corresponding to the 

8 possible M values, with a counter containing the value ((C+1) mod 256), and 

with the same UDP destination port (which is copied from the query source port), 

with source port 53, destination IP address being the request’s source IP address, 

and the source IP address should be that of the name server for the .COM gTLD 

(which will be queried by the DNS caching name server for the 

www.example.com resolution). 

 

The attacker can start sending those 8 DNS responses, as rapidly as possible, 

cycling through them again and again. Even with a modest 256Kbit uplink and 

even 150 bytes per response it is possible to achieve a cycle in less than 40 

milliseconds. This increases the likelihood that the spoofed response (from the 

attacker’s server) will reach the DNS server before the genuine DNS response 

(from the gTLD server).  

 

The Perl script in Appendix B can be used to calculate the 8 guesses. Its runtime 

is negligible.  

 

3. Attack variants 

 

                                           

3 CNAME chains are discouraged per the DNS RFC 1034 ([8]), section 3.6.2. 

Indeed, "standard" name servers eliminate such indirections from a static DNS 

configuration by resolving CNAME chains internally and providing a consolidated 

result. At the same time, CNAME chaining is in use by many good and respectable 

domains, e.g. when a domain uses Content Delivery Network (CDN) services it 

typically points at the CDN host (on a different domain) via a CNAME record. 

Therefore, to implement the above CNAME chain it is advised to use a name 

server which provides user-controllable runtime configuration, such as [7]. 
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The CNAME chain is probably the most effective way to force the DNS server to 

rapidly iterate through IDs. However, it is not the only way to achieve this goal. 

It’s possible (but less efficient) to force ID iteration via HTTP redirection 

(www1.attacker.com redirects to www2.attacker.com at the HTTP level, and so 

forth). 

 

The CNAME chain can be also established via a “ping-pong” between two domains 

(this enables static configuration of the two name servers involved. So 

www1.attacker1.com will have a CNAME pointing at www2.attacker2.com, which 

will have a CNAME pointing at www3.attacker1.com, and so on. Just as with a 

single name-server chain, the Windows DNS server will not follow more than 9 

redirections. In this case, it’s harder for security systems to detect that an 

anomalous DNS activity is taking place, what with the fact that some legitimate 

DNS servers do answer with a CNAME pointing at a name outside their 

authoritative domain (e.g. when content delivery network host is used to deliver 

the content). 

 

The basic attack only uses one empiric observation on the table T, namely that 

T[0][i]=0, in order to predict the next transaction ID in the transition from (C 

mod 8)=7 to (C mod 8)=0. But by leveraging the additional empiric observations 

on T (see appendix A), it is possible to also use the transition from (C mod 8)=1 

to (C mod 8)=2, since with the first one L=(t mod 8) and the second one is (2·t 

mod 8), so the next L is twice (mod 8) the last L seen. That depends, however, 

on the two queries (the last seen and the next one) being performed on the same 

second from the DNS server’s perspective. At the price of doubling the number of 

guesses, it’s possible to account for one second shift by guessing two L values for 

the next query: twice the last L value seen (modulo 8), 2 plus that amount 

(modulo 8). 

 

If the gTLD server is too close to the Windows DNS server to be poisoned (i.e. the 

round trip to it is very short), or if example.com’s authoritative name server 

record is already cached by the Windows DNS server, it may still be possible to 

poison the A record for say www.example.com. All the attacks above should work 

just the same. 

 

The attack can be also applied to improve the DNS cache poisoning attack in the 

DNS forwarder scenario. The original attack is explained in [2] (and an 

explanation about DNS forwarding can be found in [6]), and the suggested 

solution there is similar to standard DNS poisoning solutions, namely to prevent 

DNS queries from the external (Internet) network to the child server. However, 

with this attack there’s no need to spray the child DNS server with hundreds of 

DNS requests. Therefore, this attack might be performed from a browser which 

renders a malicious HTML page. The attack should work as following: the child 

server (Windows 2003) is asked (by the client) to resolve www1.attacker.com. It 

queries the parent DNS server, which queries the attacker’s name server. The 

attacker’s name server does not respond, so the child DNS server queries it 

directly (not through the parent DNS server). Now the attacker’s DNS server 

responds with a CNAME record for www2.attacker.com. The child DNS server 

again queries the parent which queries the attacker’s name server, which again 

does not respond, and so on until the attacker’s name server observes that (C 

mod 8) value is 7. At this time, the attacker’s name server redirects to 
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wwwfinal.attacker.com, and starts sending DNS response packets with spoofed 

source IP of the parent DNS server, and with additional data specifying DNS 

records such as a name server for the target domain. All this time, the attacker 

name server should not respond to any DNS query (specifically from the parent 

DNS server). According to the above text, the child DNS server would send a DNS 

query to the parent DNS server (with a predictable transaction ID) and will wait 

for the parent DNS server to answer it. It will more likely get the attacker’s 

spoofed DNS answers, and thus will be poisoned. 

 

3. Conclusions 

To quote from [1] with the necessary adaptations, it is saddening to realize that 

10-15 years after the dangers of predictable DNS transaction ID were discovered, 

still one of the most popular DNS cache servers does not incorporate strong 

transaction ID generation. It is particularly surprising that the transaction ID 

mechanism in use by Microsoft Windows DNS server is not based on industrial 

grade cryptographic algorithms. 

 

The paper demonstrated that the “classic” DNS poisoning attack is still applicable 

to Windows DNS server. The attack described is far more effective than any 

attack previously described for Windows DNS. The attack does not require “query 

access” to the DNS server (except for a single triggering query). This is in 

contrast to the birthday attack, which requires a burst of hundreds of queries, 

rendering the birthday attack almost ineffective when Split-Split DNS 

configuration is used. 

 

Usage of industrial-strength cryptographic algorithms is recommended for the 

DNS transaction ID generation. Furthermore, to strengthen the DNS query-

response security, it is highly recommended to (strongly) randomize the DNS 

query source port (as also noted in many sources). Together, this would yield 30 

bits of highly unpredictable data that needs to be spoofed, thus making DNS 

cache poisoning much less (if at all) feasible. 

 

4. Further work 

During this research, no static/dynamic reverse engineering techniques were 

used. In fact, the research was a pure exercise in packet analysis (few thousand 

DNS queries were used obtained and analyzed). As a result, while the findings are 

useful as-is, the following question remains: 

How are M and T determined? 

The research was conducted for the Windows 2003 platform. The analysis is 

applicable to Windows 2000 as well (and to wit, Microsoft released a patch for 

Windows 2000 SP4), and maybe even Windows NT Server 4.0 SP4 and above 

(note though that Windows NT 4.0 is no longer supported as of 2005), but this 

was not explicitly tested. 
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5. Disclosure timeline 

April 30th, 2007 – Microsoft Security Response Center (MSRC) were informed of 

this issue.  

November 13th, 2007 – Microsoft issues a fix (Microsoft Security Bulletin MS07-

062) for Windows Server 2003 and Windows 2000 Server SP4. The fix is 

downloadable at Microsoft’s website. Simultaneously, Trusteer discloses the 

vulnerability to the public (in the form of this document). 

 

6. Vendor/product status 

Windows Server 2003 – all versions and variants to date are vulnerable. A fix is 

available from Microsoft for the currently supported versions and service packs. 

Windows 2000 Server – all versions and variants to date are vulnerable. A fix is 

available from Microsoft (for SP4 only, as it is the only supported version to 

date). 

 

MITRE tracks this issue as CVE-2007-3898. 

Microsoft documented this issue as Knowledge Base Article 941672 (Microsoft 

Security Bulletin MS07-062). 
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Appendix A – Additional empiric properties of T 

and M 

 

1. Properties of the table T 

For i=0,…,7, the following holds: 

 

T[0][i]=0 

T[1][i]=0 

T[2][i]=0 

2 | T[3][i]    (i.e. T[3][i] is always even) 

T[4][i]=(2·T[3][i]) mod 8 

T[5][i]≠6 

T[6][i]=f(T[7][i]) where f is defined as  

f(0)=0; f(1)=4; f(2)=6; f(3)=2; f(4)= 0; f(5)=0; f(7)=6  

 

Also, there seems to be a very strong correlation between T[3], T[5] and T[7]. 

 

Overall, the author managed to reduce the entropy of T from the theoretic 

maximum of 168 bits (3 bits per entry × 56 table entries) to less than 40 bits 

(the combined entropy of T[3], T[5] and T[7] is slightly less than 40 bits). It is 

still quite a lot – this would theoretically require at least 13 DNS queries to fully 

reconstruct the table, and in reality much more (each cycle of 8 queries doesn’t 

provide more than 8 bits of information, so around 5 such cycles are needed, i.e. 

40 queries. It is probably reasonable to simply observe 56 consecutive IDs and 

easily extract the T table in fullness). Due to time constraints, it has not been 

possible to complete the research and fully understand how T is constructed, and 

how (and when) it changes over time. Yet the results obtained so far enable a 

very effective attack, as will be seen below. 

 

For example, notice that for two samples Lj and Lj+56 at counter values j and j+56 

respectively, and at times tj and tj+56 respectively, the following holds (unless the 

table T changed in between the samples): 

 

(Lj+56 - j·tj+56) mod 8 = (Lj - j·tj) mod 8  

 

In other words, there’s a cycle of length 56 for (L - j·t) mod 8. 
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2. Properties of the field M 

A cyclic behavior (cycles of 56) was observed for the field M, but it’s more 

complicated than the cycles of L (above). Again, for lack of time, a full research 

was not conducted, although it should be quite possible to reduce the entropy in 

its case as well.  
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Appendix B – prediction script for Windows DNS 

server 

 

This Perl script accepts one command line argument (the transaction ID, as a 

decimal number) and produces the list of 8 guesses for the next transaction ID, 

provided that the transaction ID’s C obeys (C mod 8)=7. 
 
 
$TRXID=$ARGV[0]; 
$zero=$TRXID>>14; 
if ($zero!=0) 
{ 
 print "Highest two bits are not 0.\n"; 

print "Is this really Windows DNS server? check end ian issues!\n"; 
 exit(0); 
} 
$M=($TRXID>>11) & 7; 
$C=($TRXID>>3) & 0xFF; 
$L=$TRXID & 7; 
if (($C % 8)!=7) 
{ 
 print "C mod 8 is not 7 - can't predict next TRXID .\n"; 

print "Wait for C mod 8 to become 7\n"; 
 exit(0); 
} 
 
print "Next TRXID is one of the following 8 values: \n"; 
for ($m=0;$m<8;$m++) 
{ 
 print "".(($m<<11)|((($C+1) % 256)<<3))." "; 
} 
print "\n"; 

 


