
Scanning Tools

The goal of the scanning phase is to learn more information about the target environment and discover
openings by interacting with that target environment. This paper will look at some of the most useful
scanning tools freely available today and how to best use them. During this process we'll perform a
number of scans.

Scan Types

 Network sweeping - Basic technique used to determine which of a range of IP addresses
map to live hosts.

 Network tracing – A facility for tracing the route of a computer that is connected to the
Internet.

 Port scanning – software application designed to probe a network host for open ports.

 OS fingerprinting – analysis of the TCP/IP stack to determine target operating system.

 Version scanning – Interacting with different ports to determine protocols they speak
and possibly the version of service listening on given port.

 Vulnerability scanning – used to determine a list of potential unpatched systems,
misconfiguration, etc.

While performing your scans run a sniffer to monitor your network activity. This will let you know if
your scan hangs or if the connection goes down.

tcpdump -nnX tcp and dst <target>
We are not looking to catch all the packets just to make sure the connection is up and the tool we use
doesn't hang.

Hping
Figure #1:port scanning TCP port 80 to 445 on host target.com.

hping3 –scan 80-445 -S target.com -V

In performing a network sweep of your target area consider using Hping which is a great general-
purpose packet generation tool. Hping will ping a target IP address by sending TCP packets with no
control bits set (SYN, ACK, FIN, RST, PSH, and URG set to zero).

hping3 <target> -S -A -F -V -p 443

This will send TCP packets to the port 443 on host <target> with the SYN+ACK+FIN flags set.
hping3 –rand-dest 192.168.1.x –interface eth0

This will send packets to random targets in the 192.168.1 network using interface eth0.

Scapy

Scapy is a powerful interactive packet manipulation program written in python. It can replace hping
and a number of other tools such as arping, tcpdump, tethereal, and p0f. Scapy's interactive shell is run
in a terminal session. Root privileges are needed to send the packets or sudo.

>>>res,unans=traceroute([“www.google.com”,”www.packetstormsecurity.org”,”pbnetworks.net”,”w
ww.dnsstuff.com”],dport=[80,443],maxttl=20,retry=-2)
The above is all on one line. (see Figure #2)
>>> res.graph()

Figure #2: Scapy in Action

This will output a graph in ImageMagick that will display your traceroute. (see Figure #3) This is just
a small portion of what Scapy can do for the pen-tester. I have two in depth videos on my site
describing the many uses of Scapy <http://pbnetworks.net/?cmd=bbs&id=42>,

http://pbnetworks.net/?cmd=bbs&id=42
http://www.google.com/
http://www.secdev.org/projects/scapy/

<http://pbnetworks.net/?cmd=bbs&id=43> they are about 10 and 13 min in length.

Figure #3 :Syn Scanning a target

Scapy can provide a valuable scanning tool as well. We will use scapy and its ability to SYN scan a
target and look for open, closed, or filtered ports. We will scan an internal and external IP address
below.
>>> sr(IP(dst=”192.168.1.111”)/TCP(sport=RandShort(),dport=[21,22,80,443,445],flags=”S”))

This command will send a SYN scan on target 192.168.1.111 to destination ports 21,22,80,443, and
445. If we would like to scan a whole range use the () around the port numbers instead of the []. Next
we look at the response by issuing a request summary

>>> ans,unans =_ and >>> ans.summary()

We can display only the information that we are interested in by using a simple loop

>>> ans.summary(lambda(s,r): r.sprintf(“%TCP.sport% \t %TCP.flags%”))

Still a better table can be built with the make_table() function. Fist lets add some targets to scan.
>>> ans,unans = sr(IP(dst=[“192.168.1.111”,”192.168.1.121”,”pbnetworks.net”]
)/TCP(dport=[21,22,80,443,445],flags=”S”))

http://pbnetworks.net/?cmd=bbs&id=43

>>> ans.make_table(
… lambda(s,r): (s.dst, s.dport,
… r.sprintf(“{TCP:%TCP.flags%}{ICMP:%IP.src% - %ICMP.type%}”)))

The output of the above can be seen in Figure #4

Figure #4: showing open ports

Taking a look at the output of the above SYN scan we see that 69.64.155.180 has port 21 open, port 22
filtered or closed, ports 80 & 443 open, and port 445 filtered or closed. IP address 192.168.1.111 has
port 21 open, ports 22,80, & 443 closed, and port 445 open. IP address 192.168.1.121 has port 21
closed, port 22 open, ports 80 & 443 closed, and port 445 open. The same scan can be done with ACK
using flags=”A”)) & Xmas scan using flags=”FPU”)).

TCP port scanning sends a TCP SYN on each port and waits for a SYN-ACK or a RST or an ICMP
error.

>>> res,unans = sr(IP(dst=”target”)
… /TCP(flags=”S”, dport=(1,1024)))

This will send out a TCP SYN on ports 1-1024. To view the results use this command:

>>> res.nsummary(lfilter=lambda (s,r): (r.haslayer(TCP) and (r.getlayer(TCP).flags & 2)))

The output of the above can be seen in Figure # 5

Figure #5: TCP SYN on ports 1-1024

UDP Ping

To use UDP ping to produce ICMP port unreachable errors from a live host use the following cmd:

>>> ans,unans=sr(IP(dst=”192.168.1.121”)/UDP(dport=0))
Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets
>>> ans.summary(lambda(s,r) : r.sprintf(“%IP.src% is alive”))
192.168.1.121 is alive

Scapy is very good at two things sending packets and receiving answers. You can define your set of
packets, it will send them, get answers back, match requests with answers, and list the unmatched
packets. Scapy is not designed for fast throughput. It is written in Python, has many layers of
abstraction (memory intensive). Do not expect a packet rate higher than 6 Mbs per second. You can
easily design something that sniffs, mangles, and sends and this is exactly what is needed for the
pentester.

Defense

It is possible to prevent port scans before they happen. In the case of FIN, Null, and X-mas scans can
be prevented by simple kernel modification. If the kernel never sends a reset packet then the scan will
turn up nothing. Lets take a look at the kernel code responsible for sending reset packets:

$ grep -n -A -20 “void.*send_reset” /usr/src/linux/net/ipv4/tcp_ipv4.c

Add a return command at line 581 (see Figure #6 may be different line on your system) with this:

return; // Modification: Never send RST, always return

Figure #6:changing the code responsible for sending reset packets.

Nmap

Nmap is a free open source utility for network security auditing. This tool is useful once we've got a
list of open ports and need to determine which services are using those ports. Finding these services
running on ports we can use the Nmap version scanning functionality.

nmap -n -O -sT -sV -p 1-1024 <target>

When using the -sV option you invoke the version scanning functionality. This will allow you to find
services that are running on non-standard ports such as a web server running on TCP 90 or sshd on TCP
4444.

$ sudo nmap –spoof-mac Apple –traceroute –data-length 9 \ -f -D <victim>,RND:5,ME -v -n -O -sS
-sV -p T:1-1024 \ --randomize-hosts <target>

Now this is an interesting port scan we are spoofing our mac with the –spoof-mac option to appear to
be a Apple OS. We complete a traceroute with the –traceroute and append the data length to 9 with –
data-length 9 which will fill an entire TCP packet. We follow this with the -f which will cut up the data
packets into 8 bit segments. The -D will allow us to add a decoy which is labeled <victim>. The
RND:5 tells nmap to come up with 5 IP random IP address, ME tells nmap to put our IP in as the 7th IP
address which in some IDS's will never be logged. Followed by -v to increase verbosity level -n no
DNS resolution, -O OS detection, -sS TCP SYN stealth scan, -sV version scan, -p T:1-1024 specifies to
only scan ports 1-1024 TCP and then randomize the hosts –randomize-hosts. While this will not
completely provide anonymity it throws enough random IP at the host you are scanning to create a lot
of work on the hosts intrusion detection team. Using the -f fragment packet option causes the requested

scan to use tiny fragmented IP packets which makes it harder for packet filters, IDS, and other
annoyances to detect what you are doing. The -D decoy scan which makes it appear to the remote host
you specify as decoys are scanning the target network too. When you put ME in the list of decoys to
represent the position for your real IP address in the sixth position or later, some common port scan
detectors are unlikely to show your IP address at all. The –randomize-hosts tells nmap to shuffle each
group of up to 16384 hosts before it scans them making the scan less obvious to various network
monitoring systems.

Nmap Scriping Engine Scripts

Nmaps scripts are written in the Lua scripting language is fast, flexible, and free, with a small
interpreter that works across platforms and is easily embedded inside of other applications. To invoke
the nmap scripting engine, a user would use the -sC option to run all scripts in the 'default' category or
with the –script optin to choose specific scripts.

nmap -sC <target> -p 1-1024

Script categories consist of safe, intrusive, auth, malware, version, discovery, vulnerability, and default.
Scripts are located in /usr/share/nmap/scripts/script.db. The following example is using the NSE script
on a targets web applications:

nmap –script “http-*” <target> -p 80,443

This will use all the NSE scripts that apply to http against the target box on ports 80 and 443.
To run a specific script use the --script parameter followed by the name of the script or a group of
scripts: # nmap –script Intrusive <target>

UDP Scan Types

UDP stands for User Datagram Protocol, very basic and lightweight, with few safeguards built into it.
UDP uses datagram sockets on the transport layer (4), is one-way only and unreliable, just a basic
method for sending data from one point to another. Nmap and unicornscan are tools that use UDP
protocols. There are two types: empty packet scans and protocol data scans.

Empty packet scans – send UDP packets without any data to a port and wait to see whether a result is
returned. If no response is seen then the port is considered open or filtered. If port unreachable is
returned it can be assumed that the port is closed.

Protocol data scans – sending valid application protocol data in UDP packets to ports to see whether
an application responds. Since this involves talking to the application it is more likely to be logged.

For nmap to perform an empty packet scan use the -sU flag:

nmap -sU <target>

Unicornscan supports protocol data scans only, use the -mU flag to perform this scan:

unicornscan -mU <target>

http://www.unicornscan.org/

Nmap can use the applicaiotn fingerprint to perform protocol data scan:

nmap -sU -sV <target>

Mixing UDP and application fingerprinting scans in Nmap can be very slow, if used limit the ports to
be scanned.

Nessus Vulnerability Scanner

Figure #7: Nessus Scan

The Nessus Vulnerability Scanner is distributed by Tenable Network Security. It is available for
download in Nessus for Business and Nessus for Home. I will not go into the installation or integration
with Metasploit as I wrote another article on the subject for ClubHack earlier this year. I will go over
the interface and demo a couple of scans on windows boxes looking for vulnerabilities.
First lets update the version of nessus by issuing the following command:

/opt/nessus/sbin/nessus-update-plugins

then start nessusd

./nessusd

http://www.tenable.com/products/nessus

Next we will open up a web-browser to https://localhost:8834 and login. There you can create
policies, review reports, launch scans, etc. To begin a scan choose add and specify a target in this case
its 192.168.1.111 and select a type of scan and this one we select Internal Network Scan. The scan is
completed in short order notice I have tcpdump running when I launch the scan. (see Figure #7)

Nessus results include an estimate of the risk level associated with the finding (High, Medium, or Low)
along with a brief description of each flaw along with recommendations for remedy (see Figure #8)

Figure #8: Nessus Scan Report.

Conclusion

The scanning phase a penetration tester will acquire useful information about the target environment
that will be critical in the following stages where we use it to exploit our target. I have analyzed some
tools used in determining many things about the target environment such as open ports, operating
system types, and vulnerabilities.

https://localhost:8834/

About the Author
David J. Dodd is currently in the United States and holds a current 'Secret' DoD Clearance and is
 available for consulting on various Information Assurance projects. A former U.S. Marine with
 Avionics background in Electronic Countermeasures Systems. David has given talks at the San Diego
 Regional Security Conference and SDISSA, is a member of InfraGard, and contributes to Secure our
 eCity http://securingourecity.org. He works for pbnetworks Inc. http://pbnetworks.net a small service
 disabled veteran owned business located in San Diego, CA and can be contacted by emailing:

 dave@pbnetworks.net.

mailto:dave@pbnetworks.net
http://pbnetworks.net/
http://securingourecity.org/

Let pbnetworks get your pen test on target
How secure is your network?

Visit us and learn how
http://pbnetworks.net

http://pbnetworks.net/

