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Executive Summary 
On April 14, 2017, the Shadow Brokers Group released the FUZZBUNCH framework, an exploitation toolkit for Microsoft® 
Windows®. The toolkit was allegedly written by the Equation Group, a highly sophisticated threat actor suspected of being 
tied to the United States National Security Agency (NSA). The framework included ETERNALBLUE, a remote kernel exploit 
originally targeting the Server Message Block (SMB) service on Microsoft Windows XP (Server 2003) and Microsoft Windows 
7 (Server 2008 R2). 

 

In this paper, the RiskSense Cyber Security Research team analyzes how using wrong-sized CPU registers leads to a seemingly 
innocuous mathematical miscalculation. This causes a chain reaction domino effect ultimately culminating in code execution, 
making ETERNALBLUE one of the most complex exploits ever written. 

 

We will discuss what was necessary to port the exploit to Microsoft Windows 10, and future mitigations Microsoft has already 
deployed, which can prevent vulnerabilities of this class from being exploited in the future. The FUZZBUNCH version of the 
exploit contains an Address Space Layout Randomization (ASLR) bypass, and the Microsoft Windows 10 version required an 
additional Data Execution Prevention (DEP) bypass not needed in the original exploit. 

 

Finally, we will demonstrate how we stripped the exploit down to its essential parts to defeat detection rules previously 
recommended by numerous governments and antivirus vendors. This includes the addition of a stealthier payload which, 
unlike the original, does not use the DOUBLEPULSAR implant. 

 

Please note that this deep technical overview of the exploit process is provided to white hat information security researchers 
so that new generic and targeted techniques can be developed to prevent attacks. Overly meticulous details of the exploit 
process, such as math and alignment issues that would only be useful to attackers, have been omitted. Due to the sensitive 
nature of the exploit and other time constraints, the source code will not be made available until a later time. 
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1.0  Background 

1.1 The Shadow Brokers 
On August 13, 2016, a mysterious Twitter account [1] for the Shadow Brokers hacking entity appeared, tweeting a 
PasteBin link to numerous news organizations. The link described the process for an auction to unlock an encrypted file 
that claimed to contain hacking tools belonging to the Equation Group.  

 

Dubbed in 2015 by Kaspersky Lab [2], Equation Group are sophisticated exploit and malware authors believed to be part 
of the Office of Tailored Access Operations (TAO), a cyber warfare intelligence-gathering unit of the United States 
National Security Agency (NSA). As a show of good faith by the Shadow Brokers, a second encrypted file and 
corresponding password were released, with tools containing numerous exploits and even zero-day vulnerabilities. 
Among the exploits made available was EXTRABACON, a remote code execution for Cisco ASA firewalls, which the 
RiskSense Cyber Security Research team previously improved upon [3]. 

 

On April 14, 2017, the Shadow Brokers issued a message titled “Lost in Translation” [4], which released the FUZZBUNCH 
framework, an exploitation tool similar to the open-source Metasploit project [5]. The framework included a treasure 
trove of weaponized Microsoft Windows exploits and other malware. Among the exploits leaked was the ETERNALBLUE 
exploit, which is a remote Microsoft Windows kernel exploit that targets the Server Message Block (SMB) protocol. 

 

The FUZZBUNCH version of the ETERNALBLUE exploit, which uses the DOUBLEPULSAR backdoor implant as its primary 
payload, gained significant notoriety and infamy as they were the hacking tools chosen for the international WannaCry 
ransom worm attack that began on May 12, 2017. 

 

1.2 Microsoft Windows MS17-010 Patch 
One month prior to the Shadow Brokers leak of Microsoft Windows exploits, Microsoft rolled out a patch with the 
TechNet security bulletin MS17-010 [6]. 

 

The MS17-010 patch fixed the following vulnerabilities: 

Common Vulnerability Enumeration Description 

CVE-2017-0143 Windows SMB Remote Code Execution Vulnerability 

CVE-2017-0144 Windows SMB Remote Code Execution Vulnerability 

CVE-2017-0145 Windows SMB Remote Code Execution Vulnerability 

CVE-2017-0146 Windows SMB Remote Code Execution Vulnerability 

CVE-2017-0147 Windows SMB Information Disclosure Vulnerability 

CVE-2017-0148 Windows SMB Remote Code Execution Vulnerability 
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It is unclear which CVE is the vulnerability which ETERNALBLUE targets. However, Microsoft has stated CVE-2017-0146 
and CVE-2017-0147 are part of the ETERNALCHAMPION exploit [7]. 

 

These vulnerabilities can be remediated through methods other than applying the patch, such as disabling the SMBv1 
protocol, isolating vulnerable machines, not exposing SMB to the Internet, and the use of an inline intrusion detection 
system (IDS). 

 

1.3 Weaponized FUZZBUNCH Exploit 
The ETERNALBLUE exploit in FUZZBUNCH is referred in many sources as the weaponized version of the exploit. It is 
weaponized in that it appears to be the development of a nation state (e.g., it is a cyber weapon). 

 

There are several exceptional characteristics, which make ETERNALBLUE a highly-advanced cyber weapon: 

• It targets the Microsoft Windows operating system, which does not have publicly available source code. 

• It exploits the kernel, which is prone to crashes, making research and development a slow process. 

• It is a remote exploit, meaning no local offset calculations can be performed.  

• It sends malicious traffic via SMB, an esoteric and poorly documented network protocol. 

• It simultaneously exploits both x86 and x64 CPU architectures. 

• It performs pool grooming, a type of heap spray of kernel memory structures. 

• It contains a bypass for Data Execution Prevention (DEP). 

• It contains a bypass for Address Space Layout Randomization (ASLR). 

 

Every exploit contains at least one trick, some stratagem or artifice to deliver its payload. The FUZZBUNCH ETERNALBLUE 
exploit contains several of such tricks. The exploit started with modest potential, at one point allegedly nicknamed 
ETERNALBLUESCREEN [8]. However, over the years it was clearly improved, and now that it is in the hands of attackers 
and the open-source white hat community it has been further refined. 
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FIGURE 1: The original FUZZBUNCH version of the ETERNALBLUE exploit. 

  

1.4 Metasploit Module 
The Metasploit exploit module [9] was written by the RiskSense Cyber Security Research team and completed on May 
14, 2017. The timing was unfortunate in that the culmination of research ended two days after the WannaCry attacks. 
As such, there were false reports that the ransom worm “lifted” code from the Metasploit module. Instead, WannaCry 
used a packet capture of the FUZZBUNCH exploit that was recorded for research purposes. 

 

The exploit module currently only targets Microsoft Windows 7 and Microsoft Server 2008 R2, which are the highest 
versions that the FUZZBUNCH exploit release can target. Plans to add offsets for newer versions of Microsoft Windows, 
such as Microsoft Windows 10 and Microsoft Server 2012, have been discussed within the community. It was decided 
that Metasploit would accept offsets for these versions as soon as they can be made available. 

 

The Microsoft Windows 10 proof-of-concept analyzed in this document is not yet part of the Metasploit module. 
RiskSense has no immediate plans to publish code for exploits outside of the scope of the original exploits. 
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FIGURE 2: The ETERNALBLUE Metasploit module directly staging a Meterpreter payload. 

 

1.4.1 Bypass of IDS Rules 
The Metasploit module strips the exploit down to its essential, barebone components. By performing this task, 
RiskSense demonstrated that numerous intrusion detection system (IDS) patterns recommended by government 
agencies and antivirus vendors were inadequate against potential future attacks. More robust rules could be created 
against the stripped-down exploit. 

 

The following is one of several SNORT rules that were demonstrated to be inadequate [10]: 

 

alert tcp $HOME_NET 445 -> any any (msg:"ET EXPLOIT Possible ETERNALBLUE MS17-
010 Echo Response"; flow:from_server,established; content:"|00 00 00 31 
ff|SMB|2b 00 00 00 00 98 07 c0|"; depth:16; fast_pattern; content:"|4a 6c 4a 6d 
49 68 43 6c 42 73 72 00|"; distance:0; flowbits:isset,ETPRO.ETERNALBLUE; 
classtype:trojan-activity; sid:2024218; rev:2;) 

 

1.4.2 Removal of DOUBLEPULSAR 
The Metasploit module also differs from the FUZZBUNCH exploit in that the primary payload is custom-crafted ring 
0 kernel shellcode. The new payload directly stages Metasploit’s collection of user-mode payloads; it does not use 
the DOUBLEPULSAR implant at all. 

 

RiskSense was the first organization to publish a detailed technical analysis of the DOUBLEPULSAR payload [11] [12] 
[13]. While DOUBLEPULSAR is an ingenious payload, it has insecure cryptographic practices relying on steganography 
that is now widely known, and thus is not a suitable solution for a penetration testing tool such as Metasploit. 
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2.0 Vulnerability 

2.1 Early MS17-010 Research 
RiskSense Cyber Security Research analysts reviewed the MS17-010 patch shortly after its release, one month before the 
Shadow Brokers FUZZBUNCH leaks, as it is a rare circumstance for multiple remote code execution vulnerabilities to be 
patched at once. Reverse engineering determined that code paths for SMB traffic had been changed, resulting in error 
messages for certain invalid operations being changed. Essentially, the patch inadvertently added an information 
disclosure that allows a remote, uncredentialled attacker to determine if the patch has been installed. 

 

One example of a new code path can be observed by connecting to the Inter-Process Communications (IPC$) tree and 
attempting an SMB NT Trans2 transaction on FID 0. Prior to the patch, machines will return the 
STATUS_INSUFF_SERVER_RESOURCES error code. On a patched machine, additional authentication checks were added, 
meaning STATUS_INVALID_HANDLE or STATUS_ACCESS_DENIED will be given, depending on the version of Microsoft 
Windows being tested. 

 

Due to the determined critical nature of the patch, RiskSense decided to release a free scanner for system administrators 
to assess their networks via the Metasploit project on March 29, 2017 [14], sixteen days before the Shadow Brokers leak 
on April 14, 2017. This auxiliary scanner module, after the WannaCry attacks, became an extremely popular tool for 
defenders to use and has since been ported to Python [15] and NMAP [16]. 

 

2.2 Memory Buffer Miscalculation 
The vulnerability that ETERNALBLUE exploits is quite subtle. One could easily miss it if simply running a binary diffing tool 
against a patched and unpatched Srv.sys driver. Srv.sys is where large portions of the SMB protocol lives, as Microsoft 
has opted to do many networking tasks in the kernel, perhaps for additional performance reasons (see also: HTTP.sys). 

 

On most versions of Microsoft Windows, there is a function named srv!SrvOS2FeaListSizeToNt, which is used to calculate 
the size needed for a converting OS/2 Full Extended Attributes (FEA) List structures into the appropriate NT FEA 
structures. These structures are used to describe file characteristics. This calculation function is not present in Microsoft 
Windows 10, as it has been in-lined by the compiler. The vulnerability thus appears in srv!SrvOs2FeaListToNt. 

 

 

FIGURE 3: The root cause vulnerability for ETERNALBLUE, which also sets the status code seen in successful exploitation. 

 

Essentially, an attacker-controlled DWORD value is subtracted here, however you will notice WORD-sized registers are 
used in the calculation. This buffer size is later used in a memcpy [17] or memmove [18] operation, depending on the 
Microsoft Windows version, both of which perform a copy of a memory from one location to another. 
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This mathematical miscalculation is easy to overlook, however such a small error leads to disastrously unintended 
consequences. The vulnerability is best classified as CWE-680: Integer Overflow to Buffer Overflow [19]. 

 

Matthieu Suiche has suggested the following macro, available in cifs.h header of Windows Drivers SDKs [20], may have 
been used: 

 

#define SmbPutUshort(SrcAddress, Value) \ 
                            *(PSMB_USHORT)(SrcAddress) = (Value) 

 

The vulnerability itself could potentially have been found through either static code analysis, to identify the mathematical 
error, or through fuzzing the SMB protocol and getting a lucky Blue Screen of Death. However, turning a crash into a 
reliable exploit requires in-depth knowledge for many of Microsoft Windows undocumented kernel structures, 
implementation details, and the SMB protocol. 

 

The vulnerable code snippet is still present in versions of the MS17-010 patch. There is a secondary mitigation that 
disallows SMBv1 traffic from travelling the code path, effectively fixing successful exploitation. This was done by adding 
additional checks in srv!ExecuteTransaction [21]. 

 

2.3 Origins 
The vulnerability itself appears to have been around for quite some time. RiskSense observed that the vulnerability is 
present in a base install of Windows 2000 without any service packs installed.  

 

 

FIGURE 4: It is trivial to crash Microsoft Windows 2000 with an error consistent for exploitation. 

 

The Microsoft NT 4 source code was at one point leaked, and it is claimed the vulnerability is not present [22]. RiskSense 
did not look at the NT 4 source, but it is possible the vulnerability was introduced in a service pack for NT 4.  

 

As the earliest FUZZBUNCH exploit targets Microsoft Windows XP (Server 2003), it can be argued this vulnerability was 
around for a number of years before being discovered. 
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3.0 Exploit 

3.1 Target Version of Microsoft Windows 10  
For this exploit analysis and port, we target Microsoft Windows 10 x64 Version 1511, the November Update with the 
codename Threshold 2. The build number is Microsoft Windows 10.0.10586. The MS17-010 patch, while available, is not 
installed. 

 

This version is the currently supported Current Branch for Business (CBB) version of Microsoft Windows 10. Our exploit 
uses information about offsets and structures originally reversed for Microsoft Server 2012 by Worawit Wang [22], to 
whom a tremendous debt of gratitude is owed. 

 

This build of Microsoft Windows has firewall rules that prevent the SMB port from being open by default. However, with 
default settings for both enterprise domain and private home networks, the firewall allows the port to be accessed. The 
IPC$ share also disallows anonymous logins. We do not consider these features to be significant exploit mitigations. 

 

For our analysis, we will utilize the WinDbg Kernel Mode Debugger, an official tool from Microsoft Corporation which 
contains symbols for some, but not all, of the kernel data structures being examined. 

 

3.2 Exploit Mitigations 
Unfortunately, there are no working mitigations for Microsoft Windows Server 2003 (XP), Server 2008 (Vista/7), or Server 
2012 (8/8.1). While certain versions do have mitigations enabled, the mitigations in place have straightforward 
workarounds. 

 

Microsoft Windows 10, however, receives exploit mitigations that previous versions of Microsoft Windows simply do not 
get. The last exploitable version with known workarounds is Threshold 2, which is still supported in the Current Branch 
for Business (CBB). If the machine has the Redstone 1 update, which was publicly available in August 2016, randomization 
added to page table entries prevents the DEP bypass [23]. If the machine has the Redstone 2 update, introduced in April 
2017 (after the MS17-010 patch), the HAL heap is also randomized, defeating the ASLR bypass. 

 

Microsoft Server 2016’s first release includes Redstone 1, meaning a path to successful exploitation is not currently 
known. However, it is still simple to cause denial-of-service, and future DEP / ASLR bypasses may still be discovered.  

 

3.2.1 Data Execution Prevention (DEP) 
Data Execution Prevention (DEP) is an exploit mitigation designed so that even if an arbitrary memory-write primitive 
is obtained, hijacking execution to the write location will not result in execution. There is a No eXecute (NX) bit in 
the page table entry that defines a memory location cannot be executed. Attempting to do so will result in a CPU 
exception, which will be unhandled in kernel mode resulting in a system crash. 
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3.2.2 Address Space Layout Randomization (ASLR) 
A traditional avenue for DEP bypass is code re-use attacks. A technique known as Return-Oriented Programming 
(ROP) was developed, in which execution flow is set by overflowing many return addresses containing small code 
snippets, or “gadgets”. There is a mitigation, which generally defeats ROP attacks called Address Space Layout 
Randomization (ASLR). ASLR means that memory addresses are no longer static offsets that can be pre-determined. 

 

3.3 Network Traffic Analysis 
When FUZZBUNCH was first released, simple packet analysis of the exploit’s network traffic was performed. The 
phenomenon of successful exploitation by replaying a recording of the exploit was observed. This means that every offset 
of the exploit can be pre-calculated; there is no secondary memory leak information disclosure being used to dynamically 
calculate exploit requirements. 

 

That stated, porting the exploit to a new version of Microsoft Windows (or writing the original exploit) is a tremendous 
task, which requires precise setup. Structure offsets must be properly reverse engineered for essential functionality, as 
in many cases they must be set to appropriate values or face rejection to runtime checks (causing Blue Screen of Death). 
The integer overflow vulnerability must be calculated exactly, as other values rely on it and must be fixed up throughout 
the course of the exploit. There can be no ambiguity and many kernel objects change drastically between the major 
versions of Microsoft Windows. 

 

There are two main drivers in play which work in synergy with each other, being Srv.sys and Srvnet.sys. The vulnerable 
miscalculation and buffer overwrite will be performed because of actions in Srv.sys. The code execution hijack will occur 
later in processing done by Srvnet.sys. A large non-paged pool, with custom Srvnet.sys headers instead of pool headers, 
is where the memory corruption will happen. 

 

The exploit opens several bare minimum connections, added by a variable NumGrooms amount. Grooms are used to 
perform a type of heap spray attack of kernel pool memory, so that memory lines up correctly and overflow is controlled 
to a correct location. SMB drivers use large non-paged memory with its own structures for memory management of 
packets [24]. By adjusting the amount of grooms against a highly-fragmented pool, it is more likely to enter a known 
state and end up with a successful overwrite of desired structures. 

 

The connections used in the exploit are one of four basic types: an Overflow Socket, the Allocation Connection, the Free 
Hole Connection, and Groom Packets. 

 

3.3.1 Overflow Socket 
This is the primary connection in the exploit, and the size of the malicious OS/2 Full Extended Attributes (FEA) List is 
essentially present as an attacker-controlled value. This socket connects to the IPC$ tree and begins an NT Trans 
request of a large FEA List. This large FEA List is sent through as many NT Trans2 secondary requests that are required, 
depending on size. These packets can be filled with gibberish, until the last NT Trans2 packet which contains data 
that will overwrite the headers of a Groom Packet connection.  
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The final packet is deferred until all pool grooming is completed, as it exists in a different pool until the transaction 
is complete. The final request should return the status code error STATUS_INVALID_PARAMETER if everything goes 
well. This means the vulnerable code path was successfully travelled. 

 

3.3.2 Groom Packets 
Groom packets are several connections that are opened by a variable amount set by the attacker. The purpose of 
grooming is to achieve contiguous kernel pool memory so that buffer overwrite ends up in the desired location—as 
in the headers of one of these groom packets’ internal driver implementation structs. Exploit failures, where an 
overwrite occurs in a location that is not a groom packet internal struct, do not generally result in a crash, but occurs 
fairly regularly when grooming is unable to properly achieve contiguous memory. This is usually observed when the 
pool is highly fragmented, especially after multiple exploitation attempts. 

 

The NumGrooms amount is used after an allocation connection is opened, and six additional grooms are sent after 
a hole connection is opened and the allocation connection is closed. Groom packets also have the job of holding the 
exploit payload, which is sent after the overflow condition packet has been received and acknowledged by the 
server. 

 

Groom packets in the original exploit appear to be SMB2 packets, but are otherwise completely invalid and perhaps 
only have the SMB2 header to defeat detection rules. The SMB2 header “magic” value can in practice be written 
with anything. 

 

3.3.3 Allocation Connection 
The allocation connection is simply used to create a large allocation on the server, to reserve a buffer of that is 
significantly smaller than the overwrite packet, so that when it is freed the Overflow Socket does not end up in its 
place. This connection is used to fill a slot that will have trailing pool headers, which if overwritten would be hard to 
forge and likely result in a crash. The allocation must be smaller than the final Overflow Socket FEA List, so that it 
will go into the Free Hole Connection and not occupy this memory. The allocation connection is opened directly 
before the NumGrooms amount of groom packet headers are sent. The hole connection is then opened, and the 
allocation connection is closed.  

 

3.3.4 Free Hole Connection 
After the NumGrooms amount of groom packet headers are sent, the hole connection is opened. This buffer is 
virtually the same size as the expected size of the overflowing buffer, with minor adjustment to make things line up. 
At the last second, this Free Hole will be closed so that it can be quickly replaced with the overflowing buffer, who 
believes there is enough space to use here, but miscalculates how much data to copy. It is expected that a non-
paged pool allocation with pool headers will not be adjacent to the hole connection because of the previous 
allocation connection. The headers for this will be overwritten when the last fragment of the overflow socket is sent. 
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3.4 FEA and Kernel Structures 
Several kernel structures are overwritten or otherwise used during the exploit. Many of these structures are 
undocumented, and must be reverse engineered. This process is performed by looking at function calls that are used 
during normal execution in the attempt to determine what types exist at certain offsets. 

 

3.4.1 SMB_FEA 
A Full Extended Attribute is generally used to describe the characteristics of a file. One of SMBs primary functions 
is to serve as a file share, and the dated SMBv1 protocol has support for many opcodes. According to MSDN: “The 
SMB_FEA data structure is used in Transaction2 subcommands and in the NT_TRANSACT_CREATE subcommand to 
encode an extended attribute (EA) name/value pair” [25]. 

 

typedef struct _SMB_FEA 
{ 

UCHAR      ExtendedAttributeFlag; 
UCHAR      AttributeNameLengthInBytes; 
USHORT     AttributeValueLengthInBytes; 
UCHAR      AttributeName[AttributeNameLengthInBytes + 1]; 
UCHAR      AttributeValue[AttributeValueLengthInBytes]; 

} SMB_FEA, *PSMB_FEA; 
 

3.4.2 SMB_FEA_LIST 
A FEA List is simply many contiguous SMB_FEA. This is another documented structure on MSDN [26]. A malicious 
SMB_FEA_LIST is the structure that is sent in the Overflow Socket, which is miscalculated while being converted into 
an internal NT FEA List structure.  

 

Typedef struct _SMB_FEA_LIST 
{ 

ULONG SizeOfListInBytes; 
UCHAR FEAList[]; 

} SMB_FEA_LIST, *PSMB_FEA_LIST; 
 

3.4.3 SRVNET_BUFFER_HDR 
This is the actual structure that will be overwritten during the out of bound memory copy caused by the original 
vulnerability miscalculation. This contains buffer metadata that is appended to the real buffer of an SMB packet 
allocation.  

 

One of the most important aspects of this structure is the Memory Descriptor List PMDL (offset 0x38), which allows 
placing the fake PSRVNET_RECV struct pointed to by pSrvNetWskStruct (offset 0x58) into a desired memory location.  
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typedef struct SRVNET_BUFFER_HDR { 
  LIST_ENTRY List; 
  USHORT Flag;        // clear least 2 significant bits 
  BYTE unknown0[0x6]; 
  PBYTE pNetRawBuffer;     // 0x18 points to valid start of buffer 
  DWORD dwNetRawBufferSize;   // 0x20 
  DWORD dwIoStatusInfo; 
  DWORD dwNonPagedPoolSize; 
  DWORD dwPadding; 

PVOID pNonPagedPoolAddr;    // 0x30 points to SRVNET_BUFFER 
PMDL pMDL;          // 0x38 point to offset 0x90 of this struct 
DWORD dwByteProcessed;     // 0x40 
BYTE unknown1[4]; 
QWORD qwSMBMsgSize;      // Set to size of all RECV data 
PMDL pMDL2;         // 0x50 optionally fixed to free buffer 
PSRVNET_RECV pSrvNetWskStruct; // 0x58 fake SRVNET_RECV struct address 
DWORD unknown2;  
char unknown3[0xc]; 
char unknown4[0x20]; 

 
// original struct ends 

 
  MDL WriteWhatWherePrimitive;  // 0x90 
} SRVNET_BUFFER_HDR, *PSRVNET_BUFFER_HDR; 
 

 
3.4.4 MDL 
Memory Descriptor Lists are a kernel structure that describe a memory buffer for certain types of memory I/O 
operations. Controlling the MDL in packet metadata essentially causes the TCP stack to perform an arbitrary write-
what-where, a common primitive used in kernel exploitation, when data is sent to the connection. This structure is 
exported by NTDLL, and thus we can query the debugger for its type. 

 

 

FIGURE 5: The debugger contains symbols for the MDL structure. 

 

We essentially need to set this up in the overwritten packet with the bytes that would equal the same pseudocode 
seen below: 
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SIZE_T nSentBytes = 0x7f; 
PVOID pTargetLoc = 0xffff…; 
 
MDL mdl = { 0 }; 
 
mdl.Next = NULL;  // the list entry should not point anywhere 
mdl.Size = 0x60; 
 
mdl.MdlFlags = MDL_NETWORK_HEADER | MDL_SOURCE_IS_NONPAGED_POOL; // 0x1004 
mdl.Process = NULL; 
 
mdl.MappedSystemVa = pTargetLoc – nSentBytes; 
 

3.4.5 SRVNET_RECV 
This is the structure that is written with the write-what-where primitive. Once the corrupted connection is closed, 
this is used by Srvnet.sys to call the handler function, which points to the shellcode address. 

 

typedef struct _SRVNET_RECV { 
  BYTE unknown0[0x50]; 
  PKSPIN_LOCK SpinLock;    // 0x50 lock is acquired during processing 
  LIST_ENTRY List;      // 0x58 Flink and Blink point to self 
  BYTE unknown1[0xa0]; 
  PVOID **pHandlers;     // 0x110 pointer to handler table 
  QWORD qwUnknown2; 
  QWORD qwOverwriteSize;   // 0x118 set to pre-calculated overwrite amount 
  QWORD qwUnknown3; 
  DWORD dwUnknown4; 
  DWORD dwInvokeIndex;    // 0x13c set to 3 
  BYTE unknown5[0xb0]; 
   
  // original struct ends 
   
  QWORD qwFuncArgument; 
  PVOID HandlerFunction;   // set to &shellcode 
} SRVNET_RECV, *PSRVNET_RECV; 
 
 

3.5 SMB Exploitation Sequence 
The four types of connections must be sent in the proper order, so that pool memory is properly groomed. Performing 
these actions out of sequence can lead to overwrite occurring in the improper location, which later could lead to an 
unhandled kernel exception, meaning the system will crash. 
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Socket Type Action 

1 Overflow SMBv1 negotiation, Anonymous login, and IPC$ tree connect 

1 Overflow Initial NT Trans request, followed by multiple Trans2 requests (FEA List) 

2 Allocation Create a buffer which may have trailing pool headers we do not want to overwrite  

4+ NumGrooms Empty packet headers, just to open connections, these should line up next to each other 

3 Hole Create a buffer of similar size to Overflow data, so it can be switched out at appropriate time 

2 Allocation Disconnect to free buffer 

4+ Final Grooms Create six new connections, sending same headers as previous NumGrooms 

3 Hole Disconnect to free buffer, Overflow will begin copy starting here 

1 Overflow Send the last fragment of the exploit packet, causing overwrite of a Groom SRVNET_BUFFER_HDR 

4+ All Grooms Any data now transmitted will be written by TCP stack to the address in the fake MDL 

1+ All Close all sockets, resulting in SRVNET_RECV executing shellcode 

 

3.6 Execution Chain of Events 
The following is a high-level chain of events that allow the buffer overflow to achieve reliable code execution: 

1. The OS/2 FEA to NT FEA conversion results in an overflow of a Groom Packet’s internal metadata. 

2. The Memory Descriptor List (MDL) of the overwritten Groom Packet’s SRVNET_BUFFER_HDR struct results in an 
arbitrary write-what-where primitive on the next data transmitted. 

3. MDL is used to disable DEP on a fixed static region of the HAL Heap, whose Page Table Entry (PTE) is also fixed. 

4. A second malicious OS/2 to NT FEA conversion is used to overwrite the SRVNET_BUFFER_HDR again, to change 
the MDL write target. 

5. MDL is used to place shellcode in newly executable region, prepended with a fake SRVNET_RECV struct. 

6. The address for the SRVNET_RECV struct is in the overwritten SRVNET_BUFFER_HDR, and contains the “handler” 
function pointer which is the address of the shellcode. 

7. The corrupted Groom connection is closed, and the “handler” function filled with shellcode is eventually called 
in Srvnet.sys. 

 

Portions of the basic sequence are repeated, once for the DEP bypass MDL, and again for the SRVNT_RECV MDL, which 
causes code execution. These can be triggered in sync in all testing and there does not appear to be a race condition with 
the write orders.  
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3.6.1 ASLR Bypass 
ASLR bypasses generally consist of locating components which are still forced to rely on fixed offsets. There exists a 
region of memory in the kernel called the HAL Heap, which is used by the Hardware Abstraction Layer. Until 
Microsoft Windows 10 Redstone 2 (April 2017), which randomizes the HAL Heap location [27], this region can be 
located at 0xffffffff`ffd00000.  

 

On Microsoft Server 2008 R2, the latest version exploited by FUZZBUNCH, the HAL Heap has both write and execute 
permissions. For this reason, a DEP bypass was not necessary for the original exploit, as it was already “built-in” to 
the ASLR bypass.  

 

The region is known to store important structures such as the HalpInterruptController, which is a table of function 
pointers that perform critical operations, so exploits should be careful in choosing where to perform the arbitrary 
write. 

 

3.6.2 DEP Bypass 
Starting sometime in Microsoft Windows 8/8.1 (Server 2012), the HAL Heap became non-executable. A virtual 
memory Page Table Entry (PTE) contains information about a memory location, such as base physical addresses, CPU 
ring mode, a dirty bit, and starting with the introduction of hardware-enforced DEP, a No eXecute (NX) bit at offset 
63. If the NX bit is set and we attempt to move the instruction pointer to the page, a kernel panic will prevent the 
exploitation.  

 

 

FIGURE 6: The PTE for the desired shellcode address has the NX bit enabled. 

 

The remote bypass for DEP used [28] is a technique which can be used to have the MDL write a 0 into the NX bit. 
PTEs until Microsoft Windows 10 Redstone 1 (August 2016), like HAL Heap, are in a fixed, static location, and can be 
pre-calculated [23]. Disabling the bit will mark the page as executable. 
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FIGURE 7: The NX bit is cleared from the Page Table Entry. 

 

We can confirm that the overwrite is successful, as the debugger afterwards informs us that the memory is marked 
as executable. 

 

 

FIGURE 8: After the first MDL write, the shellcode address is safely executable. 

 

3.6.3 Hijacking Code Execution 
After the DEP bypass is complete, we can overwrite the Groom buffer again with a new SRVNET_BUFFER_HDR 
containing an MDL that points to the location we just marked as executable. We send the fake SRVNET_RECV struct 
and shellcode which causes the TCP stack to use the MDL to write to the preset location in the HAL Heap. 
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FIGURE 9: The TCP stack performs I/O on the overwritten struct, resulting in arbitrary write. 

 

We can query the preset address we chose for the MDL to write the fake SRVNT_RECV structure and shellcode to. 
We observe that the shellcode and structure are present and the offsets are in the proper locations. With proper 
setup, the handler function pointing to the shellcode payload will be called when the socket is closed. 
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FIGURE 10: The SRVNET_RECV struct laid out in kernel memory after MDL write. 

 

Setting a breakpoint at the start of the payload shellcode (interrupt 3, or “\xcc”), one can see the call stack when 
code execution is transferred. 

 

 

FIGURE 11: Successful exploitation and shellcode execution on Microsoft Windows 10 Threshold 2. 
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4.0  Payload 

4.1 Overview of Operation 
RiskSense previously documented the DOUBLEPULSAR implant used in the original exploit [11]. The problem with 
DOUBLEPULSAR is that it is not a cryptographically secure payload; it opens an insecure backdoor which anyone can 
come along and use to load secondary malware.  

 

In our improved payload, an Asynchronous Procedure Call (APC) is queued directly to cause normal Metasploit user-
mode payloads to be executed without requiring the backdoor. An APC can “borrow” a process thread that is in an idle 
Alertable state, and while it relies on structures whose offsets change between versions of Microsoft Windows, it is one 
of the most reliable and easiest ways to exit kernel mode and enter user mode. Kernel shellcode techniques were gleaned 
from the Uninformed journal [29] and the DOUBLEPULSAR DLL injection payload [30]. 

 

The shellcode for Microsoft Windows 10 is similar to the code for Microsoft Windows 7 (Server 2008 R2), present in the 
ETERNALBLUE Metasploit module [31]. Many of the structures necessary have offsets which change between major 
versions, however WinDbg has symbols available for them so this is not a tedious task.  

 

From a high level, here is the sequence of operations that the payload must take care of after the code execution hijack 
as occurred. 

 

4.1.1 Hook the SYSCALL Handler 
The first task the payload must perform is to hook a new system call handler, which will point to stage two. This is 
because we are executing at an undesired Interrupt Request Level (IRQL). At the current level, the dreaded 
DISPATCH_LEVEL, interrupts are disabled, and we cannot use nifty features such as paged memory, which we will 
need to copy the user-mode payload into. Thus, it is necessary to have the second stage of shellcode called in a 
process context so that more kernel functionality is available. 

 
mov ecx, 0xc0000082           ; IA32_LSTAR syscall MSR 
rdmsr 
movabs rbx, 0xffffffffffd00ff8  ; another HAL heap address 
mov dword [rbx+0x4], edx           ; save old syscall handler 
mov dword [rbx], eax 
lea rax, [rel x64_syscall_handler] ; load relative address to 2nd stage 
mov rdx, rax 
shr rdx, 0x20 
wrmsr             ; write hook 
ret 
 
x64_syscall_handler:       ; the syscall handler follows this stub 
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4.1.2 Emulate a SYSCALL 
Emulating a system call is simple enough to do, and code can mostly be directly copied from nt!KiSystemCall64. 
Essentially the GS segment register needs to be swapped from user to kernel, all registers need to be saved, and 
interrupts need to be resumed. Once this is done, the shellcode can call the third stage which will queue the APC. 
When the third stage completes, clear interrupts, restore registers, and jump the instruction pointer to the real 
system call address. 

 

The original system call handler MSR should also be restored as soon as possible, to prevent a bug check from Kernel 
Patch Protection (PatchGuard). 

 
4.1.3 Locate NTOSKRNL.exe Base Address 
Now that interrupts are enabled in the third stage, the payload can finally use the necessary APIs to queue the APC. 
The ntoskrnl.exe Portable Executable (PE) headers must be found so that function export addresses can be located. 
These can be looked up with a hash function like user-mode shellcode often uses for Kernel32.dll.  

 

Luckily there is a trick which can be used here to again bypass ASLR. Locate the Interrupt Descriptor Table (IDT) from 
the Kernel Processor Control Region (KPCR), and traverses backwards from the first Interrupt Service Routine (ISR) 
handler to find ntoskrnl.exe base address. 

 
; this stub loads ntoskrnl.exe into r15 
x64_find_nt_idt: 
  mov r15, qword [gs:0x38]                          ; get IdtBase of KPCR 
  mov r15, qword [r15 + 0x4]                        ; get ISR address 
  shr r15, 0xc                                      ; strip to page size 
  shl r15, 0xc 
 
_x64_find_nt_idt_walk_page: 
  sub r15, 0x1000                                   ; walk along page size 
  mov rsi, qword [r15] 
  cmp si, 0x5a4d                                    ; 'MZ' header 
  jne _x64_find_nt_idt_walk_page 

 
4.1.4 Dynamically Calculate ETHREAD ThreadListEntry 
In order to support multiple service packs, the offset to ETHREAD.ThreadListEntry should be found dynamically. 
This can be done with the following steps: 

• Call nt!GetCurrentProcess to get the PEPROCESS->ThreadListHead 

• Call nt!GetCurrentThread to get the current thread 

• Walk the current process thread list until the address is found within a defined delta offset. 

 
4.1.5 Find a Target SYSTEM Process 
The next step is to loop over PIDs calling nt!PsLookupProcessById and nt!PsGetProcessImageFileName until a desired 
process to inject into is found. Generally, this should be a SYSTEM process, such as lsass.exe, or, more safely, 
spoolsv.exe. 
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Searching PIDs can be done in multiples of 4, and the desired SYSTEM processes are usually in the lower range. Care 
should be taken to ensure the loop does not go on infinitely if a desired process cannot be found. 

 
4.1.6 Copy User-mode Shellcode to Target Process 
In order to call nt!ZwAllocateVirtualMemory, the shellcode must first call nt!KeStackAttachProcess to attach to the 
process virtual address space. This needs to later be followed up with nt!KeUnstackDetachProcess during the final 
cleanup phase or strange errors and crashes can occur. 

 

Memory should be allocated with PAGE_EXECUTE_READWRITE permissions. A simple rep movs instruction can be 
used to perform the memory copy. 

 
4.1.7 Find an Alertable Thread 
A thread needs to be “alertable” in order to queue an APC. Again, walk the PEPROCESS->ThreadListHead, searching 
for threads which satisfy the following conditions: 

• Thread Environment Block (TEB) is not NULL. 

• TEB.ActivationContextStackPointer is not NULL (will cause crash after APC execution). 

• The 5th bit of the ETHREAD.Alertable offset should be set. This is simply a bool packed into a bit. 

 
4.1.8 Create and Queue APC 
An executable, non-paged pool should be allocated using nt!ExAllocatePool to hold the APC structure. The APC 
structure needs a dummy kernel-mode APC function, which can be set to simply ret. The call to nt!KeInitializeApc 
should be formed as such: 

 
KeInitializeApc( rcx = ApcPoolAddr, 
                 rdx = pChosenThread, 
                 r8 = NULL = OriginalApcEnvironment, 
                 r9 = KernelApcRoutine, 
                 NULL /* RundownRoutine */, 
                 &UserModeShellCode, 
                 1 /* UserMode */, 
                 NULL /* Context */); 
 
The APC can then be passed to nt!KeInsertQueueApc with NULL arguments. The user-mode payload will now be 
scheduled for execution. 

 
4.1.9 Perform Cleanup 
Perform a call to nt!KeUnstackDetachProcess to leave the target process virtual memory space. A call to 
nt!ObDereferenceObject on the target EPROCESS is also needed. If the process crashes and there are still references, 
it will not cleanly exit and linger in memory. 
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4.1.10 User Mode Tasks 
Since the APC thread in user-mode is being temporarily borrowed from an Alertable thread, the starting stage of the 
user-mode payload should make a call to kernel32!CreateThread. Well known user mode techniques can now be 
utilized, such as acquiring the Process Environment Block (PEB) from the GS register and searching the Loader Data 
structure (PEB_LDR_DATA) for Kernel32.dll. The start location of the new thread should be the actual desired user-
mode payload. In the case of Metasploit, this is generally Meterpreter stager. 

 
4.2 Summary of Improvements 
Much like the payload used by the alleged Equation Group exploit EXTRABACON, the ETERNALBLUE payload had room 
for some improvements. It can only be fairly compared against the DOUBLEPULSAR DLL injection payload, which 
performs a similar task. 

 

The ETERNALBLUE exploit in this setup only allows a payload of 4096 bytes. There may be numerous tricks available to 
stage larger kernel payloads, but this amount of space is more than sufficient for using a two-stage Meterpreter payload. 
The kernel payload for the Metasploit module is around 1000 bytes, plus the size of the user-mode payload. The 
DOUBLEPULSAR payload is around 5000 bytes, plus the size of the user-mode payload.  

 

The reduction in shellcode size, to about 20% of the original size, was possible with the following optimizations: 

• Use of x86 registers over x64 where possible (avoid REX prefix bytes). 

• Removal of NOPs in shadow stack (such as add rsp, 20 directly followed by sub rsp, 20). 

• Direct hash API calls, instead of stored API pointers. 

• Removal of safety checks deemed unnecessary. 

• Handwritten assembly over what appeared to be compiler output.  
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5.0 Conclusion 

ETERNALBLUE has many moving parts and can be a confusing exploit to follow. There were scarce, but excellent prior works 
that have described the integer overflow to buffer overflow process [21] [22] [24]. We have built upon this information by 
describing the methodology for the instruction pointer hijack and staging of the final payload, which are important points of 
study to thoroughly understand this complicated exploit.  

 

The RiskSense Cyber Security Research team slowly dissected the original exploit, discovering parts of the data that were 
deemed unnecessary for exploitation. By removing superfluous fragments in network packets, our research makes it possible 
to detect all potential future variants of the exploit before a stripped-down version is used in the wild. We also substantiated 
the premise that the original exploit’s DOUBLEPULSAR payload is a red herring for defenders to focus on, as stealthier payload 
mechanisms can be crafted. 

 

This research confirms that porting the original exploit to more versions of Microsoft Windows, while difficult, is not an 
impossible feat. Port to virtually all vulnerable Microsoft Windows versions that use the NT kernel is possible, apart from the 
key defenses recently made available in the bleeding-edge versions of Microsoft Windows 10. Redstone 1 (August 2016) and 
Redstone 2 (April 2017) introduce mitigations such as the Page Table Entry and HAL Heap randomizations, which will help 
protect users against future exploits of this class. 

 

The ETERNALBLUE exploit is highly dangerous in that it can provide instant, remote, and unauthenticated access to almost 
any unpatched Microsoft Windows system, which is one of the most widely used operating systems in existence for both the 
home and business world. The vulnerabilities fixed in the MS17-010 patch, like the unwavering MS08-067 vulnerability before 
it, will continue to be exploited by black-hat criminal organizations, white-hat security researchers and penetration testers, 
and many nation-states for presumably a decade to come.  

 

Only by analyzing the tools that are available to malicious actors can the wider information security community build proper 
protections and security measures. RiskSense is dedicated to helping build a more secure digital world, and it is our sincere 
hope that this work will serve anti-virus vendors, intrusion detection system rule authors, and other types of defenders to 
help understand the exploitation process so that future attacks can be prevented. 
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