
UNCLASSIFIED 1

Towards the Scalable Implementation of a
User Level Anomaly Detection System

Ramkumar Chinchani, Shambhu Upadhyaya and Kevin Kwiat

Abstract— Traditional intrusion detection systems can be broadly clas-
sified as misuse and anomaly detectors. Misuse detectors attempt detec-
tion by matching the current system/user activity against known signa-
tures and patterns. As opposed to this, anomaly detection works by de-
veloping a reference graph and comparing the ongoing activity against it.
Any significant deviation is flagged as an intrusion. Anomaly detection
is more promising because of its potential to detect unseen types of at-
tacks. However, both techniques have conventionally relied on audit trails
sampled deep inside the system via probes and the sheer size of the data
allows only after-the-fact and off line detection. In recent past, there have
been efforts to capture the semantics of system activity for more rapid de-
tection and this can typically be done at levels closer to the user. In our
earlier works related to this effort, we presented a scheme and a reason-
ing framework to detect intrusions based on the encapsulated user intent.
This paper addresses the scalability and implementation aspects of the
system by introducing concepts such as workspaces and meta-operations.
Although this security system is a general anomaly detection system, it is
amenable to operator fault recovery. While encryption provides secure
communication channels, it leaves the end points exposed. Our security
system has the additional capability of handling insider attacks relevant
in this context.

Keywords— Anomaly Detection, Scalability, User Level Detection

I. (U) INTRODUCTION

A
large number of intrusion detection systems have been de-
ployed with varying success in order to address system

security, an issue that is becoming an ever-growing concern.
Known taxonomy [1] classifies these intrusion detection sys-
tems into a wide variety of categories. One popular classifi-
cation divides these into misuse and anomaly detection sys-
tems. They are alternatively known as knowledge-based and
behavior-based intrusion detection systems respectively.

Misuse detectors [2], [3] can detect and identify known in-
trusions with a high accuracy. They achieve this by main-
taining a knowledge base of signatures corresponding to the
intrusion scenarios and then comparing the actual system ac-
tivity obtained from audit trails against this knowledge base.
A positive match signals an intrusion with the relevant infor-
mation about it. Some of the techniques used are colored Petri
Nets [4], state-transition analysis [5], [6] and property-oriented
analysis [7]. Since the general approach is to look for specific
patterns or information, misuse detection is relatively more ac-
curate. Attacks can be distinguished and given distinct names.
However it suffers from the limitation that it cannot detect un-

R. Chinchani is a PhD student in the Dept. of Computer Science and
Engineering at State University of New York at Buffalo, USA. Email:
rc27@cse.buffalo.edu

S. Upadhyaya is an Associate Professor in the Dept. of Computer Science
and Engineering at State University of New York at Buffalo, USA. Email:
shambhu@cse.buffalo.edu

K. Kwiat is with the Air Force Research Laboratory, Rome, NY, USA.
Email: kwiatk@rl.af.mil

seen types of attacks.
Anomaly detection [8], [9] is the alternative approach. Nor-

mal system activity is observed and modeled, and this serves
as a reference. In this context, intrusions are often defined as
“noise” or anomalies that deviate from this reference graph.
As a consequence, this technique can potentially detect un-
seen types of attacks and is therefore complete. While this
approach has its apparent advantage, it suffers from some lim-
itations. An anomaly detection system has to undergo long
training sessions of noiseless data to construct fairly accurate
statistics. It is also very hard to set appropriate thresholds that
bind all scenarios. Due to the inherent nature of the approach,
nomenclature of attacks is not relevant. In spite of these limita-
tions, considerable efforts have been invested in this direction
to achieve the elusive completeness property of this technique.

An ideal intrusion detection system is a tough goal to
achieve. It has these desirable characteristics.
� Low latency of detection by rapid decision-making
� Low false positive/negative rate
� Stronger deterrence to cracker’s attacks by active/on-line
monitoring
� Scalable to large environments
� Ability to be deployed in a heterogeneous and distributed
environment
A careful scrutiny of the above goals reveals a close inter-
dependence between each other. An intrusion detection system
that can process lesser information is able to respond faster,
make fewer mistakes and scale well due to the lower overheads
it generates.

The disparity of accuracy and completeness apart, both mis-
use and anomaly detection systems rely on huge amounts of
audit data samples. Also, both require and maintain permanent
and transient data to enable them to make decisions regarding
intrusions. This typically departs from the goals mentioned
above.

From the perspective of our work, we discuss some of the
relevant approaches in contemporary anomaly detection. In re-
cent past there has been considerable work done in the area of
behavior-based intrusion detection and novel approaches have
been proposed. Cost-based models [13], [14] attempt to de-
tect intrusions by using cost as a metric. The system activity,
resource usage and intrusion damage are quantified by assign-
ing costs to them and decisions regarding the actual detection
and recovery are based on them. User intent modeling [15]
attempts to infer the user’s intent based on low level system
activity and preempts any intrusions if it is established or be-
lieved that the user’s intent is malicious. Intruder identifica-



UNCLASSIFIED 2

tion by monitoring at the system command level by the use
of Markov Chains [16], [17] has been explored to model user
behavior. However, these techniques suffer from certain lim-
itations. These approaches require extensive data mining and
the use of machine learning algorithms to extract the useful
features for decision-making. This increases the latency of de-
tection and processing overhead.

Our approach, i.e., intrusion detection based on user intent
encapsulation [18] is a novel approach where the user’s in-
tent is procured by directly querying the user irrespective of
whether he is a bona fide user or an intruder, and the outcome
is compared to the expressed intent. This is a proactive and
more aggressive methodology [19] and a significant departure
from the traditional schools of thought. As pointed out ear-
lier, most approaches use very low level audit data for anal-
ysis. System activity is more or less generated by the users
using the system and capturing the semantics cannot be done
efficiently at such low levels. A comprehensive cost-based rea-
soning framework [20] has been developed where the user ac-
tivity is quantified based on costs attributed to the usage of re-
sources and the amount of deviation from the known activity,
and a decision regarding an intrusion is made. Advantages of
this approach are a smaller search space and reduced false pos-
itives. On the downside, since monitoring is done at the user
level, this scheme offers little in terms of detecting low-level
network attacks and external denial-of-service attacks.

While encryption offers secure communication channels,
the endpoints of communication are exposed. For example,
this is the case in Virtual Private Networks (VPN). Most sys-
tem compromises occur at the user level and hence require
stronger protection at that level. Insider attacks involving so-
cial engineering are not uncommon. Our technique has the
additional capability of handling such attacks.

The main focus of this paper is to propose enhancements
to this approach by addressing outstanding issues regarding
scalability and describing related architectural changes prior
to full-fledged system implementation. We introduce concepts
like prioritized workspaces and meta-operations to tackle these
issues.

A. Paper Organization

Section 2 gives a brief description of the work that is al-
ready done and the problems that we are addressing in this
paper. Section 3 presents the proposed solutions. Sections 4
and 5 describe the systemic modifications and implementation
issues. Since the prototype is not fully functional at this point,
only preliminary results are presented in Section 6. Discus-
sions and future work are presented in sections 7 and 8.

II. (U) BACKGROUND

For the sake of completeness, this section briefly discusses
our prior work. At the end of this section, we present the prob-
lems of interest.

When a user wants to perform some jobs on a system, he is
interactively queried about his intent and this procured intent

forms his session scope [18]. Since user interaction is an issue,
the query is performed through a graphical interface in a con-
trolled manner [21]. Obvious questions such as “How can the
user express his intent?”, “What if the user is lying?”, “What
if an intruder masquerades as a user?” and so on have been
adequately addressed in [18]. Upon setting his approximate
schedule, the user is allowed into the system where he begins
performing his tasks. Each user is identifiable by his user-id
and the operations he performs. This distinction is reflected by
the user’s profile. As this system is an anomaly detection sys-
tem, intrusions are viewed as significant deviations from this
profile. Development of user profiles and reasoning about in-
trusions based on such profiles has been elaborately discussed
in [20]. Cost has been used as a metric for the purposes of
decision-making. The cost of every job is expressed as a lin-
ear sum of two components, the cost of an operation and the
cost of sequence of operations. Another interesting aspect of
that work was the use of dynamic thresholds to reduce false
positives.

Given a set of operations, the different partial orders or per-
mutations can define different jobs. In order to compare the
user’s intent with the outcome rapidly, it is essential to un-
ambiguously establish the relationship between the operations
and the jobs that a user is performing. We illustrate this with
a simple example. Consider a set of operations O = fA, B, C,
Dg. Consider the jobs J1, J2, J3, etc., defined as a partial order
on the set O as J1 = ABC, J2 = BC, J3 = ABCD and so on.
Some of these jobs are malicious and others are not. Given a
workspace to perform his jobs, the user can begin with any job
with the corresponding operations. If he executes the opera-
tion A, it is not possible to infer whether he is performing job
J1 or J3. Now if the user continues and performs an operation
B, it is unclear whether jobs J1 or J3 are being continued or a
new job J2 is being started. We demonstrate the complexity of
the problem as follows. Let there be n operations. Various jobs
can be performed by choosing a subset of these operations and
defining an ordering on these subsets. Without repetition of
operations, these ordered sets represent different permutations
on the set O.

Total number of permutations=
n

∑
k=1

P(n;k) (1)

Now,
n

∑
k=1

C(n;k) = 2n�1 (2)

and
n

∑
k=1

P(n;k)>
n

∑
k=1

C(n;k) (3)

Hence,
n

∑
k=1

P(n;k)> 2n�1 (4)

The computational complexity to resolve these ambiguities in
the worst case is poorer than exponential. However, in real-
ity we may not see such worst case scenarios and hence all
possible orderings need not be considered. All the same, this
shows how hard the problem is. Even a small increase in the



UNCLASSIFIED 3

number of operations results in a very large increase in compu-
tation. On the other hand, the good news is that a decrease in
the number of operations causes a corresponding exponential
reduction in computation.

By actively querying the user for his intent, the search space
for jobs and the associated operations is reduced and we have
a more focused reference line for comparison. But given one
workspace to perform the jobs, the problem as such is un-
changed even though its size is now a little smaller. There-
fore, at this point, although we have a framework for reasoning
about anomalous intrusions, it does not scale well. Decision-
making is preceded by the overhead due to the ambiguity res-
olution. The problem we now face is - Is it possible to do any
better? It must be noted that no known polynomial order solu-
tion exists for this problem.

Our efforts in this paper are directed in addressing this prob-
lem and presenting the alterations in design and implementa-
tion. We show that the size of the problem can be reduced fur-
ther using the divide and conquer approach and this also elim-
inates the need for ambiguity resolution thereby drastically re-
ducing the processing overhead.

III. (U) THE ENGINEERING APPROACH

In order to use the divide and conquer technique success-
fully, one must identify the sub-problems and partition the
main problem into these sub-problems. Some aspects of the
original scheme lend themselves to such optimizations. We
will evolve some conceptual machinery and eventually delve
into the actual engineering changes.

A. Workspaces

The session scope can be viewed as a function that parti-
tions the entire set of operations into smaller subsets each as-
sociated with a job. By choosing a few jobs during the intent
query, the user implicitly creates these partitions. However,
the distinctness of these partitions is lost when the user begins
to work in a given workspace or environment. A workspace

Job 1
Job 2

Job 1 Job 2

Job 3

Job 4Job 4
Job 3

Fig. 1. Jobs being assigned separate workspaces.

is an environment allocated to a particular job. It serves as a
bracket of privileges for that job. Multiple workspaces can be
defined; one for each job that is required to be performed. Fig-
ure 1 elucidates this transformation. It must be noted that the
use of workspaces doesn’t occlude common operations among
jobs. It merely implies that each job is being performed in a

workspace assigned to it regardless of other jobs being per-
formed outside that workspace.

This workspace protocol can be implemented in two ways:
� Physical workspaces
On completion of the user’s intent expression, one workspace
is allocated to each chosen job. The user is now required to
perform operations related to a job in the workspace allocated
to that job, which is done explicitly. Violation of this restric-
tion leads to signaling of anomalous activity. This implemen-
tation makes rigid and visible compartments for all the jobs to
be performed. This setup raises obvious concerns about how
realistic this would be and would the user be subject to more
inconvenience by imposing such a requirement. The concept
of workspaces by itself is not new. In several Unix systems,
the user interacts with a window manager when working in
a graphical environment. Window managers like ctwm [22],
fvwm [23], CDE [24], etc., allow the user to define virtual
screens in which the user can launch and place the various X
clients. Workspaces are a very common feature among these
modern window managers; the main reason being that they
allow the user to organize the work and the windows better,
avoiding unnecessary clutter on the desktop.
� Virtual workspaces
In this implementation, the mapping of the workspaces is done
using menus. Each job has a corresponding menu item and
commands can be launched off from the appropriate menu
items. In this case, the workspaces are implicitly defined and
are more transparent to the user. This makes it more conve-
nient to the user because he is now no longer required to tie
an operation to a particular physical workspace. Also, this
implementation makes workspaces more independent of the
window manager enabling easier portability to other graphi-
cal environments where workspaces are not a common feature,
e.g., Microsoft Windows doesn’t have the concept of multiple
workspaces on its desktop hence making it hard to define phys-
ical workspaces. It must be noted that the operations are now
bound to the menu group they were launched off. All opera-
tions created from a particular parent operation belong to the
parent’s job group.

The use of workspaces is feasible as a consequence of ac-
tively obtaining user’s intent. The user’s explicit intent allows
the allocation of workspaces for each job specified. In the ab-
sence of such information, it would become largely impractical
to use workspaces since one has no concrete knowledge about
the jobs that a user wants to accomplish.

Another obvious question follows the above argument, i.e.,
“What if the user chooses too many jobs?” This problem has
a simple and elegant solution. Since the user is indirectly re-
sponsible for the monitoring overhead, a proportional factor of
the monitoring cost is added to the cost of the job. A third term
is added and the cost function of a job [20] is now modified as:

Cost(Job) = α�Cost(Operation) +

β�Cost(Sequence) +

γ�Cost(Monitoring) (5)



UNCLASSIFIED 4

A user typically devotes his attention to a few jobs and
spends lesser time with other jobs. This makes prioritizing of
jobs possible. The ordering of jobs based on priorities gives an
approximate reference line to assess deviations in the way the
user performs the jobs itself. Also, since we do not expect the
user’s schedule of jobs to change drastically from day to day,
we can use the ordering of the jobs to lay out the user specific
data structures in a way that improves access time.

B. Meta-operation

Policy enforcement has to be done at various levels in the
system. Given a workspace to complete a job, a user executes
various commands. For the same job, different users choose
commands based on their preference. This leads to the argu-
ment that regardless of the actual command being executed, it
is the functionality that matters. This allows for further opti-
mization which we call the meta-operation.

A meta-operation is a description of the functionality of a
command or operation. It is a function that groups various
available commands into sets based on the similarity of their
functionality. For example, EditCommand is a meta-operation
for fvi, emacs, xemacs, � � �g.

Since our level of monitoring is at the user command level,
we speak of meta-operations at this level. The meta-operation
can be thought of as a command descriptor. Consider a Pro-
gramDevelopmentJob. It typically involves an editor, compiler
and debugger executed in some order. Some commands can
perform more than one function, such as emacs. Such com-
mands can be represented by different meta-operations. How-
ever, based on the jobs being performed, specific functional-
ity can be enforced while occluding others. For example, we
can enforce a behavioral rule which allows emacs to be used
only as an editor during program development and as a mail
client in some other job. It is important to ascertain proper run-
time behavior for each command. Significant work in terms of
specification-based enforcement of security has been done, no-
tably proof-carrying code [25], model-carrying code [26], exe-
cution specification [27], etc. Some of the issues are pertinent
to our problem and discussed in great detail in these papers.
The advantages of this scheme are:
� A large number of commands can be represented by a small
number of meta-operations
� Additions and deletions of commands have little effect on
policies
� Storage and processing overhead is now restricted to a meta-
operation instead of every command

IV. (U) SYSTEM ARCHITECTURE

The basic system architecture consists of a host level mon-
itor and several such monitors running on hosts in a network
form a hierarchy. Implementation of the afore-mentioned con-
cepts requires modification of the host level monitor while re-
taining the network level organization. The entire monitoring
process (ref. Figure 2) has been divided into three tasks.
� Command Monitor

Monitor command

Authenticate command

User logs into the system

Choose the jobs he wishes to perform

Launch workspace level monitor thread per workspace

Launch command level monitor thread per command

Check the size of the session scope

If too large, warn user

User wants to change it?

Launch inter workspace level monitor thread

Create workspaces for the jobs

Report objects accessed

Report command type
Loop

Yes

No

Fig. 2. Overall monitoring process.

A command monitor is a thread spawned for every command
that is executed. The executed command is then verified and
the functionality of meta-operation is enforced. The command
can access various objects during its lifetime and requires con-
stant monitoring. It is also responsible for calculating the cost
of the operation or command.
� Workspace Monitor
As in the case of the command monitor, one workspace moni-
tor is spawned for every workspace. It monitors at the level of
sequence of commands, which is at a slightly higher level of
monitoring than the command monitor. The workspace moni-
tor receives messages from the command level monitors, and it
ensures that the commands are being performed in the known
sequences. It is the responsibility of the workspace monitor to
calculate the cost of sequence.
� Inter-workspace Monitor
It is possible that a user runs commands to form a malicious
thread of execution across workspaces. There can be a relation
among commands in different workspaces only if they share
some common object. Hence, it is necessary to monitor across
workspaces. This task is performed by the inter-workspace
monitor. One such monitor is created for every user per ses-
sion.

V. (U) IMPLEMENTATION ISSUES

Integration of the above concepts and entities into the orig-
inal framework [21] necessitates consideration of some sys-
temic issues.
� Process vs. Thread
Since there are multiple monitors spawned during each user’s
session, it becomes critical to make a proper trade-off on the
nature of these monitors. If the monitor entity is modeled as a
process (as was the case in the older implementation), it could



UNCLASSIFIED 5

lead to a large outbreak of processes as more users begin ac-
cessing the system. Therefore the monitors are now modeled
as lightweight threads.
� User Space vs. Kernel Space
To capture the semantics of the user’s operations, monitoring
is done at the highest interface level possible between the user
and the kernel, i.e., at the system call level. There has been
substantial work on how this can be done with relevance to in-
trusion detection. There are techniques involving kernel-space
interposition [28], user-space interposition [29] and also other
hybrid approaches [30], [31]. Each has its own advantages
but performance studies show that the overheads are not all
that discernible and the choice of any given approach is more
of a software engineering issue. Since our monitoring sys-
tem causes small but non-trivial overhead, we have modeled
it largely as a user space system.
� Object Monitoring
An intruder typically attempts to access valuable data and
hence object monitoring is an integral part of any intrusion de-
tection system. When an object is copied in part or whole into
another object, the destination object is marked dirty and it is
assigned a value equal to the source object. By keeping tabs
on the flow of information, the cost of operation of a command
involving an object is evaluated, whenever the corresponding
process is active.

VI. (U) PRELIMINARY EXPERIMENTS AND RESULTS

The prototype is still in its developmental stages and its ex-
haustive testing is not plausible at this point. However, we have
considered a few test cases to demonstrate the efficacy of the
revised techniques discussed in this paper. The comparisons
in improvement have been done against the original prototype
[21]. Not all criteria lend themselves to impartial evaluation
since there have been design and implementation modifica-
tions. The original prototype was written in Java while the
newer one has been implemented in C++ as a multi-threaded
system for the purposes of speed and efficiency. Therefore
comparisons of speed and system overhead do not speak in-
telligently of the gains achieved. The experimental setup sim-
ulates an academic environment where users typically perform
jobs such as program development, browsing, using mail, etc.
Since this system targets anomalies rather than well-known at-
tacks in the misuse detection nomenclature, we find it more
useful to analyze the preliminary system in terms of deviations
and how rapidly such deviations are detected.

A. Experimental Setup and Evaluation

Currently, the system focuses on host level anomaly detec-
tion. Therefore, the experimental system has only one host
computer which is a 500MHz Pentium III running Linux (Red-
hat 7.2, kernel-2.4.7-10). It is installed with the anomaly de-
tection system and users are allowed to perform their jobs on
it.

In order to perform anomaly detection successfully, the sys-
tem has to accrue adequate samples in order to develop the

required statistics and stabilize a user’s profile. Note that this
is done at the user command level as discussed in [20]. For ex-
ample, the statistics for a ProgramDevelopmentJob may read
as Command 1: femacs 0.5, vi 0.35, xemacs 0.10, misc. 0.05g,
Command 2: fgdb 0.7, misc. 0.3g, etc. Once the command is
executed, a command monitor thread tracks the runtime ac-
cesses and enforces some behavioral rules for the correspond-
ing meta-operation. For example, emacs has to conform to
the behavioral rules of the meta-operation EditCommand ex-
pressed as set of do and don’t statements. The set of do’s
contains assertions such as fcan open files, can read files, can
write files, can close files, etc.g and the set of dont’s contains
restrictions such as fcan’t use the network, etc.g.

A limited set of 12 typical jobs were considered and the
user activity is monitored. Some sessions were injected with
intruder-like activity and the system achieved very high cover-
age with negligible overheads and false positives. In compari-
son, the older system gave a much lower coverage for the same
test set. Also, there were a large number of false positives and
false negatives, and the system overhead was significant.

VII. (U) DISCUSSION

The primary focus of this paper was to introduce and discuss
the methodologies that have been adopted in order to achieve
rapid anomaly detection without causing substantial overhead
on the system. By doing so, one can perform on-line monitor-
ing of a host and respond quicker in terms of intrusion deter-
rence.

Despite these enhancements, some of the limitations of the
older system remain. Since the level of monitoring is at the
user level, the new system cannot detect any external low level
network attacks such as denial of service attacks.

An interesting aspect of this system is its ability to address
insider attacks. For an intruder to be successful in compro-
mising some user account, he must know the user’s profile in
very specific detail. Another aspect of interest is the system’s
ability to correct operator faults. In an environment, that is
usually free of intrusions and the only anomalies are operator
faults, they can be corrected since the interaction level with the
system is at the user level.

VIII. (U) FUTURE WORK

The final goal of this effort is to create an environment where
users do not lose their quality of service and at the same time,
enforcement of security occurs on-line. Such a security system
would be pertinent to a wide variety of environments such as
academics, business, military, etc. In order to achieve that goal,
significant efforts need to be invested in our future work and
the avenues that require revisiting and revisions are:
� Information Specification
Though we have used a simple specification scheme in our test
set, it may not suffice in larger scenarios. To make a decision in
such environments, maximum information should be captured
and represented.
� Heterogeneous Implementation



UNCLASSIFIED 6

In a realistic deployment scenario, we can expect a wide range
of operating systems and the implementation should take such
heterogeneity into account.
� Network Level Monitoring
The host level anomaly detection has to be extended to a net-
work level system since users can connect to other computers
and start a thread of execution on those machines. Communi-
cation over networks complicates matters regarding decision-
making. Therefore, network level monitoring is a direct exten-
sion of the current effort.

(U) ACKNOWLEDGMENTS

This research was supported in part by U.S. Air Force Re-
search Laboratory, Rome, New York, under Contract: F30602-
00-10507.

REFERENCES

[1] H. Debar, M. Dacier and A. Wespie ”Towards a Taxonomy of Intrusion
Detection Systems”, Computer Networks, Elsevier, Vol. 31, 1999, pp.
805-822.

[2] T. F. Lunt, R. Jagannathan, R. Lee, A. Whitehurst and S. Listgarten,
Knowledge based Intrusion Detection”, Proceedings of Annual AI Sys-
tems in Government Conference, Washington D. C., March 1989.

[3] S. E. Smaha, ”Tools for Misuse Detection”, Proceedings of ISSA’93,
Crystal City, VA, April 1993.

[4] S. Kumar and E. Spafford, ”A Pattern Matching Model for Misuse In-
trusion Detection”, Proceedings of the 17th National Computer Security
Conference, Oct. 1994, pp. 11-21.

[5] P. A. Porras and R. A. Kemmerer, ”Penetration State Transition Analy-
sis - A Rule-Based Intrusion Detection Approach”, Eight Annual Com-
puter Security Applications Conference, IEEE Computer Society Press,
November 30-December4 1992, pp.220-229.

[6] K. Ilgun, R. Kemmerer and P. Porras, ”State Transition Analysis: A Rule
Based Intrusion Detection System”, IEEE Transactions on Software En-
gineering, Mar. 1995, 21(3).

[7] F. Wang, F. Gong, F. S. Wu and H. Qi, ”Design and Implementation
of A New Intrusion Detection Approach: Property-Oriented Detection”,
Proceedings of the 2001 IEEE Workshop on Information Assurance and
Security, United States Military Academy, West Point, New York, June
4-5, 2001, pp. 91-99.

[8] D. E. Denning, ”An Intrusion Detection Model”, IEEE Transactions on
Software Engineering, 13(2), 1987, pp. 222-232.

[9] G. E. Liepins and H. S. Vaccaro, ”Anomaly Detection: Purpose and
Framework”, Proceedings of the 12th National Computer Security Con-
ference, Oct. 1989, pp. 495-504.

[10] H. Javitz and A. Valdez, ”The SRI IDES Statistical Anomaly Detector”,
Proceedings of IEEE Symposium on Research in Security and Privacy,
May 1991, pp. 316-326.

[11] R. Jagannathan, T. Lunt, D. Anderson, C. Dodd, F. Gilham, C. Jalali, H.
Javitz, P. Neumann, A. Tamaru and A. Valdez, ”System Design Doc-
ument: Next Generation Intrusion Detection Expert System (NIDES).
Technical Report A007/A008/A009/A011/A012/A014”, SRI Interna-
tional, March 1993.

[12] P. A. Porras and P. G. Neumann, ”EMERALD: Event Monitoring En-
abling Responses to Anomalous Live Disturbances”, Proceedings of the
19th National Computer Security Conference, Baltimore, MD, Oct. 1997,
pp. 353-365.

[13] S. Stolfo, W. Fan, W. Lee, A. Prodromidis and P. Chan, ”Cost-based
Modeling for Fraud and Intrusion Detection: Results from the JAM
Project”, Proc. DARPA Information Survivability Conference and Expo-
sition, IEEE Computer Press, 2000, pp. 130-144.

[14] Y. Yemini, A. Dailianas, D. Florissi and G. Huberman, ”Market-
Net: Market-based Protection of Information Systems”, Proceedings of
ICE’98, First International Conference on information and Computation
Economics, Charleston, SC, Oct. 1998.

[15] T. Spyrou and J. Darzentas, ”Intrusion Modeling: Approximating Com-
puter User Intentions for Detection and Predictions of Intrusions”, Infor-
mation Systems Security, May 1996, pp. 319-335.

[16] T. Lane, ”Hidden Markov Models for Human/Computer Interface Mod-
eling”, Proceedings of the IJCAI’99 Workshop on Learning about Users,
1999, pp. 35-44.

[17] T. Lane and C. E. Brodley, ”Temporal Sequence Learning and Data
Reduction For Anomaly Detection”, ACM Transactions on Information
and System Security, 2(3), 1999, pp. 295-331.

[18] S. Upadhyaya and K. Kwiat, ”A Distributed Concurrent Intrusion De-
tection Scheme Based on Assertions”, SCS International Symposium on
Performance Evaluation of Computer and Telecommunications Systems,
June 1999, pp. 369-376.

[19] J. Feldman, J. Giordano and J. Palmer, ”Information Survivability
at Rome Laboratory”, 1997 IEEE Information Survivability Workshop,
1997.

[20] S. Upadhyaya, R. Chinchani and K. Kwiat, ”An Analytical Framework
for Reasoning About Intrusions”, 20th IEEE Symposium on Reliable and
Distributed Systems, New Orleans, LA, USA, Oct. 2001, pp. 99-108.

[21] K. Mantha, R. Chinchani, S. Upadhyaya and K. Kwiat, ”Simulation
of Intrusion Detection in Distributed Systems”, SCS Summer Simulation
Conference, July 2000.

[22] Claude Lecommandeur, http://ctwm.dl.nu.
[23] Robert Nation et. al., http://www.fvwm.org.
[24] The Open Group, http://www.opengroup.org/cde.
[25] G. C. Necula and P. Lee, ”Proof-Carrying Code” Proceedings of the

24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Paris, Jan. 1997, pp. 106-119.

[26] R. Sekar, C. R. Ramkrishnan, I. V. Ramamkrishnan and Scott A. Smolka,
”Model-Carrying Code (MCC): A New Paradigm for Mobile-Code Secu-
rity”, New Security Paradigms Workshop (NSPW’01), Cloudcroft, New
Mexico, Sept. 2001.

[27] C. Ko, M. Ruschitzka and K. Levitt, ”Execution Monitoring of Security-
Critical Programs in Distributed Systems: A Specification-based Ap-
proach”, IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 1997, pp. 175-188.

[28] A. Somayaji and S. Forrest, ”Automated Response Using System-Call
Delays”, Usenix Security Symposium, 2000.

[29] K. Jain and R. Sekar, ”User-Level Infrastructure for System Call Inter-
ception: A Platform for Intrusion Detection and Confinement”, Network
and Distributed Systems Security Symposium (NDSS), 2000.

[30] T. Fraser, L. Badger and M. Feldman, ”Hardening COTS Software with
Generic Software Wrappers”, Symposium on Security and Privacy, 1999.

[31] T. Mitchum, R. Lu and R. O’Brien, ”Using Kernel Hypervisors to Secure
Applications”, Annual Computer Security Conference, Dec. 1997.


