
Correlating Alerts Using Prerequisites of Intrusions

Peng Ning Douglas S. Reeves Yun Cui
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7534
Emails: ning@csc.ncsu.edu, reeves@csc.ncsu.edu, ycui4@eos.ncsu.edu

Abstract

Intrusion detection has been studied for about twenty years since the Anderson’s report. However,
intrusion detection techniques are still far from perfect. Current intrusion detection systems (IDSs)
usually generate a large amount of false alerts and cannot fully detect novel attacks or variations of
known attacks. In addition, all the existing IDSs focus on low-level attacks or anomalies; none of
them can capture the logical steps or strategies behind these attacks. Consequently, the IDSs usually
generate a large amount of alerts. In situations where there are intensive intrusive actions, not only will
actual alerts be mixed with false alerts, but the amount of alerts will also become unmanageable. As a
result, it is difficult for human users or intrusion response systems to understand the intrusions behind
the alerts and take appropriate actions. This paper presents a novel approach to address these issues.
The proposed technique is based on the observation that most intrusions are not isolated but related as
different stages of attack sequences, with the early stages preparing for the later ones. In other words,
there are often logical steps or strategies behind series of attacks. The proposed approach correlates alerts
using prerequisites of intrusions. Intuitively, the prerequisite of an intrusion is the necessary condition
for the intrusion to be successful. For example, the existence of a vulnerable service is the prerequisite
of a remote buffer overflow attack against the service. The proposed approach identifies the prerequisite
(e.g., existence of vulnerable services) and the consequence of each type of attacks, and correlates the
corresponding alerts by matching the consequence of some previous alerts and the prerequisite of some
later ones. The proposed approach has several advantages. First, it provides a high-level representation
of the correlated alerts, and thus reveals the structure of series of attacks. Second, it can reduce the
impact of false alerts by only keeping correlated alerts. Third, it can potentially be applied to predict
attacks in progress, and allows the intrusion response systems to take appropriate actions to stop the on-
going attacks. Our preliminary experiments have demonstrated the potential of the proposed approach
in reducing false alerts and uncovering high-level attack strategies.

1 Introduction

Computer and network systems have become integral parts of national infrastructure upon which many
critical information services and applications (e.g., stock market, electronic transactions) are relying. As
required by these services and applications, it is necessary to ensure that the computer and network systems
can survive natural disasters as well as malicious attacks.

Many techniques have been developed to protect computer and network systems against malicious at-
tacks. These techniques can be classified into two broad categories: prevention-based techniques and detec-
tion and response-based techniques. Prevention-based techniques (e.g., access control, authentication) form
the first line of defense for the computer and network systems. However, our past experience showed that
prevention-based techniques cannot fully protect our systems due to the flaws and weaknesses in the design

1

and development of the systems. As a result, the detection and response based techniques (i.e., intrusion
detection and response systems) are used as a second line of defense along with the prevention-based ones.

Intrusion detection techniques can be roughly classified as anomaly detection and misuse detection.
Anomaly detection (e.g., NIDES/STAT [10]) is based on the normal behavior of a subject (e.g., a user
or a system); any action that significantly deviates from the normal behavior is considered intrusive. Misuse
detection (e.g., NetSTAT [21]) detects intrusions based on the characteristics of known attacks or system
vulnerabilities; any action that conforms to the pattern of a known attack or vulnerability is considered
intrusive.

Intrusion detection techniques are still far from perfect; current intrusion detection systems (IDSs) cannot
fully detect novel attacks or variations of known attacks without generating a large amount of false alerts
(i.e., high false alert rate and low detection rate). In addition, all the current IDSs focus on low-level attacks
or anomalies; none of them can capture the logical steps or strategies behind these attacks. Consequently,
the IDSs usually generate a large amount of alerts, and the alerts are raised independently though there may
be logical connections between them. In situations where there are intensive intrusive actions, not only will
actual alerts be mixed with false alerts, but the amount of alerts will also become unmanageable. As a result,
it is difficult for human users or intrusion response systems to understand the intrusion behind the alerts and
take appropriate actions.

An important fact has been ignored by most of the current intrusion detection techniques. That is, most
intrusions are not isolated, but related as different stages of series of attacks, with the early stages preparing
for the later ones. For example, hackers need to understand what vulnerable services a host is running
before they can take advantage of these services. Thus, they typically scan for vulnerable services before
they break into the system. As another example, in the Distributed Denial of Service (DDOS) attacks, the
attacker has to install the DDOS daemon programs in vulnerable hosts before he can instruct the daemons
to launch an attack against another system. Therefore, in a series of attacks, one or more previous attacks
usually prepare for the following attacks, and the success of the previous steps affects the success of the
following ones. In other words, there are often logical steps or strategies behind series of attacks.

Based on this observation, we propose to correlate alerts using prerequisites of intrusions to address
the aforementioned problems. Intuitively, the prerequisite of an intrusion is the necessary condition for
the intrusion to be successful. For example, the existence of a vulnerable service is the prerequisite of
a remote buffer overflow attack against the service. We assume that the attackers need to launch some
attacks to prepare for the prerequisites of some later attacks. For example, they may perform a UDP port
scan to discover the vulnerable services to be attacked. Our basic idea is to identify the prerequisites (e.g.,
existence of vulnerable services) and the consequences (e.g., discovery of vulnerable services) of each type
of attacks and correlate the attacks (alerts) by matching the consequences of some previous attacks and the
prerequisites of some later ones. (Some types of attacks are variations of each other, and thus should be
treated as the same type.) For example, if we find a UDP port scan followed by a buffer overflow attack
against one of the scanned ports, we can correlate them to be parts of the same series of attacks.

Our proposed approach has several advantages. First, by providing a high-level representation of the
correlated alerts (see section 3.4), our approach reveals the structure of a series of attacks as well as the
strategy behind them. Second, our approach can potentially reduce the impact caused by false alerts. False
alerts, which do not correspond to any real attacks, tend to be more random than the actual attacks, and
are less likely to be correlated to other alerts. Therefore, we can focus on the potentially actual attacks
by picking out the correlated alerts. Finally, our approach can be potentially extended to predict attacks in
progress. By profiling the past correlated alerts, we may predict the next move of on-going attacks and take
appropriate actions to prevent it from happening. As we will show in section 4, our initial experiments have
demonstrated the great potential of the proposed approach in reducing false alerts as well as uncovering

2

high-leel attack strategies.

The remainder of this paper is organized as follows. The next section discusses the related work on
intrusion detection as well as alert correlation. Section 3 presents our formal framework for correlating alerts
using prerequisites of intrusions. Section 4 describes our initial experiments using the proposed approach.
Section 5 discusses several research issues related to the proposed approach. Section 6 concludes this paper
and points out future research directions.

2 Related Work

Intrusion detection has been studied for about twenty years, since Anderson’s report [1]. A survey of the
early work on intrusion detection is given in [13], and an excellent overview of current intrusion detection
techniques and related issues can be found in a recent book [2].

Intrusion detection techniques can be classified as anomaly detection or misuse detection. Anomaly
detection is based on the normal behavior of a subject (e.g., a user or a system); any action that significantly
deviates from the normal behavior is considered intrusive. Misuse detection catches intrusions in terms of
the characteristics of known attacks or system vulnerabilities; any action that conforms to the pattern of a
known attack or vulnerability is considered intrusive.

Numerous research as well as commercial IDSs have been developed using anomaly and/or misuse de-
tection techniques, including host-based IDSs (e.g., USTAT [8]), network based IDSs (e.g., NetSTAT [21],
NFR [16]), and distributed IDSs (e.g., AAFID [18], EMERALD [15]).

All current IDSs are aimed at detecting low-level attacks or anomalies; none can capture the logical steps
or attack strategies behind these attacks. It is usually up to human users to discover the connections between
alerts. However, in intrusion intensive situations, IDSs may generate large numbers of alerts, making manual
correlation of alerts a very difficult task.

Several alert correlation techniques have been proposed recently to address the aforementioned problem.
In [20], a probabilistic method was used to correlate alerts using similarity between their features. However,
this method depends on parameters selected by human experts (e.g., similarity between classes of alerts),
and is not suitable for fully discovering causal relationships between alerts. In [19], a similar approach was
applied to detect stealthy portscans along with several heuristics. Though some such heuristics (e.g., feature
separation heuristics [19]) may be extended to the general alert correlation problem, the approach cannot
fully recover the causal relationships between alerts, either.

Techniques for aggregating and correlating alerts have been proposed by others [6]. In particular, the
correlation method in [6] uses a consequence mechanism to specify what types of alerts may follow a given
alert type. This is similar to the specification of misuse signatures. However, the consequence mechanism
only uses alert types, the probes that generate the alerts, the severity level, and the time interval between
the two alerts involved in a consequence definition, which do not provide sufficient information to correlate
all possibly related alerts. Moreover, it is not easy to predict how an attacker may arrange a sequence of
attacks. In other words, developing a sufficient set of consequence definitions for alert correlation is not a
solved problem.

Another approach has been proposed to “learn” alert correlation models by applying machine learning
techniques to training data sets embedded with known intrusion scenarios [5]. This approach can automati-
cally build models for alert correlation; however, it requires training in every deployment, and the resulting
models may overfit the training data, thereby missing attack scenarios not seen in the training data sets.
The alert correlation techniques that we present in this paper address this same problem from a novel angle,

3

overcoming the limitations of the above approaches.

3 Correlating Alerts Using Prerequisites Of Attacks

3.1 Overview

Our approach is based on the observation that in series of attacks, the component attacks are usually not
isolated, but related as different stages of the attacks, with the early ones preparing for the later ones. For
example, the attackers often use certain probing attacks (e.g., IP Sweep, UDP port scan) to identify their
targets before hacking into these systems.

As discussed in the introduction, we propose to correlate the alerts generated by IDSs using prerequisites
of the corresponding attacks. Intuitively, the prerequisite of an attack is the necessary condition for the
attack to be successful. For example, the existence of a vulnerable service is the prerequisite of a remote
buffer overflow attack against the service. Moreover, the attacker may make some progress in intruding
the victim system (e.g., discover the vulnerable services, install a Trojan horse program) as a result of an
attack. Informally, we call the possible outcome of an attack the (possible) consequence of the attack. In a
series of attacks where the attackers launch earlier attacks to prepare for later ones, there are usually strong
connections between the consequences of the earlier attacks and the prerequisites of the later ones. Indeed,
if an earlier attack is to prepare for a later attack, the consequence of the former attack should at least make
a part of the prerequisite of the later attack true.

Accordingly, we propose to identify the prerequisites (e.g., existence of vulnerable services) and the
consequences (e.g., discovery of vulnerable services) of each type of attacks and correlate alerts, which are
attacks detected by IDSs, by matching the consequences of some previous alerts and the prerequisites of
some later ones. (Some types of attacks are variations of each other, and thus should be treated as the same
type.) For example, if we find a Sadmind Ping followed by a buffer overflow attack against the corresponding
Sadmind service, we can correlate them to be parts of the same series of attacks. In other words, we try to
correlate alerts by discovering the causal relationships between them.

In the following subsections, we use a formal approach to develop our alert correlation method.

3.2 Prerequisite and Consequence of Attacks

In order to make our approach computable, we propose to use predicates as basic constructs to represent
the prerequisites and (possible) consequences of attacks. For example, a scanning attack may discover UDP
services vulnerable to a certain buffer overflow attack. We can use the predicate UDPVulnerableToBOF
(VictimIP, VictimPort) to represent the attacker’s discovery (i.e., the consequence of the attack) that the host
having the IP address VictimIP runs a service (e.g., sadmind) at UDP port VictimPort and that the service
is vulnerable to the buffer overflow attack. Similarly, if an attack requires a UDP service vulnerable to the
buffer overflow attack, we can use the same predicate to represent the prerequisite.

Some attacks may require several conditions be satisfied at the same time in order to be successful. To
represent such complex conditions, we use a logical formula, i.e., logical combination of predicates, to de-
scribe the prerequisite of an attack. For example, a certain network born buffer overflow attack may require
that the target host have a vulnerable UDP service accessible to the attacker through the firewall. This prereq-
uisite can be represented by UDPVulnerableToBOF (VictimIP, VictimPort) AND UDPAccessibleViaFirewall
(VictimIP, VictimPort). To simplify the discussion, we restrict the logical operations to AND, OR and NOT,
and require that NOT only appear directly before a predicate. For example, we allow logical formula in the

4

form of (NOT A (x, y)) OR (NOT B (z)), but not in the form of NOT (A (x, y) AND B (z)), though they are
logically equivalent.

We use a set of logical formulas to represent the (possible) consequence of an attack. For example, an
attack may result in compromise of the root privilege as well as modification of the .rhost file. Thus, we
may use the following set of logical formulas to represent the corresponding consequence: {GainRootAccess
(VictimIP), rhostModified (VictimIP)}. This example says that as a result of the attack, the attacker may gain
root access to the system and the .rhost file may be modified. Note that the set of logical formulas used to
represent the consequence is essentially the conjunction of the formulas and can be represented by a single
logical formula. However, allowing a set of logical formulas gives us the convenience and flexibility to
avoid long formulas in consequences.

The consequence of an attack is indeed the possible result of the attack. In other words, the attack may or
may not generate the stated consequence. For example, after an attacker launches a buffer overflow attack
against a service, he may or may not gain the root access, depending on whether the service is vulnerable to
the attack or not.

We propose to use possible consequence instead of actual consequence due to the following two reasons.
First, an IDS may not have enough information to decide whether an attack is effective or not. For example,
a network based IDS can detect certain buffer overflow attacks by matching the patterns of the attacks;
however, it cannot decide whether the attempts succeed or not without some specific information from the
related hosts. Thus, it may not be feasible to correlate alerts using the actual consequence of attacks. In
contrast, the possible consequence of a type of attack can be analyzed and made available for IDS. Second,
even if an attack fails to prepare for the follow-up attacks, the follow-up attacks may still occur simply
because, for example, the attacker wants to test the successfulness of the previous attack or the attacker
uses a script to launch a series of attacks. Thus, using possible consequences of attacks will lead to better
opportunity to correlate such attacks.

For the sake of brevity, we refer to possible consequence simply as consequence throughout this paper.

3.3 Hyper-alert Type and Hyper-alert

Having predicate as the basic construct, we introduce the notion of hyper-alert type to represent the prereq-
uisite and the consequence of each type of alerts.

Definition 1 A hyper-alert type T is a triple (fact, prerequisite, consequence), where (1) fact is a set of
attribute names, each with an associated domain of values, (2) prerequisite is a logical formula whose free
variables are all in fact, and (3) consequence is a set of logical formulas such that all the free variables in
consequence are in fact.

Each hyper-alert type encodes the knowledge about a type of attacks. The component fact of a hyper-
alert type tells what kind of information is reported along with the detected attack (i.e., alert), prerequisite
specifies what must be true in order for the attack to be successful, and consequence describes what could be
true if the attack indeed succeeds. For the sake of brevity, we omit the domains associated with the attribute
names when they are clear from the context.

Example 1 An attacker may perform an IPSweep attack to discover the existing hosts in a certain network.
We may have a hyper-alert type IPSweep = (fact, prerequisite, consequence) for such attacks, where (1) fact
= {SweepedIP}, (2) prerequisite = ∅, and (3) consequence = {ExistHost(IP)}. This hyper-alert type says that
IPSweep is to discover whether there is a host running at IP address SweepedIP. (We expect an IDS reports
the values of SweepedIP along with the corresponding IPSweep alerts.) As a result of this type of attacks,
the attacker may learn the existing host(s) at the IP address(es) identified by the value(s) of SweepedIP. 2

5

Example 2 Consider the buffer overflow attack against the sadmind remote administration tool. We may
have a hyper-alert type SadmindBufferOverflow = (fact, prerequisite, consequence) for such attacks, where
(1) fact = {VictimIP, VictimPort}, (2) prerequisite = ExistHost (VictimIP) AND VulnerableSadmind (Vic-
timIP), and (3) consequence = {GainRootAccess(VictimIP)}. Intuitively, this hyper-alert type says that such
an attack is against the host running at IP address VictimIP. (Similar to the previoius example, we expect the
actual values of VictimIP are reported by an IDS.) As the prerequisite of a successful attack, there must exist
a host at IP address VictimIP and the corresponding sadmind service should be vulnerable to buffer overflow
attacks. The attacker may gain root privilege as a result of the attack. 2

Given a hyper-alert type, a hyper-alert instance can be generated if the corresponding attack is detected
and reported by an IDS. For example, we can generate a hyper-alert instance of type SadmindBufferOver-
flow from an alert that describes an Sadmind Buffer Overflow attack. The notion of hyper-alert instance is
formally defined as follows.

Definition 2 Given a hyper-alert type T = (fact, prerequisite, consequence), a hyper-alert (instance) h of
type T is a finite set of tuples on fact, where each tuple is associated with an interval-based timestamp
[begin time, end time]. The hyper-alert h implies that prerequisite must evaluate to True and all the logical
formulas in consequence might evaluate to True for each of the tuples.

The fact component of a hyper-alert type is essentially a relation schema (as in relational databases), and
a hyper-alert is a relation instance of this schema. One may point out that an alternative way is to represent
a hyper-alert as a record, which is equivalent to a single tuple on fact. However, such an alternative cannot
accommodate certain alerts possibly reported by an IDS. For example, an IDS may report an IPSweep attack
along with multiple sweeped IP addresses, which cannot be represented as a single record. Thus, we believe
the current notion of a hyper-alert is a more appropriate choice.

A hyper-alert also instantiates its prerequisite and consequence by replacing the free variables in prereq-
uisite and consequence with its specific values. Since all free variables in prerequisite and consequence must
appear in fact in a hyper-alert type, the instantiated prerequisite and consequence will have no free variables.
Note that prerequisite and consequence can be instantiated multiple times if fact consists of multiple tuples.
For example, if an IPSweep attack involves several IP addresses, the prerequisite and consequence of the
hyper-alert type IPSweep (see example 1) will be instantiated for each of these addresses.

In the following, we treat timestamps implicitly and omit them if they are not necessary for our discussion.

Example 3 Consider the hyper-alert type IPSweep defined in example 1. We may have a hyper-alert
hIPSweep that includes the following tuples: {(SweepedIP = 152.141.129.1), (SweepedIP = 152.141.129.2),
..., (SweepedIP = 152.141.129.254)}. As possible consequences of the attack, the following predicates
might be True: ExistHost (152.141.129.1), ExistHost (152.141.129.2), ..., ExistHost (152.141.129.254).
This hyper-alert says that there is an IP Sweep attack, and as a result, the attacker may learn the existence of
the hosts at these IP addresses. 2

Example 4 Consider the hyper-alert type SadmindBufferOverflow defined in example 2. We may have
a hyper-alert hSadmindBOF that includes the following tuples: {(VictimIP = 152.141.129.5, VictimPort =
1235), (VictimIP = 152.141.129.37, VictimPort = 1235)}. This implies that if the attack is successful, the fol-
lowing two logical formulas must be True as the prerequisites of the attack: ExistHost (152.141.129.5) AND
VulnerableSadmind (152.141.129.5), ExistHost (152.141.129.37) AND VulnerableSadmind (152.141.129.37),
and the following two predicates might be True as possible consequences of the attack: GainRootAccess
(152.141.129.5), GainRootAccess (152.141.129.37). This hyper-alert says that there are buffer overflow at-
tacks against sadmind at IP addresses 152.141.129.5 and 152.141.129.37, and the attacker may gain root
access as a result of the attacks. 2

6

A hyper-alert may correspond to one or several related alerts. If an IDS reports one alert for a certain
attack and the alert has all the information needed to instantiate a hyper-alert, a hyper-alert can be generated
from the alert. However, some IDSs may report a series of alerts for a single attack. For example, EMER-
ALD may reports several alerts (within the same thread) related to an attack that spreads over a period of
time. In this case, a hyper-alert may correspond to the aggregation of all the related alerts. Moreover, several
alerts may be reported for the same type of attack in a short period of time. Our definition of hyper-alert
allows them to be treated as one hyper-alert, and thus provides flexibility in the reasoning of the alerts. Cer-
tain constraints are necessary to make sure the hyper-alerts are reasonable. However, since our hyper-alert
correlation method does not depend on them directly, we will discuss them after introducing our method.

Ideally, we may correlate a set of hyper-alerts with a later hyper-alert together if the consequences of the
former ones imply the prerequisite of the latter one, as illustrated by the following example.

Example 5 First consider the Sadmind Ping attack through which an attacker discovers possibly vulnerable
sadmind services. The corresponding alerts can be represented by a hyper-alert type SadmindPing = (fact,
prerequisite, consequence), where (1) fact = {VictimIP, VictimPort}, (2) prerequisite = ExistHost (VictimIP),
and (3) consequence = {VulnerableSadmind (VictimIP)}.

Suppose a hyper-alert hSadmindP ing , which is an instance of type SadmindPing, has the following tuples:
{(VictimIP = 152.141.129.5, VictimPort = 1235), (VictimIP = 152.141.129.37, VictimPort = 1235), (VictimIP
= 152.141.129.39, VictimPort = 1235)}. Thus, the following predicates might be True as the consequences of
the attack: VulnerableSadmind (152.141.129.5), VulnerableSadmind (152.141.129.37), VulnerableSadmind
(152.141.129.39). Further consider the hyper-alerts hIPSweep and hSadmindBOF , which were discussed in
examples 3 and 4, respectively. It is easy to see that the consequences of hIPSweep and hSadmindP ing imply
the prerequisite of hSadmindBOF . Thus, we can correlate these three hyper-alerts together. 2

However, such an approach may not work in reality due to several reasons. First, the attacker may not
always prepare for certain attacks by launching some other attacks. For example, the attacker may learn a
vulnerable sadmind service by talking to people who work in the organization where the system is running.
Second, the current IDSs may miss some attacks, and thus affect the alert correlation if the above approach
is used. Third, due to the combinatorial nature of the aforementioned approach, it is computationally expen-
sive to examine sets of alerts to find out whether their consequences satisfy (or more precisely, imply) the
prerequisite of an alert.

Having considered the above issues, we adopt an alternative approach. Instead of examining whether a set
of hyper-alerts satisfies the prerequisite of another hyper-alert, we check if an earlier hyper-alert contributes
to the prerequisite of a later one. Specifically, we decompose the prerequisite of a hyper-alert into pieces of
predicates and test whether the consequence of an earlier hyper-alert makes some pieces of the prerequisite
True (i.e., make the prerequisite easier to satisfy). If the result is positive, then we correlate the hyper-alerts
together.

Definition 3 Given a hyper-alert h, which is an instance of type T = (fact, prerequisite, consequence), the
prerequisite set of h, denoted as P (h), is the set of all such predicates (with the preceding negation if there
is one) that appear in prerequisite and whose arguments are replaced with the corresponding attribute values
of a tuple in h. Each element in P (h) is associated with the timestamp of the corresponding tuple in h.
The consequence set of h, denoted as C(h), is the set of all such logical formulas in consequence whose
arguments are replaced with the corresponding attribute values of a tuple in h. Each element in C(h) is
associated with the timestamp of the corresponding tuple in h.

Example 6 Consider the hyper-alert hSadmindBOF discussed in example 4. The corresponding prerequi-
site set is P (hSadmindBOF) = {ExistHost (152.141.129.5), ExistHost (152.141.129.37), VulnerableSadmind
(152.141.129.5), VulnerableSadmind (152.141.129.37)}, and the consequence set is C(hSadmindBOF) =

7

{GainRootAccess (152.141.129.5), GainRootAccess (152.141.129.37)}.

Further consider the hyper-alert hSadmindP ing in example 5. The prerequisite set is P (hSadmindP ing)
= {ExistHost (152.141.129.5), ExistHost (152.141.129.37), ExistHost (152.141.129.39)}, and the conse-
quence set is C(hSadmindP ing) = {VulnerableSadmind (152.141.129.5), VulnerableSadmind (152.141.129.37),
VulnerableSadmind (152.141.129.39)}. 2

Definition 4 Hyper-alert h1 prepares for hyper-alert h2, if there exist p ∈ P (h2) and C ⊆ C(h1) such that
for all c ∈ C , c.end time < p.begin time and the conjunction of all the logical formulas in C implies p.

The prepare-for relation is developed to capture the causal relationships between hyper-alerts. Intuitively,
h1 prepares for h2 if some attacks represented by h1 make the attacks represented by h2 easier to succeed.

Example 7 Let us continue example 6. Assume that all tuples in hSadmindP ing have timestamps earlier
than every tuple in hSadmindBOF . By comparing the contents of C(hSadmindP ing) and P (hSadmindBOF),
it is clear that the element VulnerableSadmind (152.141.129.5) (among others) in P (hSadmindBOF) is also
in C(hSadmindP ing). Thus, hSadmindP ing prepares for, and should be correlated with hSadmindBOF . 2

Given a sequence S of hyper-alerts, a hyper-alert h in S is a correlated hyper-alert, if there exists another
hyper-alert h′ such that either h prepares for h′ or h′ prepares for h. Otherwise, h is called an isolated
hyper-alert. Our goal is to discover all pairs of hyper-alerts h1 and h2 in S such that h1 prepares for h2.

Example 8 First consider the detection of a certain DDOS daemon which tries to contact its master pro-
gram about its existence. This can be captured by the hyper-alert type DDOSDaemon = (fact, prerequisite,
consequence), where fact = {IP}, prerequisite = GainRootAccess (IP), and consequence = ∅. Assume that
there is a hyper-alert hDDOSDaemon which consists of the following tuple: (IP = 152.141.129.5).

Suppose in a sequence of hyper-alerts we have the following ones: hIPSweep, hSadmindP ing, hSadmindBOF ,
and hDDOSDaemon. (The first three hyper-alerts have been explained in examples 3, 4, and 5, respectively.)
Assume that all tuples in a later hyper-alert have timestamps greater than every tuple in a previous hyper-
alert. By comparing the prerequisite sets and the consequence sets of these hyper-alerts, we can easily
get the following relationships: hIPSweep prepares for hSadmindP ing , hIPSweep prepares for hSadmindBOF ,
hSadmindP ing prepares for hSadmindBOF , and finally hSadmindBOF prepares for hDDOSDaemon. Thus, all
of the four hyper-alerts should be correlated together. 2

3.3.1 Temporal Constraints for Hyper-alerts

One may point out that the definition of hyper-alert seems to be over flexible. It allows alerts that are far
from each other in time to be treated as a single hyper-alert. For example, the definition allows to treat two
UDP port scanning activities that are not close to each other in time as a single hyper-alert. The activities
that occur far from each other in time tend not to relate to each other. Therefore, we have little reason to
treat them as a single hyper-alert.

The reason that we allow a hyper-alert to be aggregated from multiple alerts is to have flexibility in
reasoning about alerts. As we discussed earlier, an IDS (e.g., EMERALD [15]) may generate multiple
alerts for the same attack. Thus, having the current definition of hyper-alert gives more opportunity for
alert correlation than not allowing alert aggregation. Nevertheless, it is desirable to exclude irreasonable
situations such as the one pointed out earlier.

In the following, we introduce two temporal constraints for hyper-alerts. We are particularly interested in
hyper-alerts that satisfy at least one of the constraints. However, most of our discussion in this paper applies
to general hyper-alerts. Thus, we will not specifically indicate the constraints if it is not necessary.

8

h IPSweep hSadmindBOF hDDOSDaemon

hSadmindPing

(a) A hyper-alert correlation graph CG

h IPSweep hSadmindBOF

hSadmindPing

(b) The precedent graph of hSadmindBOF w.r.t. CG

hSadmindBOF hDDOSDaemon

(c) The subsequent graph of hSadmindBOF w.r.t. CG

h IPSweep hSadmindBOF hDDOSDaemon

hSadmindPing

(d) The correlated graph of hSadmindBOF w.r.t. CG

Figure 1: Hyper-alerts correlation graphs

Definition 5 Given a time duration D (e.g., 100 seconds), a hyper-alert h satisfies duration constraint of D

if Max{t.end time|∀t ∈ h} − Min{t.begin time|∀t ∈ h} < D.

Definition 6 Given a time interval I (e.g., 10 seconds), a hyper-alert h satisfies interval constraint of I if
(1) h has only one tuple, or (2) for all t in h, there exist another t′ in h such that there exist t.begin time <

T < t.end time, t′.begin time < T ′ < t′.end time, and |T − T ′| < I .

There could be other meaningful constraints for hyper-alerts, depending on the semantics of the relevant
contexts. We will identify such constraints when we encounter them in our research; however, they are not
the current focus and will not be discussed in this paper.

3.4 Hyper-alert Correlation Graph

The prepare-for relation between hyper-alerts provides a natural way to represent the causal relationship
between related hyper-alerts. In the following, we introduce the notion of hyper-alert correlation graph to
represent a set of correlated hyper-alerts. As we will see, the hyper-alert correlation graph also reflects the
high-level strategies or logical steps behind the corresponding attacks.

Definition 7 A hyper-alert correlation graph CG = (N , E) is a connected graph, where the set N of nodes
is a set of hyper-alerts, and for each pair of nodes n1, n2 ∈ N , there is an edge from n1 to n2 in E if and
only if n1 prepares for n2.

Hyper-alert correlation graph provides an intuitive representation of correlated hyper-alerts. For instance,
figure 1(a) shows the hyper-alert correlation graph for the hyper-alerts in example 8. With the notion of
hyper-alert correlation graph, our goal of alert correlation can be rephrased as the discovery of maximum
hyper-alert correlation graphs from a sequence of hyper-alerts.

In addition to getting all the correlated hyper-alerts, it is often desirable to discover those that are directly
or indirectly correlated to one particular hyper-alert. For example, if an IDS detects a DDOS daemon
running on a host, it would be helpful to inform the administrator how this happened, that is, report all the
alerts directly or indirectly prepare for the DDOS daemon. Therefore, we define the following operations
on hyper-alert correlation graphs.

Definition 8 Given a hyper-alert correlation graph CG = (N , E) and a hyper-alert n in N , precedent

(n,CG) is an operation that returns the maximum sub-graph PG = (N ′, E′) of CG that satisfies the fol-

9

lowing conditions: (1) n ∈ N ′, (2) for each n′ ∈ N ′ other than n, there is a directed path from n′ to n, and
(3) each edge e ∈ E ′ is in a path from a node n′ in N ′ to n. The resulting graph PG is called the precedent
graph of n w.r.t. CG.

Definition 9 Given a hyper-alert correlation graph CG = (N , E) and a hyper-alert n in N , subsequent

(n,CG) is an operation that returns the maximum sub-graph PG = (N ′, E′) of CG that satisfies the follow-
ing conditions: (1) n ∈ N ′, (2) for each n′ ∈ N ′ other than n, there is a directed path from n to n′, and (3)
each edge e ∈ E ′ is in a path from n to a node n′ in N ′. The resulting graph PG is called the subsequent
graph of n w.r.t. CG.

Definition 10 Given a hyper-alert correlation graph CG = (N , E) and a hyper-alert n in N , correlated

(n,CG) is an operation that returns the maximum sub-graph PG = (N ′, E′) of CG that satisfies the follow-
ing conditions: (1) n ∈ N ′, (2) for each n′ ∈ N ′ other than n, there is either a path from n to n′, or a path
from n′ to n, and (3) each edge e ∈ E ′ is either in a path from a node in N ′ to n, or in a path from n to a
node in N ′. The resulting graph PG is called the correlated graph of n w.r.t. CG.

Intuitively, the precedent graph of n w.r.t. CG describes all the hyper-alerts in CG that prepare for n

directly or indirectly, the subsequent graph of n w.r.t. CG describes all the hyper-alerts in CG for which n

prepares directly or indirectly, and the correlated graph of n w.r.t. CG includes all the hyper-alerts in CG that
are correlated to n directly or indirectly. It is easy to see that correlated(n,CG) = precedent(n,CG) ∪
subsequent(n,CG).

Assuming the black node hSadmindBOF in figure 1(a) is the hyper-alert of concern, figures 1(b) to 1(d)
display the precedent graph, subsequent graph, and correlated graph of hSadmindBOF w.r.t. the hyper-alert
correlation graph in figure 1(a), respectively. Note that figure 1(d) is the same as figure 1(a). This is because
all the hyper-alerts in figure 1(a) are related to hSadmindBOF via the prepare-for relation. In reality, it is
certainly possible that not all hyper-alerts are related to the hyper-alert of concern. In this case the correlated
graph only reveals those directly or indirectly correlated to the hyper-alert of concern.

Hyper-alert correlation graph is not only an intuitive way to represent correlated attacks, but also reveals
opportunities to improve intrusion detection. First, the hyper-alert correlation graph can potentially reveal
the intrusion strategies behind the attacks, and thus lead to better understanding of the attacker’s intention.
Second, assuming some attackers have patterns in their strategies, we can use hyper-alert correlation graph
to profile previous series of attacks and thus identify on-going attacks by matching to the profiles. A partial
match to a profile may indicate attacks possibly missed by the IDSs, and thus lead to human investigation
and improvement of the IDSs. In addition, we may use previous hyper-alert correlation graphs to predict the
next move of on-going attacks, and then take appropriate actions to prevent it from happening. Nevertheless,
additional research is necessary to make these approaches possible.

3.5 Advantages of Our Approach

As a post-detection technique, our approach has the potential to complement the existing intrusion detection
techniques. This can be seen through the following advantages of our approach.

First, our approach provides a high-level representation of detected attacks that reveals the causal rela-
tionships between the alerts. Most of the current IDSs either report the detection of low-level attacks (e.g.,
IP sweep, UDP port scan) as independent alerts without identifying the connection between them, or corre-
late the alerts using the attribute values describing the alerts (e.g., [20]). In the later case, the result of alert
correlation could be misleading and unable to fully discover the causal relationships between alerts. As a
result, it is difficult for the human users to figure out the logical connection between the low-level alerts and
understand the logical steps or attacking strategies behind the alerts. In an extreme situation where the in-

10

formation systems are under intensive intrusions, the IDSs could report tons of alerts, and it is very difficult
for human users to understand them and take appropriate actions.

Our approach complements this deficiency by providing a high-level representation of the correlated
alerts. Presenting correlated alerts in a hyper-alert correlation graph, our approach can reveal the causal
structure of a series of attacks.

Second, our approach can potentially reduce the impact caused by false alerts. As discussed earlier,
there are usually certain strategies or logical steps behind series of attacks. Indeed, in order to launch
some destructive attacks, an attacker may have to perform some other attacks to either gather the necessary
information or prepare in some other ways. If the alerts correspond to steps of actual attacks, our approach
can correlate the corresponding alerts together by taking advantage of the prepare-for relationships between
them. In contrast, the false alerts, which do not correspond to any real attacks, tend to be more random than
the actual attacks, and are less likely to be correlated to other alerts. Therefore, we can easily identify the
actual attacks by picking out the correlated alerts.

The effectiveness of our approach certainly relies on the performance of the underlying IDSs. If the IDS
misses the intermediate steps of a series of attacks, it might be difficult to find the connection between alerts
using the prerequisites of intrusion. Additional research is necessary to understand the impact of undetected
attacks.

Third, our approach can potentially be extended to predict attacks in progress. Though attackers may have
many choices at different stages of a series of attacks, they may still have certain patterns in their strategies,
especially when the attacks are launched by scripts. Thus, the hyper-alert correlation graph can be extended
to represent the patterns of intrusion strategies.

A potential way to predict attacks in progress is to profile the common attacking strategies using hyper-
alert correlation graphs. By comparing the on-going alerts with the profiles of known attacking strategies,
we may be able to predict the next step in a series of attacks and prevent it by taking appropriate actions.
For example, suppose in our profile, more than 80% of SadmindPing alerts prepare for a certain type of
SadmindBOF attacks. If the IDS generates an SadmindPing alert and we believe that our sadmind service is
vulnerable to certain buffer overflow attacks, we can either shut down the service or inform the firewall not
to forward any packets to the sadmind service. Nevertheless, predicting future attacks is a difficult problem,
and one has to be careful with the predicted attack to avoid, for example, being misled by a cunning attacker.

4 Experimental Results

We have developed an off-line intrusion alert correlator based on the proposed approach and performed
several experiments [14]. We report the experimental results in this section; please read [14] for further
details.

We have performed a series of experiments using the two DARPA 2000 intrusion detection evaluation
datasets [12]. The first dataset contains a series of attacks with which a novel attacker probes, breaks-in,
installs DDOS daemon and master programs, and launches a DDOS attack against an off-site server. The
second dataset includes a similar sequence of attacks run by an attacker who is a bit more sophisticated than
the first one.

We used the network traffic data in the two datasets in our experiments. Each dataset includes the network
traffic data collected from both the DMZ and the inside part of the evaluation network. We have performed
four sets of experiments, each with either the DMZ or the inside network traffic of one dataset. Due to the
constraints of our testing network, we have not performed experiments with both the DMZ and the inside

11

Dataset # observable Tool # alerts # detected Detection # real False alert
attacks attacks rate alerts rate

DMZ 89 RealSecure 891 51 57.30% 57 93.60%
1 Our method 57 50 56.18% 54 5.26%

Inside 60 RealSecure 922 37 61.67% 44 95.23%
Our method 44 36 60% 41 6.82%

DMZ 7 RealSecure 425 4 57.14% 6 98.59%
2 Our method 5 3 42.86% 3 40%

Inside 15 RealSecure 489 12 80.00% 16 96.73%
Our method 13 10 66.67% 10 23.08%

Figure 2: The experimental results

network traffic at the same time. Nevertheless, such experiments are interesting and may lead to further
insight into the alert correlation problem. We consider it as one of our future works.

In each experiment, we replayed the selected network traffic in an isolated network monitored by a Re-
alSecure Network Sensor 6.0 [9]. We chose RealSecure because it has an extensive set of well documented
attack signatures. In all the experiments, the Network Sensor was configured to use the Maximum Coverage
policy with a slight change, which forced the Network Sensor to save all the reported alerts. Our alert corre-
lator was then used to process the alerts generated by RealSecure. For simplicity, our alert correlator maps
each alert generated by the RealSecure Network Sensor to a hyper-alert. (For details of the hyper-alert types,
please see [14].) In all the experiments, our alert correlator only kept the correlated alerts, and discarded all
the isolated ones.

Figure 2 shows the experimental results, including the detection and false alert rates for both RealSecure
Network Sensor 6.0 and our method. We counted the number of actual attacks and false alerts according to
the description included in the datasets. False alerts can be identified easily. However, counting the number
of attacks is a subjective process, since the number of attacks depends on how one views the attacks. Having
different views of the attacks may result in different numbers.

We adopted the following way to count the number of attacks in our experiments. The initial phase of
the attacks involved an IP Sweep attack. Though many packets were involved, we counted them as a single
attack. Similarly, the final phase had a DDOS attack, which generated many packets but was also counted
as one attack. For the rest of the attacks, we counted each action (e.g., telnet, Sadmind Ping) initiated by
the attacker as one attack. The numbers of attacks observable in these datasets are shown in Figure 2. Note
that some activities such as telnet are not usually considered as attacks; however, we counted them here if
the attacker used them as parts of the attacks.

RealSecure Network Sensor 6.0 generated duplicated alerts for certain attacks. For example, one rsh con-
nection in the inside part of dataset one, which the attacker used to access the compromised host, triggered
two alerts. As a result, the number of real alerts (i.e., the alerts corresponding to actual attacks) is greater
than the number of detected attacks. Figure 2 shows both kinds of numbers. The detection rates were cal-
culated using the number of detected attacks, while the false alert rates were computed with the number of
real alerts.

For the DMZ network traffic in dataset one, the RealSecure Network Sensor generated 891 alerts. Ac-
cording to the description of the data set, 57 out of the 891 alerts were real alerts, 51 attacks were detected,
and 38 attacks were missed. Thus, the detection rate of RealSecure Network Sensor was 57.30%, and the
false alert rate was 93.60%.1 Our intrusion alert correlator processed the alerts generated by the RealSecure
Network Sensor. As shown in Figure 2, 57 alerts remained after correlation, 54 of them were real alerts, and

1Please note that choosing less aggressive policies than Maximum Coverage may result in less false alert rates.

12

67343

67432

67434

67436

67440

67558

67559

67553

67776

67554

67773

67560

Sadmind_Amslverify_Overflow

Attacking Host: 202.77.162.213

Victim Host: 172.16.112.50

Sadmind_Ping

Rsh

Mstream_Zombie

Stream_DoS

Figure 3: A hyper-alert correlation graph discovered in the inside network traffic of dataset one. (Transitive
edges are removed for the sake of readability.)

50 attacks were covered by these alerts. Thus, the detection rate and the false alert rate after alert correlation
were 56.18% and 5.26%, respectively. The results for the other datasets are also shown in Figure 2.

The experimental results in Figure 2 show that our approach greatly reduced the false alert rates. However,
the detection rate was not affected very much. In the worst cases (the DMZ network traffic in datasets one
and two), only one attack was missed after the correlation process.

Our experiments also revealed the high-level attack strategies via hyper-alert correlation graphs. Figure
3 shows one of the hyper-alert correlation graphs discovered from the inside network traffic in dataset one.
Each node in Figure 3 represents a hyper-alert. The numbers inside the nodes are the alert IDs generated
by the RealSecure Network Sensor. There are totally 12 hyper-alerts in figure 3, which can be divided
into five stages. (Note that these five stages are not exactly the five phases stated in the description of
the datasets [12].) The first stage has one Sadmind Ping hyper-alert, with which the attacker discovered
the possibly vulnerable Sadmind service running at 172.16.112.50. The second stage consists of four Sad-
mind Amslverify Overflow hyper-alerts, which correspond to four different variations of buffer overflow
attacks against the Sadmind service at 172.16.112.50. The third stage consists of four Rsh hyper-alerts, with
which the attacker copied a program and a .rhosts file and started the program on the victim system. (Hyper-
alerts 67559 and 67560 correspond to the same Rsh event. They were here because RealSecure generated
duplicated alerts for this Rsh event.) The fourth stage consists of two Mstream Zombie hyper-alerts, which
correspond to the communication between the DDOS daemon and master. Finally, the fifth stage consists
of one Stream DoS hyper-alert. This is the actual DDOS attack launched by the DDOS daemon programs.
Figure 3 only shows the direct edges between these hyper-alerts for the sake of readability. For example, the
hyper-alert 67432 also prepares for 67554, but the correspond edge is not included in Figure 3.

Our method depends on the underlying IDS for alert information. As shown in Figure 2, it reduced the
false alert rate, but did not improve the detection rate. Indeed, the detection rate of our method cannot be
better than the underlying IDS. This implies that if the underlying IDS is very poor in detecting attacks, our
method cannot perform well, either. (This is why we decided to use the Maximum Coverage policy in the
RealSecure Network Sensor.) However, if the underlying IDS can detect the attacks but with a large amount
of false alerts, our method can help identify the real alerts from the false ones.

The data sets in the above experiments include attacks with strong connections. In reality, our method may
have worse false alert rate and detection rate. Nevertheless, the significant improvement over the RealSecure
Network Sensor shown in our experiments has demonstrated the potential of the proposed approach.

13

5 Discussion

5.1 Systematic Development of Predicates and Hyper-alert Types

Since predicates are used to represent the prerequisites and consequences of hyper-alerts, they form the
foundation of our approach. In order to make the proposed approach feasible, we need to make sure that
we can develop the predicates required for hyper-alert correlation in a cost-effective way. In addition, we
should avoid possible inconsistency among the predicates, and have certain ways to ensure the developed
predicates can support the proposed approach.

It is worth noticing that the predicates can be represented in different granularities. For example, the
situation that a host runs an sadmind service vulnerable to buffer overflow attack can be represented either
by UDPVulnerableToBOF (VictimIP, VictimPort), which simply says that a service at IP address VictimIP
and port number VictimPort is vulnerable to buffer overflow attacks, or by SadmindVulnerableToBOF (Vic-
timIP, VictimPort), which specifically says that the sadmind service at IP address VictimIP and port number
VictimPort is vulnerable to buffer overflow attacks, or even more specifically by SadmindVulnerableTo-
BOFType123 (VictimIP, VictimPort), which in addition specifies which type of buffer overflow attacks the
sadmind service is vulnerable to.

The granularities in which the predicates are developed have impact on alert correlation. On the one
hand, the finer grained the predicates are, the more precise we can expect the result to be. On the other hand,
the cost for developing finer-grained predicates would be higher than coarser-grained ones. Moreover, the
finer-grained the predicates are, the less they can accommodate variations of attack strategies.

Each hyper-alert type corresponds to a class of hyper-alerts that share the same prerequisites and conse-
quences. The development of hyper-alert types depends on what kinds of predicates are used. Although we
developed the hyper-alert types and the involved predicates in an ad-hoc way, it is possible to develop them
systematically.

Lindqvist and Jonsson presented a classification of intrusions in [11]. In particular, they provided a hi-
erarchical classification of intrusion results. The top-level classes of intrusion results include three classes:
exposure, denial of service (DOS), and erroneous output. We plan to use this classification (with a little
modification) as the framework to systematically develop predicates as well as hyper-alert types. Specif-
ically, we classify all possible consequences into groups and divide each group into more specific groups
using their classification scheme. We can start to specify predicates when the arguments of a group can be
fixed.

Figures 4(a) to 4(c) show our classification scheme. The leaf-level groups may be further partitioned when
necessary. In the original classification, the top-level class exposure is classified into two classes: disclosure
of confidential information and service to unauthorized entities. However, we observe that some attacks
may reveal information that is not confidential but useful for latter attacks. For example, an IPSweep may
discover hosts accessible from the network, though the existence of the hosts are not exactly confidential but
available to the public. Thus, we added a third class named discovery of public information.

In addition, Common Vulnerabilities & Exposures (CVE) [3] may be used to assist predicates and hyper-
alert types development. The current version (version 20010918) of CVE database has 1,604 entries. By
applying the above classification scheme, we can group these entries into different classes and then develop
the predicates and hyper-alert types within each final group. For example, we may have the predicates
ExistHost (IP) and ExistService (IP, port) in the subgroups of exposure.public info.

It is necessary to keep the implication relationships between predicates in order to reason about the
prepare-for relations between hyper-alerts. In our implementation [14], human users are required to input

14

exposure

service to
unauthorized

entities

disclosure of
confidential info.

discovery of
public info.

disclosure of
user info.

disclosure of
system info.

access as special
system account

access as
client root

access as
server root

access as
ordinary user

(a) Classification of the top-level consequence exposure

DOS

unselectiveselective transmitted

groupsingle

(b) Classification of the top-level consequence DOS

erroneous output

unselectiveselective transmitted

groupsingle

(c) Classification of the top-level consequence erroneous out-
put

Figure 4: Classification of the consequences of intrusions

the direct implications between predicates, and the intrusion alert correlator figures out the indirect ones
automatically.

The development of predicates and hyper-alert types is a knowledge engineering process. Though the
above proposed solutions and CVE provide general framework and guidelines for this process, substantial
work is still necessary. To better understand the nature of predicate development, we plan to first identify
the predicates that are necessary for our empirical study. The complete set of known predicates, if there is
one, can be developed after a rigorous study of the proposed approach. Note that the set of predicates may
have to be updated frequently like the vocabulary of natural languages, if more previously unknown attacks
as well as their consequences are being discovered.

5.2 Generation of Hyper-alerts

In order to correlate hyper-alerts using prerequisites of attacks, our approach has to generate hyper-alerts
from the alerts reported by the underlying IDSs. The hyper-alert generation process faces two challenges.
The first challenge comes from the variety of the existing IDSs. Different IDSs usually generate alerts in
different granularities and formats. To make our alert correlation approach applicable to as many IDSs as
possible, we need certain ways to deal with alerts generated by heterogeneous IDSs and avoid being IDS
specific.

Second, high-level hyper-alerts are preferable to capture the attacking strategies. However, alerts reported
by IDSs usually correspond to low-level attacks. In particular, some IDSs (e.g., EMERALD [15, 20])
may generate multiple alerts for a single attack if the attack spreads over a period of time. (Our initial
implementation maps each alert to a hyper-alert. However, the purpose is to gain better understanding of our
approach. It is certainly not the best way to generate hyper-alerts.) To better support the proposed approach,
we need to fill in the gap between the preference of high-level alerts and the low-level alerts provided by
IDSs. In particular, we need to understand how to discover and recover the alerts that correspond to a single

15

attack.

The problem in hyper-alert generation can be partially addressed by standards such as Intrusion Detection
Message Exchange Format (IDMEF) [4]. We expect that the hyper-alert generation program can correctly
understand the alerts generated by the IDSs that support IDMEF. However, not all the problems can be ad-
dressed by IDMEF. Alerts in different granularities are still allowed, and multiple alerts may be generated
for a single attack. To address this problem, we propose to allow hyper-alert aggregation during the genera-
tion of hyper-alerts. For example, hyper-alerts of the same type can be aggregated into a single hyper-alert
provided that the resulting hyper-alert satisfies certain duration constraint or interval constraint. Hyper-alerts
of different types may also be aggregated into a compound hyper-alert if certain given conditions are satis-
fied. Existing alert correlation techniques [5, 20] may be adopted for this purpose. Additional research is
necessary to decide when to use hyper-alert aggregation and what kind of aggregations are necessary.

5.3 Processing of Hyper-alerts

To correlate hyper-alerts using prerequisites of intrusions requires to discover all pairs of hyper-alerts such
that one hyper-alert prepares for the other. A naive approach is to check each hyper-alert with all the others
to find out all the hyper-alerts that it prepares for. However, this approach could be very expensive if a large
amount of hyper-alerts are being discovered. Indeed, given n hyper-alerts, we will have n2 pairs of hyper-
alerts, each of which further requires reasoning about the predicates in the prerequisite and consequence
sets. This is certainly not a scalable solution.

An engineering method to improve the naive approach is to only consider the hyper-alerts that are close
to each other in time. In practice, a threshold T of time duration may be used; we check a hyper-alert with a
previous one only if the time difference between them is less than T . This method is based on the assumption
that attacks far from each other tend not to correlated to each other. Although the assumption could be true
most of time, exceptions still exist. For example, intrusive activities involved in a series of stealthy attacks
may be far from each other, simply because the attacker does not want to draw any attention. Relaxing the
threshold T is one way to better correlate the attacks; however, the larger T is, the more expensive it is to
process the hyper-alerts, and there will be a limit of T due to the constraint of system resources. Therefore,
additional techniques are desirable to reduce the cost of hyper-alert processing.

In our initial implementation [14], we used the database management system (DBMS) to help process the
alerts and hyper-alerts stored in the database. In other words, we represent the operations to be performed
on hyper-alerts as SQL statements and let the DBMS handle all the operations. Such a method performs
well for off-line correlation of alerts; however, it will suffer from severe performance penalty when it is used
to process alerts in real-time.

Two approaches may be used to improve the hyper-alert processing. First, we may use the hyper-alert
type information to help decide whether to check two hyper-alerts or not. Note that a hyper-alert instance
of type T1 may prepare for another hyper-alert instance of type T2 only if the consequence set of T1 may
imply a predicate in the prerequisite set P (T2). Specifically, we say that hyper-alert type T1 may prepare
for hyper-alert type T2 if there exist h1, which is a hyper-alert of type T1, and h2, which is a hyper-alert of
type T2, such that h1 prepares for h2. Thus, we check hyper-alerts h1 and h2 only when the type of h1 may
prepare for the type of h2 or vice versa.

The second possible enhancement is to adapt in-memory database query optimization techniques (e.g.,
in-memory hybrid hash join [7], T-Tree [17]) to assist hyper-alert processing. In the simplest case where
we do not allow reasoning about the predicates, the discovery of prepare-for relation between hyper-alerts
can be transformed to a search problem. Thus, database query optimization techniques can be applied
directly to process hyper-alerts. Specifically, by building indexes on the elements of the consequence sets

16

of hyper-alerts, we can search for the previous hyper-alerts whose consequence sets contain the elements in
the prerequisite set of a new hyper-alert.

In general, when reasoning about predicates (e.g., VulnerableSadmindService (VictimIP, VictimPort) im-
plies VulnerableService (VictimIP, VictimPort)) is allowed, the query optimization techniques have to be
customized or improved in order to support hyper-alert correlation. One way to transform the general
hyper-alert processing problem to a database search problem is to derive the implied predicates and build
indexes on all the (instantiated) predicates (i.e., both original and implied predicates). (This is the method
adopted by our initial implementation [14].) It may be an expensive method because of the computation
involved in the derivation of implied predicates and the storage required for the indexes. Further research is
needed to see if it works for real-time alert correlation.

5.4 Limitations of The Proposed Approach

Our approach has several limitations. First, as discussed earlier, the hyper-alert correlation method depends
on the underlying IDSs to provide alerts. The attacks missed by the IDSs certainly has a negative effect
on our approach. If the IDS misses a critical attack that links two stages of a series of attacks, the related
hyper-alerts may be split into two separated hyper-alert correlation graphs. In the extreme case where the
underlying IDSs missed all the attacks, our approach cannot do anything.

Second, our approach is not effective to alerts between which there is no prepare-for relation, even though
they may be related. For example, an attacker may launch concurrent Smurf and SYN flooding attacks against
the same target from different places; however, our approach will not correlate the corresponding alerts,
though there is strong connections between them (i.e., same time and same target).

Given the above limitations, our approach should be used along with other intrusion detection techniques.
In particular, it is still necessary to discover novel techniques that can detect unknown attacks or variations
of known attacks. Nevertheless, our approach greatly reduces the impact of false alerts; we can have high
confidence in the existence of attacks if some alerts are correlated by our approach. In addition, our approach
can uncover the high-level attack strategies behind series of attacks. Therefore, we believe that the proposed
approach advances the intrusion detection techniques despite of its limitations.

6 Conclusion and Future Work

This paper presented a novel approach to correlating alerts using prerequisites and consequences of intru-
sions. The approach was based on the observation that in series of attacks, component attacks were usually
not isolated, but related as different stages, with the earlier stages preparing for the later ones. This paper
adopted a formal framework to represent alerts along with their prerequisites and consequences and pro-
posed a method to correlate related hyper-alerts together. Moreover, hyper-alert correlation graphs were
developed to provide an intuitive representation of correlated alerts, which also reveal the high-level strate-
gies behind the attacks. Our initial experiments have demonstrated the potential of the proposed technique
in reducing false alerts and uncovering high-level attack strategies.

Several issues are worth future research. First, we will study and compare various ways to generate
hyper-alerts from alerts reported by IDSs. Second, we will refine the off-line hyper-alert processing method
and develop on-line algorithms so that alerts generatd by IDSs can be correlated in real-time. Third, we will
further study the effectiveness of our approach. We expect to develop several quantative measures to assess
the preformance of our approach.

17

Acknowledgement The first author would like to thank Robert Cunningham and David Fried for providing
the NetPoke program.

References

[1] J. P. Anderson. Computer security threat monitoring and surveillance. Technical report, James P.
Anderson Co., Fort Washington, PA, 1980.

[2] R.G. Bace. Intrusion Detection. Macmillan Technology Publishing, 2000.

[3] CVE Editorial Board. The common vulnerabilities & exposures. http://www.cve.mitre.org.

[4] D. Curry and H. Debar. Intrusion detection message exchange format data model and extensible
markup language (xml) document type definition. Internet Draft, draft-ietf-idwg-idmef-xml-03.txt,
February 2001.

[5] O. Dain and R.K. Cunningham. Fusing a heterogeneous alert stream into scenarios. In Proceedings of
the 2001 ACM Workshop on Data Mining for Security Applications, pages 1–13, November 2001.

[6] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts. In Recent Advances
in Intrusion Detection, number 2212 in Lecture Notes in Computer Science, pages 85 – 103, 2001.

[7] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M.R. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems. SIGMOD Record, 14(2):1–8, 1984.

[8] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A rule-based intrusion detection
approach. IEEE Transaction on Software Engineering, 21(3):181–199, 1995.

[9] Inc. ISS. RealSecure intrusion detection system. http://www.iss.net.

[10] H.S. Javits and A. Valdes. The NIDES statistical component: Description and justification. Technical
report, SRI International, Computer Science Laboratory, 1993.

[11] U. Lindqvist and E. Jonsson. How to systematically classify computer security intrusions. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 154–163, Oakland, CA, May 1997.

[12] Lincoln Lab MIT. DARPA 2000 intrusion detection evaluation datasets.
http://ideval.ll.mit.edu/2000 index.html, 2000.

[13] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection. IEEE Network, 8(3):26–
41, May 1994.

[14] P. Ning and Y. Cui. An intrusion alert correlator based on prerequisites of intrusions. Submitted
for publication. Available as Technical Report TR-2002-01, Department of Computer Science, North
Carolina State University., January 2002.

[15] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling response to anomalous live
disturbances. In Proceedings of the 20th National Information Systems Security Conference, National
Institute of Standards and Technology, 1997.

[16] M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, and E. Wall. Implementing a
generalized tool for network monitoring. In Eleventh Systems Administration Conference (LISA ’97),
October 1997.

18

[17] TimesTen Performance Software. Architecture for real-time data management: Timesten’s core in-
memory database technology. White Paper, 2001.

[18] E.H. Spafford and D. Zamboni. Intrusion detection using autonomous agents. Computer Networks,
34:547–570, 2000.

[19] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection of stealthy portscans.
To appear in Journal of Computer Security.

[20] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proceedings of the 4th International
Symposium on Recent Advances in Intrusion Detection (RAID 2001), pages 54–68, 2001.

[21] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion detection system. Journal of
Computer Security, 7(1):37–71, 1999.

19

