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ABSTRACT
Web-based vulnerabilities represent a substantial portion of
the security exposures of computer networks. In order to de-
tect known web-based attacks, misuse detection systems are
equipped with a large number of signatures. Unfortunately, it
is difficult to keep up with the daily disclosure of web-related
vulnerabilities, and, in addition, vulnerabilities may be intro-
duced by installation-specific web-based applications. There-
fore, misuse detection systems should be complemented with
anomaly detection systems. This paper presents an intrusion
detection system that uses a number of different anomaly de-
tection techniques to detect attacks against web servers and
web-based applications. The system correlates the server-
side programs referenced by client queries with the parameters
contained in these queries. The application-specific charac-
teristics of the parameters allow the system to perform fo-
cused analysis and produce a reduced number of false posi-
tives. The system derives automatically the parameter pro-
files associated with web applications (e.g., length and struc-
ture of parameters) from the analyzed data. Therefore, it
can be deployed in very different application environments
without having to perform time-consuming tuning and con-
figuration.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security
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Anomaly Detection, World-Wide Web, Network Security

1. INTRODUCTION
Web servers and web-based applications are popular at-

tack targets. Web servers are usually accessible through cor-
porate firewalls, and web-based applications are often devel-
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oped without following a sound security methodology. At-
tacks that exploit web servers or server extensions (e.g., pro-
grams invoked through the Common Gateway Interface [7]
and Active Server Pages [22]) represent a substantial por-
tion of the total number of vulnerabilities. For example, in
the period between April 2001 and March 2002, web-related
vulnerabilities accounted for 23% of the total number of vul-
nerabilities disclosed [34]. In addition, the large installation
base makes both web applications and servers a privileged
target for worm programs that exploit web-related vulnera-
bilities to spread across networks [5].

To detect web-based attacks, intrusion detection systems
(IDSs) are configured with a number of signatures that sup-
port the detection of known attacks. For example, at the time
of writing, Snort 2.0 [28] devotes 868 of its 1931 signatures
to detect web-related attacks. Unfortunately, it is hard to
keep intrusion detection signature sets updated with respect
to the large numbers of vulnerabilities discovered daily. In
addition, vulnerabilities may be introduced by custom web-
based applications developed in-house. Developing ad hoc
signatures to detect attacks against these applications is a
time-intensive and error-prone activity that requires substan-
tial security expertise.

To overcome these issues, misuse detection systems should
be composed with anomaly detection systems, which sup-
port the detection of new attacks. In addition, anomaly
detection systems can be trained to detect attacks against
custom-developed web-based applications. Unfortunately, to
the best of our knowledge, there are no available anomaly de-
tection systems tailored to detect attacks against web servers
and web-based applications.

This paper presents an anomaly detection system that de-
tects web-based attacks using a number of different tech-
niques. The anomaly detection system takes as input the
web server log files which conform to the Common Log For-
mat and produces an anomaly score for each web request.
More precisely, the analysis techniques used by the tool take
advantage of the particular structure of HTTP queries [11]
that contain parameters. The parameters of the queries are
compared with established profiles that are specific to the
program or active document being referenced. This approach
supports a more focused analysis with respect to generic
anomaly detection techniques that do not take into account
the specific program being invoked.

This paper is structured as follows. Section 2 presents re-
lated work on detection of web-based attacks and anomaly
detection in general. Section 3 describes an abstract model
for the data analyzed by our intrusion detection system. Sec-
tion 4 presents the anomaly detection techniques used. Sec-
tion 5 contains the experimental evaluation of the system



with respect to real-world data and discusses the results ob-
tained so far and the limitations of the approach. Finally,
Section 6 draws conclusions and outlines future work.

2. RELATED WORK
Anomaly detection relies on models of the intended behav-

ior of users and applications and interprets deviations from
this ‘normal’ behavior as evidence of malicious activity [10,
17, 13, 19]. This approach is complementary with respect
to misuse detection, where a number of attack descriptions
(usually in the form of signatures) are matched against the
stream of audited events, looking for evidence that one of the
modeled attacks is occurring [14, 25, 23].

A basic assumption underlying anomaly detection is that
attack patterns differ from normal behavior. In addition,
anomaly detection assumes that this ‘difference’ can be ex-
pressed quantitatively. Under these assumptions, many tech-
niques have been proposed to analyze different data streams,
such as data mining for network traffic [21], statistical analy-
sis for audit records [16], and sequence analysis for operating
system calls [12].

Of particular relevance to the work described here are tech-
niques that learn the detection parameters from the ana-
lyzed data. For instance, the framework developed by Lee et
al. [20] provides guidelines to extract features that are useful
for building intrusion classification models. The approach
uses labeled data to derive which is the best set of features
to be used in intrusion detection.

The approach described in this paper is similar to Lee’s
because it relies on a set of selected features to perform both
classification and link analysis on the data. On the other
hand, the approach is different because it does not rely on
the labeling of attacks in the training data in order to derive
either the features or the threshold values used for detection.
The learning process is purely based on past data, as, for
example, in [18].

3. DATA MODEL
Our anomaly detection approach analyzes HTTP requests

as logged by most common web servers (for example, Apache
[2]). More specifically, the analysis focuses on GET requests
that use parameters to pass values to server-side programs or
active documents. Neither header data of GET requests nor
POST/HEAD requests are taken into account. Note, however,
that it is straightforward to include the parameters of these
requests. This is planned for future work.

More formally, the input to the detection process consists
of an ordered set U = {u1, u2, ..., um} of URIs extracted from
successful GET requests, that is, requests whose return code
is greater or equal to 200 and less than 300.

A URI ui can be expressed as the composition of the path
to the desired resource (pathi), an optional path information
component (pinfoi), and an optional query string (q). The
query string is used to pass parameters to the referenced
resource and it is identified by a leading ‘?’ character. A
query string consists of an ordered list of n pairs of param-
eters (or attributes) with their corresponding values. That
is, q = (a1, v1), (a2, v2), . . . , (an, vn) where ai ∈ A, the set of
all attributes, and vi is a string. The set Sq is defined as the
subset {aj , . . . , ak} of attributes of query q. Figure 1 shows
an example of an entry from a web server log and the cor-
responding elements that are used in the analysis. For this
example query q, Sq = {a1, a2}.

The analysis process focuses on the association between
programs, parameters, and their values. URIs that do not
contain a query string are irrelevant, and, therefore, they are
removed from U . In addition, the set of URIs U is partitioned
into subsets Ur according to the resource path. Therefore,
each referred program r is assigned a set of corresponding
queries Ur. The anomaly detection algorithms are run on
each set of queries Ur, independently. This means that the
modeling and the detection process are performed separately
for each program r.

In the following text, the term ‘request’ refers only to re-
quests with queries. Also, the terms ‘parameter’ and ‘at-
tribute’ of a query are used interchangeably.

4. DETECTION MODELS
The anomaly detection process uses a number of different

models to identify anomalous entries within a set of input
requests Ur associated with a program r. A model is a set
of procedures used to evaluate a certain feature of a query
attribute (e.g., the string length of an attribute value) or a
certain feature of the query as a whole (e.g., the presence and
absence of a particular attribute). Each model is associated
with an attribute (or a set of attributes) of a program by
means of a profile. Consider, for example, the string length
model for the username attribute of a login program. In
this case, the profile for the string length model captures the
‘normal’ string length of the user name attribute of the login
program.

The task of a model is to assign a probability value to
either a query or one of the query’s attributes. This proba-
bility value reflects the probability of the occurrence of the
given feature value with regards to an established profile.
The assumption is that feature values with a sufficiently low
probability (i.e., abnormal values) indicate a potential at-
tack.

Based on the model outputs (i.e., the probability values of
the query and its individual attributes), a decision is made –
that is, the query is either reported as a potential attack or as
normal. This decision is reached by calculating an anomaly
score individually for each query attribute and for the query
as a whole. When one or more anomaly scores (either for
the query or for one of its attributes) exceed the detection
threshold determined during the training phase (see below),
the whole query is marked as anomalous. This is necessary
to prevent attackers from hiding a single malicious attribute
in a query with many ‘normal’ attributes.

The anomaly scores for a query and its attributes are de-
rived from the probability values returned by the correspond-
ing models that are associated with the query or one of the
attributes. The anomaly score value is calculated using a
weighted sum as shown in Equation 1. In this equation, wm

represents the weight associated with model m, while pm is
its returned probability value. The probability pm is sub-
tracted from 1 because a value close to zero indicates an
anomalous event that should yield a high anomaly score.

Anomaly Score =
�

m∈Models

wm ∗ (1 − pm) (1)

A model can operate in one of two modes, training or de-
tection. The training phase is required to determine the char-
acteristics of normal events (that is, the profile of a feature
according to a specific model) and to establish anomaly score
thresholds to distinguish between regular and anomalous in-
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Figure 1: Sample Web Server Access Log Entry

puts. This phase is divided into two steps. During the first
step, the system creates profiles for each server-side program
and its attributes. During the second step, suitable thresh-
olds are established. This is done by evaluating queries and
their attributes using the profiles created during the previ-
ous step. For each program and its attributes, the highest
anomaly score is stored and then, the threshold is set to a
value that is a certain, adjustable percentage higher than this
maximum. The default setting for this percentage (also used
for our experiments) is 10%. By modifying this value, the
user can adjust the sensitivity of the system and perform a
trade-off between the number of false positives and the ex-
pected detection accuracy. The length of the training phase
(i.e., the number of queries and attributes that are utilized
to establish the profiles and the thresholds) is determined by
an adjustable parameter.

Once the profiles have been created – that is, the models
have learned the characteristics of normal events and suit-
able thresholds have been derived – the system switches to
detection mode. In this mode, anomaly scores are calculated
and anomalous queries are reported.

The following sections describe the algorithms that ana-
lyze the features that are considered relevant for detecting
malicious activity. For each algorithm, an explanation of the
model creation process (i.e., the learning phase) is included.
In addition, the mechanism to derive a probability value p for
a new input element (i.e., the detection phase) is discussed.

4.1 Attribute Length
In many cases, the length of a query attribute can be used

to detect anomalous requests. Usually, parameters are either
fixed-size tokens (such as session identifiers) or short strings
derived from human input (such as fields in an HTML form).
Therefore, the length of the parameter values does not vary
much between requests associated with a certain program.
The situation may look different when malicious input is
passed to the program. For example, to overflow a buffer
in a target application, it is necessary to ship the shell code
and additional padding, depending on the length of the tar-
get buffer. As a consequence, the attribute contains up to
several hundred bytes.

The goal of this model is to approximate the actual but
unknown distribution of the parameter lengths and detect
instances that significantly deviate from the observed normal
behavior. Clearly, we cannot expect that the probability
density function of the underlying real distribution will follow
a smooth curve. We also have to assume that the distribution
has a large variance. Nevertheless, the model should be able
to identify significant deviations.

4.1.1 Learning
We approximate the mean µ̇ and the variance σ̇2 of the real

attribute length distribution by calculating the sample mean
µ and the sample variance σ2 for the lengths l1, l2, . . . , ln of
the parameters processed during the learning phase (assum-
ing that n queries with this attribute were processed).

4.1.2 Detection
Given the estimated query attribute length distribution

with parameters µ and σ2 as determined by the previous
learning phase, it is the task of the detection phase to assess
the regularity of a parameter with length l.

The probability of l can be calculated using the Chebyshev
inequality shown below.

p(|x − µ| > t) <
σ2

t2
(2)

The Chebyshev inequality puts an upper bound on the
probability that the difference between the value of a ran-
dom variable x and µ exceeds a certain threshold t, for an
arbitrary distribution with variance σ2 and mean µ. This
upper bound is strict and has the advantage that is does not
assume a certain underlying distribution. We substitute the
threshold t with the distance between the attribute length
l and the mean µ of the attribute length distribution (i.e.,
|l−µ|). This allows us to obtain an upper bound on the prob-
ability that the length of the parameter deviates more from
the mean than the current instance. The resulting probabil-
ity value p(l) for an attribute with length l is calculated as
shown below.

p(|x − µ| > |l − µ|) < p(l) =
σ2

(l − µ)2
(3)

This is the value returned by the model when operating in
detection mode. The Chebyshev inequality is independent
of the underlying distribution and its computed bound is, in
general, very weak. Applied to our model, this weak bound
results in a high degree of tolerance to deviations of attribute
lengths given an empirical mean and variance. Although
such a property is undesirable in many situations, by using
this technique only obvious outliers are flagged as suspicious,
leading to a reduced number of false alarms.

4.2 Attribute Character Distribution
The attribute character distribution model captures the

concept of a ‘normal’ or ‘regular’ query parameter by look-
ing at its character distribution. The approach is based
on the observation that attributes have a regular structure,
are mostly human-readable, and almost always contain only
printable characters.

A large percentage of characters in such attributes are
drawn from a small subset of the 256 possible 8-bit values
(mainly from letters, numbers, and a few special charac-
ters). As in English text, the characters are not uniformly
distributed, but occur with different frequencies. Obviously,
it cannot be expected that the frequency distribution is iden-
tical to a standard English text. Even the frequency of a cer-
tain character (e.g., the frequency of the letter ‘e’) varies con-
siderably between different attributes. Nevertheless, there
are similarities between the character frequencies of query
parameters. This becomes apparent when the relative fre-



quencies of all possible 256 characters are sorted in descend-
ing order.

The algorithm is based only on the frequency values them-
selves and does not rely on the distributions of particular
characters. That is, it does not matter whether the character
with the most occurrences is an ‘a’ or a ‘/’. In the following,
the sorted, relative character frequencies of an attribute are
called its character distribution.

For example, consider the parameter string ‘passwd’ with
the corresponding ASCII values of ‘112 97 115 115 119 100’.
The absolute frequency distribution is 2 for 115 and 1 for the
four others. When these absolute counts are transformed into
sorted, relative frequencies (i.e., the character distribution),
the resulting values are 0.33, 0.17, 0.17, 0.17, 0.17 followed
by 0 occurring 251 times.

For an attribute of a legitimate query, one can expect that
the relative frequencies slowly decrease in value. In case of
malicious input, however, the frequencies can drop extremely
fast (because of a peak caused by a single character with a
very high frequency) or nearly not at all (in case of random
values).

The character distribution of an attribute that is perfectly
normal (i.e., non-anomalous) is called the attribute’s ideal-
ized character distribution (ICD). The idealized character
distribution is a discrete distribution with:

ICD : � 7→ � with � = {n ∈ N|0 ≤ n ≤ 255}, � = {p ∈�
|0 ≤ p ≤ 1} and � 255

i=0 ICD(i) = 1.0.

The relative frequency of the character that occurs n-most
often (0-most denoting the maximum) is given as ICD(n).
When the character distribution of the sample parameter
‘passwd’ is interpreted as the idealized character distribution,
then ICD(0) = 0.33 and ICD(1) to ICD(4) are equal to 0.17.

In contrast to signature-based approaches, this model has
the advantage that it cannot be evaded by some well-known
attempts to hide malicious code inside a string. In fact,
signature-based systems often contain rules that raise an
alarm when long sequences of 0x90 bytes (the nop operation
in Intel x86-based architectures) are detected in a packet.
An intruder may substitute these sequences with instructions
that have a similar behavior (e.g., add rA,rA,0, which adds
0 to the value in register A and stores the result back to A).
By doing this, it is possible to prevent signature-based sys-
tems from detecting the attack. Such sequences, nonetheless,
cause a distortion of the attribute’s character distribution,
and, therefore, the character distribution analysis still yields
a high anomaly score. In addition, characters in malicious in-
put are sometimes disguised by xor’ing them with constants
or shifting them by a fixed value (e.g., using the ROT-13
code). In this case, the payload only contains a small rou-
tine in clear text that has the task of decrypting and launch-
ing the primary attack code. These evasion attempts do not
change the resulting character distribution and the anomaly
score of the analyzed query parameter is unaffected.

4.2.1 Learning
The idealized character distribution is determined during

the training phase. For each observed query attribute, its
character distribution is stored. The idealized character dis-
tribution is then approximated by calculating the average of
all stored character distributions. This is done by setting
ICD(n) to the mean of the nth entry of the stored character
distributions ∀n : 0 ≤ n ≤ 255 . Because all individual char-
acter distributions sum up to unity, their average will do so as
well, and the idealized character distribution is well-defined.

4.2.2 Detection
Given an idealized character distribution ICD, the task of

the detection phase is to determine the probability that the
character distribution of a query attribute is an actual sam-
ple drawn from its ICD. This probability, or more precisely,
the confidence in the hypothesis that the character distribu-
tion is a sample from the idealized character distribution, is
calculated by a statistical test.

This test should yield a high confidence in the correctness
of the hypothesis for normal (i.e., non-anomalous) attributes
while it should reject anomalous ones. The detection algo-
rithm uses a variant of the Pearson χ2-test as a ‘goodness-
of-fit’ test [4].

For the intended statistical calculations, it is not neces-
sary to operate on all values of ICD directly. Instead, it is
enough to consider a small number of intervals, or bins. For
example, assume that the domain of ICD is divided into six
segments as shown in Table 1. Although the choice of six
bins is somewhat arbitrary1, it has no significant impact on
the results.

Segment 0 1 2 3 4 5

x-Values 0 1-3 4-6 7-11 12-15 16-255

Table 1: Bins for the χ2-test

The expected relative frequency of characters in a segment
can be easily determined by adding the values of ICD for the
corresponding x-values. Because the relative frequencies are
sorted in descending order, it can be expected that the values
of ICD(x) are more significant for the anomaly score when x
is small. This fact is clearly reflected in the division of ICD’s
domain.

When a new query attribute is analyzed, the number of
occurrences of each character in the string is determined.
Afterward, the values are sorted in descending order and
combined according to Table 1 by aggregating values that
belong to the same segment. The χ2-test is then used to cal-
culate the probability that the given sample has been drawn
from the idealized character distribution. The standard test
requires the following steps to be performed.

1. Calculate the observed and expected frequencies - The
observed values Oi (one for each bin) are already given.
The expected number of occurrences Ei are calculated
by multiplying the relative frequencies of each of the
six bins as determined by the ICD times the length of
the attribute (i.e., the length of the string).

2. Compute the χ2-value as χ2 = � i<6
i=0

(Oi−Ei)
2

Ei
- note

that i ranges over all six bins.

3. Determine the degrees of freedom and obtain the sig-
nificance - The degrees of freedom for the χ2-test are
identical to the number of addends in the formula above
minus one, which yields five for the six bins used. The
actual probability p that the sample is derived from
the idealized character distribution (that is, its signif-
icance) is read from a predefined table using the χ2-
value as index.

1The number six seems to have a particular relevance to the
field of anomaly detection [32].



The derived value p is used as the return value for this
model. When the probability that the sample is drawn from
the idealized character distribution increases, p increases as
well.

4.3 Structural Inference
Often, the manifestation of an exploit is immediately vis-

ible in query attributes as unusually long parameters or pa-
rameters that contain repetitions of non-printable characters.
Such anomalies are easily identifiable by the two mechanisms
explained before.

There are situations, however, when an attacker is able to
craft her attack in a manner that makes its manifestation
appear more regular. For example, non-printable characters
can be replaced by groups of printable characters. In such
situations, we need a more detailed model of the query at-
tribute that contains the evidence of the attack. This model
can be acquired by analyzing the parameter’s structure. For
our purposes, the structure of a parameter is the regular
grammar that describes all of its normal, legitimate values.

4.3.1 Learning
When structural inference is applied to a query attribute,

the resulting grammar must be able to produce at least all
training examples. Unfortunately, there is no unique gram-
mar that can be derived from a set of input elements. When
no negative examples are given (i.e., elements that should
not be derivable from the grammar), it is always possible
to create either a grammar that contains exactly the train-
ing data or a grammar that allows production of arbitrary
strings. The first case is a form of over-simplification, as
the resulting grammar is only able to derive the learned in-
put without providing any level of abstraction. This means
that no new information is deduced. The second case is a
form of over-generalization because the grammar is capable
of producing all possible strings, but there is no structural
information left.

The basic approach used for our structural inference is to
generalize the grammar as long as it seems to be ‘reasonable’
and stop before too much structural information is lost. The
notion of ‘reasonable generalization’ is specified with the help
of Markov models and Bayesian probability.

In a first step, we consider the set of training items (i.e.,
query attributes stored during the training phase) as the out-
put of a probabilistic grammar. A probabilistic grammar is a
grammar that assigns probabilities to each of its productions.
This means that some words are more likely to be produced
than others, which fits well with the evidence gathered from
query parameters. Some values appear more often, and this
is important information that should not be lost in the mod-
eling step.

A probabilistic regular grammar can be transformed into
a non-deterministic finite automaton (NFA). Each state S
of the automaton has a set of nS possible output symbols o
which are emitted with a probability of pS(o). Each transi-
tion t is marked with a probability p(t) that characterizes the
likelihood that the transition is taken. An automaton that
has probabilities associated with its symbol emissions and its
transitions can also be considered a Markov model.

The output of the Markov model consists of all paths from
its start state to its terminal state. A probability value can be
assigned to each output word w (that is, a sequence of output
symbols o1, o2, . . . , ok). This probability value (as shown in
Equation 4) is calculated as the sum of the probabilities of all
distinct paths through the automaton that produce w. The

probability of a single path is the product of the probabili-
ties of the emitted symbols pSi

(oi) and the taken transitions
p(ti). The probabilities of all possible output words w sum
up to 1.

p(w) = p(o1, o2, . . . , ok) = (4)

� (paths p for w) � (states ∈ p) pSi
(oi) ∗ p(ti)

Start

a | p(a) = 0.5
b | p(b) = 0.5

0.3

a | p(a) = 1

0.7

Terminal

0.4

0.2

c | p(c) = 1

0.4

b | p(b) = 1

1.0

1.01.0

Figure 2: Markov Model Example

For example, consider the NFA in Figure 2. To calculate
the probability of the word ‘ab’, one has to sum the probabil-
ities of the two possible paths (one that follows the left arrow
and one that follows the right one). The start state emits no
symbol and has a probability of 1. Following Equation 4, the
result is

p(w) = (1.0 ∗ 0.3 ∗ 0.5 ∗ 0.2 ∗ 0.5 ∗ 0.4) +

(1.0 ∗ 0.7 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0)

= 0.706 (5)

The target of the structural inference process is to find a
NFA that has the highest likelihood for the given training
elements. An excellent technique to derive a Markov model
from empirical data is explained in [30]. It uses the Bayesian
theorem to state this goal as

p(Model|TrainingData) = (6)

p(TrainingData|Model) ∗ p(Model)

p(TrainingData)

The probability of the training data is considered a scal-
ing factor in Equation 6 and it is subsequently ignored. As
we are interested in maximizing the a posteriori probability
(i.e., the left-hand side of the equation), we have to maximize
the product shown in the enumerator on the right-hand side
of the equation. The first term – the probability of the train-
ing data given the model – can be calculated for a certain
automaton (i.e., for a certain model) by adding the probabil-
ities calculated for each input training element as discussed
above. The second term – the prior probability of the model
– is not as straightforward. It has to reflect the fact that,
in general, smaller models are preferred. The model proba-
bility is calculated heuristically and takes into account the
total number of states N as well as the number of transitions

� S trans and emissions � S emit at each state S. This is



justified by the fact that smaller models can be described
with less states as well as fewer emissions and transitions.
The actual value is derived as shown in Equation 7.

p(Model) = (7)�
S∈States

(N + 1) � S trans ∗ (N + 1) � S emit

The term that is maximized – the product of the probabil-
ity of the model given the data, times the prior probability
of the model itself – reflects the intuitive idea that there is a
conflict between simple models that tend to over-generalize
and models that perfectly fit the data but are too complex.

Models that are too simple have a high model probabil-
ity, but the likelihood for producing the training data is ex-
tremely low. This yields a small product after both terms
are multiplied. Models that are too complex have a high
likelihood of producing the training data (up to 1 when the
model only contains the training input without any abstrac-
tions), but the probability of the model itself is very low.
By maximizing the product, the Bayesian model induction
approach creates automatons that generalize enough to re-
flect the general structure of the input without discarding
too much information.

The model building process starts with an automaton that
exactly reflects the input data and then gradually merges
states. This state merging is continued until the a posteriori
probability no longer increases. There are a number of op-
timizations such as the Viterbi path approximation and the
path prefix compression that need to be applied to make that
process effective. The interested reader is referred to [30] and
[31] for details. Alternative applications of Markov models
for intrusion detection have been presented in [3] and in [35].

4.3.2 Detection
Once the Markov model has been built, it can be used

by the detection phase to evaluate query attributes by de-
termining their probability. The probability of an attribute
is calculated in a way similar to the likelihood of a training
item as shown in Equation 4. The problem is that even legi-
timate input that has been regularly seen during the training
phase may receive a very small probability value because the
probability values of all possible input words sum up to 1.
Therefore, we chose to have the model return a probability
value of 1 if the word is a valid output from the Markov
model and a value of 0 when the value cannot be derived
from the given grammar.

4.4 Token Finder
The purpose of the token finder model is to determine

whether the values of a certain query attribute are drawn
from a limited set of possible alternatives (i.e., they are to-
kens or elements of an enumeration). Web applications often
require one out of a few possible values for certain query
attributes, such as flags or indices. When a malicious user
attempts to use these attributes to pass illegal values to the
application, the attack can be detected. When no enumera-
tion can be identified, it is assumed that the attribute values
are random.

4.4.1 Learning
The classification of an argument as an enumeration or as

a random value is based on the observation that the number
of different occurrences of parameter values is bound by some

unknown threshold t in the case of an enumeration while it
is unrestricted in the case of random values.

When the number of different argument instances grows
proportional to the total number of argument instances, the
use of random values is indicated. If such an increase cannot
be observed, we assume an enumeration. More formally, to
decide if argument a is an enumeration, we calculate the
statistical correlation ρ between the values of the functions
f and g for increasing numbers 1, . . . , i of occurrences of a.
The functions f and g are defined as follows on N0.

f(x) = x (8)

g(x) =

��������� ��������

g(x − 1) + 1,

if the xth value for a is new

g(x − 1) − 1,

if the xth value was seen before

0,

if x = 0

(9)

The correlation parameter ρ is derived after the training
data has been processed. It is calculated from f and g with
their respective variances Var(f), Var(g) and the covariance
Covar(f,g) as shown below.

ρ =
Covar(f, g)�

Var(f) ∗ Var(g)
(10)

If ρ is less than 0, then f and g are negatively correlated
and an enumeration is assumed. This is motivated by the fact
that, in this case, increasing function values of f (reflecting
the increasing number of analyzed parameters) correlate with
decreasing values of g(x) (reflecting the fact that many argu-
ment values for a have previously occurred). In the opposite
case, where ρ is greater than 0, the values of a have shown
sufficient variation to support the hypothesis that they are
not drawn from a small set of predefined tokens.

When an enumeration is assumed, the complete set of iden-
tifiers is stored for use in the detection phase.

4.4.2 Detection
Once it has been determined that the values of a query

attribute are tokens drawn from an enumeration, any new
value is expected to appear in the set of known values. When
this happens, 1 is returned, 0 otherwise. If it has been de-
termined that the parameter values are random, the model
always returns 1.

4.5 Attribute Presence or Absence
Most of the time, server-side programs are not directly in-

voked by users typing the input parameters into the URIs
themselves. Instead, client-side programs, scripts, or HTML
forms pre-process the data and transform it into a suitable
request. This processing step usually results in a high reg-
ularity in the number, name, and order of parameters. Em-
pirical evidence shows that hand-crafted attacks focus on ex-
ploiting a vulnerability in the code that processes a certain
parameter value, and little attention is paid to the order or
completeness of the parameters.

The analysis takes advantage of this fact and detects re-
quests that deviate from the way parameters are presented
by legitimate client-side scripts or programs. This type of
anomaly is detected using two different algorithms. The first



one, described in this section, deals with the presence and
absence of attributes ai in a query q. The second one is
based on the relative order of parameters and is further dis-
cussed in Section 4.6. Note that the two models differ from
the previous ones because the analysis is performed on the
query as a whole, and not individually on each parameter.

The algorithm discussed hereinafter assumes that the ab-
sence or abnormal presence of one or more parameters in a
query might indicate malicious behavior. In particular, if
an argument needed by a server-side program is missing, or
if mutually exclusive arguments appear together, then the
request is considered anomalous.

4.5.1 Learning
The test for presence and absence of parameters creates a

model of acceptable subsets of attributes that appear simul-
taneously in a query. This is done by recording each distinct
subset Sq = {ai, . . . , ak} of attributes that is seen during the
training phase.

4.5.2 Detection
During the detection phase, the algorithm performs for

each query a lookup of the current attribute set. When the
set of parameters has been encountered during the training
phase, 1 is returned, otherwise 0.

4.6 Attribute Order
As discussed in the previous section, legitimate invocations

of server-side programs often contain the same parameters
in the same order. Program logic is usually sequential, and,
therefore, the relative order of attributes is preserved even
when parameters are omitted in certain queries. This is not
the case for hand-crafted requests, as the order chosen by a
human can be arbitrary and has no influence on the execution
of the program.

The test for parameter order in a query determines whether
the given order of attributes is consistent with the model
deduced during the learning phase.

4.6.1 Learning
The order constraints between all k attributes (ai : ∀i =

1 . . . k) of a query are gathered during the training phase.
An attribute as of a program precedes another attribute at

when as and at appear together in the parameter list of at
least one query and as comes before at in the ordered list of
attributes of all queries where they appear together.

This definition allows one to introduce the order constraints
as a set of attribute pairs O such that:

O = {(ai, aj) : ai precedes aj and (11)

ai, aj ∈ (Sqj
: ∀j = 1 . . . n)}

The set of attribute pairs O is determined as follows. Con-
sider a directed graph G that has a number of vertices equal
to the number of distinct attributes. Each vertex vi in G
is associated with the corresponding attribute ai. For every
query qj , with j = 1 . . . n, that is analyzed during the train-
ing period, the ordered list of its attributes a1, a2, . . . , ai is
processed. For each attribute pair (as, at) in this list, with
s 6= t and 1 ≤ s, t ≤ i, a directed edge is inserted into the
graph from vs to vt.

At the end of the learning process, graph G contains all or-
der constraints imposed by queries in the training data. The
order dependencies between two attributes are represented

either by a direct edge connecting their corresponding ver-
tices, or by a path over a series of directed edges. At this
point, however, the graph could potentially contain cycles as
a result of precedence relationships between attributes de-
rived from different queries. As such relationships are im-
possible, they have to be removed before the final order con-
straints can be determined. This is done with the help of
Tarjan’s algorithm [33] which identifies all strongly connected
components (SCCs) of G. For each component, all edges con-
necting vertices of the same SCC are removed. The resulting
graph is acyclic and can be utilized to determine the set of
attribute pairs O which are in a ‘precedes’ relationship. This
is obtained by enumerating for each vertex vi all its reachable
nodes vg, . . . , vh in G, and adding the pairs (ai, ag) . . . (ai, ah)
to O.

4.6.2 Detection
The detection process checks whether the attributes of a

query satisfy the order constraints deduced during the learn-
ing phase. Given a query with attributes a1, a2, . . . , ai and
the set of order constraints O, all the parameter pairs (aj , ak)
with j 6= k and 1 ≤ j, k ≤ i are analyzed to detect po-
tential violations. A violation occurs when for any single
pair (aj , ak), the corresponding pair with swapped elements
(ak, aj) is an element of O. In such a case, the algorithm
returns an anomaly score of 0, otherwise it returns 1.

5. EVALUATION
This section discusses our approach to validate the pro-

posed models and to evaluate the detection effectiveness of
our system. That is, we assess the capability of the models to
accurately capture the properties of the analyzed attributes
and their ability to reliably detect potentially malicious de-
viations.

The evaluation was performed using three data sets. These
data sets were Apache log files from a production web server
at Google, Inc. and from two Computer Science Department
web servers located at the University of California, Santa
Barbara (UCSB) and the Technical University, Vienna (TU
Vienna).

We had full access to the log files of the two universities.
However, the access to the log file from Google was restricted
because of privacy issues. To obtain results for this data set,
our tool was run on our behalf locally at Google and the
results were mailed to us.

Table 2 provides information about important properties
of the data sets. The table shows the time interval during
which the data was recorded and the log file size. It also
lists the total number of HTTP queries in the log file, the
number of requests that invoke server-side programs (such
as CGI requests), the total number of their attributes, and
the number of different server-side programs.

5.1 Model Validation
This section shows the validity of the claim that our pro-

posed models are able to accurately describe properties of
query attributes. For this purpose, our detection tool was
run on the three data sets to determine the distribution of
the probability values for the different models. The length
of the training phase was set to 1,000 for this and all follow-
ing experiments. This means that our system used the first
thousand queries that invoked a certain server-side program
to establish its profiles and to determine suitable detection
thresholds.



Data Set Time Interval Size (MByte) HTTP Queries Program Requests Attributes Programs

Google 1 hour 236 640,506 490,704 1,611,254 206

UCSB 297 days 1,001 9,951,174 7,993 4,617 395

TU Vienna 80 days 251 2,061,396 713,500 765,399 84

Table 2: Data Set Properties
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Figure 3: Attribute Length

Figure 3 and 4 show a distribution of the probability values
that have been assigned to the query attributes by the length
and the character distribution models, respectively. The y-
axis shows the percentage of attribute values that appeared
with a specific probability. For the figures, we aggregated the
probability values (which are real numbers in the interval be-
tween 0.0 and 1.0) into ten bins, each bin covering an interval
of 0.1. That is, all probabilities in the interval [0.0, 0.1[ are
added to the first bin, values in the interval [0.1, 0.2[ are
added to the second bin, and so forth. Note that a proba-
bility of 1 indicates a completely normal event. The relative
number of occurrences are shown on a logarithmic scale.

Table 3 shows the number of attributes that have been
rated as normal (with a probability of 1) or as anomalous
(with a probability of 0) by the structural model and the
token finder model. The table also provides the number
of queries that have been classified as normal or as anoma-
lous by the presence/absence model and the attribute order
model. The number of queries is less than the number of
attributes, as each query can contain multiple attributes.

The distributions of the anomaly scores in Figure 3, Fig-
ure 4 and Table 3 show that all models are capable of captur-
ing the normality of their corresponding features. The vast
majority of the analyzed attributes are classified as normal
(reflected by an anomaly score close to one in the figures)
and only few instances deviate from the established profiles.
The graphs in Figure 3 and 4 quickly drop from above 90%
of ‘most normal’ instances in the last bin to values below 1%.

It can be seen that the data collected by the Google server
shows the highest variability (especially in the case of the at-
tribute length model). This is due to the fact that the Google

search string is included in the distribution. Naturally, this
string, which is provided by users via their web browsers to
issue Google search request, varies to a great extent.

5.2 Detection Effectiveness
This section analyzes the number of hits and false positives

raised during the operation of our tool.
To assess the number of false positives that can be ex-

pected when our system is deployed, the intrusion detection
system was run on our three data sets. For this experiment,
we assumed that the training data contained no real attacks.
Although the original log files showed a significant number of
entries from Nimda or Code Red worm attacks, these queries
were excluded both from the model building and detection
process. Note, however, that this is due to the fact that
all three sites use the Apache HTTP server. This web server
fails to locate the targeted vulnerable program and thus, fails
execute it. As we only include queries that result from the in-
vocation of existing programs into the training and detection
process, these worm attacks were ignored.

The false positive rate can be easily calculated by divid-
ing the number of reported anomalous queries by the total
number of analyzed queries. It is shown for each data set in
Table 4.

The relative numbers of false positives are very similar for
all three sites, but the absolute numbers differ tremendously,
reflecting the different web server loads. Although almost
five thousand alerts per day for the Google server appears
to be a very high number at a first glance, one has to take
into account that this is an initial result. The alerts are the
raw output produced by our system after a training phase
with parameters chosen for the university log files. One ap-



Structure (Attribute) Token (Attribute) Presence (Query) Order (Query)

Data Set normal anomalous normal anomalous normal anomalous normal anomalous

Google 1,595,516 15,738 1,603,989 7,265 490,704 0 490,704 0

UCSB 7,992 1 7,974 19 4,616 1 4,617 0

TU Vienna 765,311 98 765,039 370 713,425 75 713,500 0

Table 3: Probability Values
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Figure 4: Attribute Character Distribution

proach to reduce the number of false positives is to modify the
training and detection thresholds to account for the higher
variability in the Google traffic. Nearly half of the number of
false positives are caused by anomalous search strings that
contain instances of non-printable characters (probably re-
quests issued by users with incompatible character sets) or
extremely long strings (such as URLs directly pasted into the
search field). Another approach is to perform post-processing
of the output, maybe using a signature-based intrusion de-
tection system to discard anomalous queries with known de-
viations. In addition, it is not completely impossible to deal
with this amount of alerts manually. One or two full-time
employees could browse the list of alerts, quickly discarding
obviously incorrect instances and concentrating on the few
suspicious ones.

When analyzing the output for the two university log files,
we encountered several anomalous queries with attributes
that were not malicious, even though they could not be in-
terpreted as correct in any way. For example, our tool re-
ported a character string in a field used by the application
to transmit an index. By discussing these queries with the
administrators of the corresponding sites, it was concluded
that some of the mistakes may have been introduced by users
that were testing the system for purposes other than security.

After estimating the false alarm rates, the detection ca-
pabilities of our tool were analyzed. For this experiment, a
number of attacks were introduced into the data set of TU
Vienna. We have chosen this data set to insert attacks for two
reasons. First, we had access to the log file and could inject
queries; something that was impossible for the Google data
set. Second, the vulnerable programs that were attacked had

already been installed at this site and were regularly used.
This allowed us to base the evaluation on real-world training
data.

We used eleven real-world exploits downloaded from popu-
lar security sites [6, 27, 29] for our experiment. The set of at-
tacks consisted of a buffer overflow against phorum [26], a php
message board, and three directory traversal attacks against
htmlscript [24]. Two XSS (cross-site scripting) exploits
were launched against imp [15], a web-based email client,
and two XSS exploits against csSearch [8], a search utility.
Webwho [9], a web-based directory service was compromised
using three variations of input validation errors. We also
wanted to assess the ability of our system to detect worms
such as Nimda or Code Red. However, as mentioned above,
all log files were created by Apache web servers. Apache
is not vulnerable against the attacks, as both worms exploit
vulnerabilities in Microsoft’s Internet Information Server (IIS).
We solved the problem by installing a Microsoft IIS server
and, after manually creating training data for the vulnerable
program, injecting the signature of a Code Red attack [5].
Then, we transformed the log file into Apache format and
run our system on it.

All eleven attacks and the Code Red worm have been re-
liably detected by our anomaly detection system, using the
same thresholds and training data that were used to evaluate
the false alarm rate for this data set. Although the attacks
were known to us, all are based on existing code that was
used unmodified. In addition, the malicious queries were in-
jected into the log files for this experiment after the model
algorithms were designed and the false alarm rate was as-
sessed. No manual tuning or adjustment was necessary.



Data Set Number of Alerts Number of Queries False Positive Rate Alarms per Day

Google 206 490,704 0.000419 4,944

UCSB 3 4617 0.000650 0.01

TU Vienna 151 713,500 0.000212 1.89

Table 4: False Positive Rates

Attack Class Length Char. Distr. Structure Token Presence Order

Buffer Overflow x x x x

Directory Traversal x x

XSS (Cross-Site Scripting) x x x x

Input Validation x x

Code Red x x x

Table 5: Detection Capabilities

Table 5 shows the models that reported an anomalous
query or an anomalous attribute for each class of attacks.
It is evident that there is no model that raises an alert for
all attacks. This underlines the importance of choosing and
combining different properties of queries and attributes to
cover a large number of possible attack venues.

The length model, the character distribution model, and
the structural model are very effective against a broad range
of attacks that inject a substantial amount of malicious pay-
load into an attribute string. Attacks such as buffer over-
flow exploits (including the Code Red worm, which bases
its spreading mechanism on a buffer overflow in Microsoft’s
IIS) and cross-site scripting attempts require a substantial
amount of characters, thereby increasing the attribute length
noticeably. Also, a human operator can easily tell that a ma-
liciously modified attribute does not ‘look right’. This ob-
servation is reflected in its anomalous character distribution
and a structure that differs from the previously established
profile.

Input validation errors, including directory traversal at-
tempts, are harder to detect. The required number of charac-
ters is smaller than the number needed for buffer overflow or
XSS exploits, often in the range of the legitimate attribute.
Directory traversal attempts stand out because of the un-
usual structure of the attribute string (repetitions of slashes
and dots). Unfortunately, this is not true for input valida-
tion attacks in general. The three attacks that exploit an
error in Webwho did not result in an anomalous attribute for
the character distribution model or the structural model. In
this particular case, however, the token finder raised an alert,
because only a few different values of the involved attribute
were encountered during the training phase.

The presence/absence and the parameter order model can
be evaded without much effort by an adversary that has suffi-
cient knowledge of the structure of a legitimate query. Note,
however, that the available exploits used in our experiments
resulted in reported anomalies from at least one of the two
models in 8 out of 11 cases (one buffer overflow, four directory
traversal, and three input validation attacks). We therefore
decided to include these models into our IDS, especially be-
cause of the low number of false alarms they produce.

The results presented in this section show that our sys-
tem is able to detect a high percentage of attacks with a
very limited number of false positives (all attacks, with less

than 0.2% false alarms in our experiments). Some of the at-
tacks are also detectable by signature-based intrusion detec-
tion systems such as Snort, because they represent variations
of known attacks (e.g., Code Red, buffer overflows). Other
attacks use malicious manipulation of the query parameters,
which signature-based system do not notice. These attacks
are correctly flagged by our anomaly detection system.

A limitation of the system is its reliance on web access logs.
Attacks that compromise the security of a web server before
the logging is performed may not be detected. The approach
described in [1] advocates the direct instrumentation of web
servers in order to perform timely detection of attacks, even
before a query is processed. This approach may introduce
some unwanted delay in certain cases, but if this delay is
acceptable then the system described here could be easily
modified to fit that model.

6. CONCLUSIONS
Web-based attacks should be addressed by tools and tech-

niques that compose the precision of signature-based detec-
tion with the flexibility of anomaly-based intrusion detection
system.

This paper introduces a novel approach to perform anomaly
detection, using as input HTTP queries containing param-
eters. The work presented here is novel in several ways.
First of all, to the best of our knowledge, this is the first
anomaly detection system specifically tailored to the detec-
tion of web-based attacks. Second, the system takes advan-
tage of application-specific correlation between server-side
programs and parameters used in their invocation. Third,
the parameter characteristics (e.g., length and structure) are
learned from input data. Ideally, the system will not re-
quire any installation-specific configuration, even though the
level of sensitivity to anomalous data can be configured via
thresholds to suit different site policies.

The system has been tested on data gathered at Google,
Inc. and two universities in the United States and Europe.
Future work will focus on further decreasing the number of
false positives by refining the algorithms developed so far,
and by looking at additional features. The ultimate goal is
to be able to perform anomaly detection in real-time for web
sites that process millions of queries per day with virtually
no false alarms.
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