
Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security

T1A3 1100 United States Military Academy, West Point, NY, 5–6 June 2001

ADAM: Detecting Intrusions by Data Mining

Daniel Barbará Julia Couto Sushil Jajodia Leonard Popyack Ningning Wu

George Mason University

Center for Secure Information Systems and ISE Department

Fairfax, VA 22030

dbarbara,jics,jajodia,nwu@gmu.edu

popyack@rl.af.mil

Abstract— Intrusion detection systems have traditionally
been based on the characterization of an attack and the
tracking of the activity on the system to see if it matches
that characterization. Recently, new intrusion detection sys-
tems based on data mining are making their appearance in
the field. This paper describes the design and experiences
with the ADAM (Audit Data Analysis and Mining) system,
which we use as a testbed to study how useful data mining
techniques can be in intrusion detection.

Keywords—Intrusion Detection, Data Mining, Association
Rules, Classifiers.

I. Introduction

The widespread use of Internet and computer networks
experienced in the past years has brought, with all its ben-
efits, another kind of threat: that of people using illicit
means to access, invade and attack computers. To under-
stand that the threat is real it is enough to look at the
statistics. Ten major government agencies, accounting for
98 % of the Federal budget had been compromised in the
past [9]. Recently, a massive, coordinated attack directed
at the major e-commerce sites was staged [22]. What is
worse, it is estimated than less than 4 % of these attacks
will ever be detected or reported. The issue is so pressing
that has prompted the administration to propose a new
Federal Intrusion Detection Network and a plan to put re-
sources into what is called Defensive Information Warfare.
Lately, systems have been trying to use data mining tech-

niques to meet the intrusion detection challenge. Data min-
ing can be defined as a set of tasks that enable users to look
for patterns in the data (good introductions to the topic
can be found [8], [10]).
Intrusion detection techniques can be classified into two

broad categories: misuse detection and anomaly detection.
Misuse detection aims to detect well-known attacks as well
as slight variations of them, by characterizing the rules that

L. Popyack is with the Air Force Research Lab, 2e Air Force
Research Lab/IFGB 525 Brooks Rd Rome, NY 13441-4514, popy-
ack@rl.af.mil .
This research has been funded by the Air Force Research Labora-

tory, Rome, NY under the contract F30602-00-2-0512.

govern these attacks. Due to its nature, misuse detection
has low false alarms but it is unable to detect any attacks
that lie beyond its knowledge. Anomaly detection is de-
signed to capture any deviations from the established pro-
files of the system normal behavior. Anomaly detection has
the potential to generate too many false alarms, requiring a
lot of time and labor to separate true intrusions from false
alarms. ADAM has been designed and implemented as an
anomaly detection system, but using a module that classi-
fies the suspicious events into false alarms or real attacks.
ADAM is unique in two ways. First, ADAM uses data
mining to build a customizable profile of rules of normal
behavior, and a classifier that sifts the suspicious activi-
ties, classifying them into real attacks (by name) and false
alarms. Secondly, ADAM is designed to be used on-line (in
real time), a characteristic achieved by using incremental
mining algorithms that use a sliding window of time to find
suspicious events.

II. ADAM

ADAM is essentially a testbed for using data mining
techniques to detect intrusions. ADAM [4] uses a com-
bination of association rules mining and classification to
discover attacks in a TCPdump audit trail. First, ADAM
builds a repository of ”normal” frequent itemsets that hold
during attack-free periods. It does so by mining data that
is known to be free of attacks. Secondly, ADAM runs a
sliding-window, on-line algorithm that finds frequent item-
sets in the last D connections and compares them with
those stored in the normal itemset repository, discarding
those that are deemed normal. With the rest, ADAM uses
a classifier which has been previously trained to classify
the suspicious connections as a know type of attack, an
unknown type or a false alarm.

Association rules are used to gather necessary knowl-
edge about the nature of the audit data, on the assump-
tion that discovering patterns within individual records in
a trace can improve the classification task. The task of
mining association rules, first presented in [1] consists in

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 11

deriving a set of rules in the form of X −→ Y where X

and Y are sets of attribute-values, with X
⋂

Y = ∅ and
‖Y ‖ = 1. The set X is called the antecedent of the rule
while the item Y is called consequent. For example, in a
market-basket data of supermarket transactions, one may
find that customers who buy milk also buy honey in the
same transaction, generating the rule milk −→ honey.
There are two parameters associated with a rule: support
and confidence. The rule X −→ Y has support s in the
transaction set T if s% of transactions in T contain X ∪Y .
The rule X −→ Y has confidence c if c% of transactions in
T that contain X also contain Y . The most difficult and
dominating part of an association rules discovery algorithm
is to find the itemsets X

⋃

Y , that have strong support.
(Once an itemset is deemed to have strong support, it is
an easy task to decide which item in the itemset can be the
consequent by using the confidence threshold.)

ADAM uses connections as the basic granule, obtain-
ing the connections from the raw packet data of the audit
trail. This preprocessing results in a table with the follow-
ing schema:

R(Ts, Src.IP, Src.Port,Dst.IP,Dst.Port, FLAG).

In this schema, Ts represents the beginning time of a con-
nection, Src.IP and Src.Port refer to source IP and port
number respectively, while Dst.IP and Dst.Port, repre-
sent the destination IP and port number. The attribute
FLAG describes the status of a TCP connection. The
relation R contains the dataset that is subject of the asso-
ciation mining. The number of potential itemsets is large:
connections may come from a large base of source IP ad-
dresses and ports. We focus in itemsets that contain items
that indicate the source of the connection (like source IP
and port), and items that indicate its destination (like des-
tination IP and port). We also consider itemsets that are
“aggregations” of source IP or Port values, e.g., connec-
tions that come from a source domain and have the same
destination IP. We call these itemsets domain-level item-
sets. (For instance, we want to discover frequent connec-
tions from Source IP X to Destination IP Y, or from Source
Domain W to Destination IP Y.)

First, ADAM is trained using a data set in which the
attacks and the attack-free periods are correctly labeled.
In a first step, a database of frequent itemsets (those that
have support above a certain threshold) for the attack-free
portions of the data set is created. This serves as a profile
against which frequent itemsets found later will be com-
pared. The profile database is populated with frequent
itemsets whose format was shown before, as well as fre-
quent domain-level itemsets for attack-free portions of the
data. The itemsets in this profile database can be cat-
aloged according to the time of the day and day of the
week, to further refine the specificity of these rules to vari-
ations of workload during the different time periods. The
mining algorithm used for this first step of the training

phase is an off-line algorithm. Thus, a conventional as-
sociation rule mining algorithm can be used to drive this
phase. (Although we use an algorithm tailored specifically
for the kinds of itemsets we aim to find, and which runs
considerably faster than a general-purpose association rules
algorithm.)

Next, to complete the training phase, we use an incre-
mental, on-line algorithm to detect itemsets that receive
strong support within a period of time. This algorithm
is driven by a sliding window of tunable size δ. The algo-
rithm outputs itemsets (of the same format of those present
in the profile database) that have received strong support
during this window. We compare any itemset that starts
receiving support with itemsets in the profile database for
an analogous time and day of the week. If the itemset is
present in the profile database, we do not pay attention to
it (i.e., we do not devote storage resources to keep track of
its support). On the other hand, if the itemset is not in
the database, we keep a counter that will track the support
that the itemset receives. If the itemset’s support surpasses
a threshold, that itemset is reported as suspicious. For a
set of suspicious itemset, we provide two services. First the
ability to drill down and find the raw data in the audit trail
that gives rise to these rules. Secondly, We annotate sus-
picious itemsets with a vector of parameters (based on the
raw audit trail data that gave rise to the rules). Since we
know where the attacks are in the training set, the corre-
sponding suspicious itemsets along with their feature vec-
tors are used to train a classifier. The trained classifier will
be able to, given a suspicious itemset and a vector of fea-
tures, classify it as a known attack (and label it with the
name of the attack), as an unknown attack (whose name is
not known), or as a false alarm. It is important to remark
here that ADAM has the ability of classifying a suspicious
event (itemset and features) as an unknown attack. Notice
that no training set can possibly prepare a classifier for an
unknown attack (since there can be no examples of such an
event). In general, labeling events as unknown attacks (or
anomalies) is a very difficult problem. We are able to in-
clude such a provision by using an artifact present in some
classifiers: the inclusion of a “default” label by which the
classifier expresses its inability to recognize the class of the
event as one of the known classes. We take the approach
that any event flagged by the association rules software
that cannot be classified as a known attack or as a normal
event (false alarm) by the classifier, ought to be considered,
conservatively, as an unknown attack. Using this assump-
tion, we change the label in the classifier from ”default”
to ”unknown.” Our experiments have shown that this is
a very efficient way to detect attacks whose nature is not
fully understood. From there, an analyst can perform a
more rigorous analysis by hand.

ADAM is then ready to detect intrusions online. Again,
the on-line association rules mining algorithm is used to

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 12

domain-level mining

off-line single
and

training data

attack free

training data

feature selection

on-line single level

domain-level mining
and

suspicious
hot itemsets

label itemsets
as false alarms

or attacks trainingfeatures
classifier builder

profile

Figure 1: The training phase of ADAM.

process a window of the current connections. Suspicious
connections are flagged and sent along with their feature
vectors to the trained classifier, where they will be labeled
accordingly.

Figures 1 and 2 show the basic architecture of our sys-
tem. Our system performs its task in two phases. In the
training mode , depicted in Figure 1, we use a data stream
for which we know where the attacks (and their type) are
located. The attack-free parts of the stream are fed into
a module that performs off-line association rules discov-
ery. The output of this module is a profile of rules that
we call “normal,” i.e., that depict the behavior during pe-
riods where there are no attacks. The profile along with
the training data set is also fed into a module that uses
a combination of a dynamic, on-line algorithm for associa-
tion rules, whose output consists of frequent itemsets that
characterize attacks to the system. These itemsets, along
with a set of features extracted from the data stream by a
features selection module are used as the training set for a
classifier (decision tree). This whole phase takes place one
time (off-line), before we use the system to detect intru-
sions.

The other phase, i.e., the actual detection of intrusions
is implemented as depicted in 2. Here the dynamic al-
gorithm is used to produce itemsets that are considered as
suspicious and, along the features extracted by the features
selection module are fed to the (already trained) classifier,
which labels the events as attacks (including its presumed
type), false alarms, or unknown. When the classifier la-
bels connections as false alarms, it is filtering them out of
the attacks set, avoiding passing these alarms to the secu-
rity officer. The last class, i.e., unknown, is reserved for

suspicious

on-line single level
and

hot itemsets

feature selection classifier

test data profile
domain-level mining

false alarms

attacks, unknown

Figure 2: Discovering intrusions with ADAM.

max. number of
false positives 1/day 10/day 100/day
total number of
attacks detected 12 12 12
% of the total # 32.4% 32.4% 32.4%

Figure 3 PROBE attacks detected versus the maximum
number of false positives

max. number of
false positives 1/day 10/day 100/day
total number of
DOS attacks de-
tected

30 30 30

% of the total # 46.2% 46.2% 46.2%

Figure 4 DOS attacks detected versus the maximum num-
ber of false positives

events whose exact nature cannot be pinpointed by the
classifier (they cannot be classified as known attacks). We
consider those as attacks and include them in the set of
alarms passed to the security officer.
Figures 3 and 4 show the results of DARPA 1999 test

data. ADAM participated in DARPA 1999 intrusion detec-
tion evaluation. It focused on detecting DOS and PROBE
attacks from tcpdump data and performed quite well.
Figures 5 and 6 show the results of the recent 1999

DARPA Intrusion Detection Evaluation, administered by
MIT Lincoln Labs [19]. ADAM entered the competition
and performed extremely well. We aimed to detect in-
trusions of the type Denial of Service (DOS) and Probe
attacks (although ADAM can discover other types of in-
trusions as well). In those categories, as shown in Figure 5,
ADAM ranked third, after EMERALD and the University
of California Santa Barbara’s STAT system. The attacks

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 13

0

40

20

60

80

100

DOS Probe U2L U2R

SRI-Emm

UCSB

GMU

%
A

tt
a
c
k

s

 D
e
te

c
te

d

Figure 5: 1999 DARPA Intrusion Detection Evaluation
Results. The graph shows the accuracy achieved by the
best three ranking tools in the competition (EMERALD,

UCSB STAT and ADAM –labeled as GMU–).

0

gmu nyu derbi emerald-

bsm(19/44)
expert-

emerald-
expert-

telcordia ucsb-

20

40

60

80

100

P
er

ce
nt

C

or
re

ct

(41/102) (19/195) (15/27)
network
(74/163)

(6/23)

(66/158)

netstat-
tcpdump

Figure 6: 1999 DARPA Intrusion Detection Evaluation
Results. Overall ranking of the competing tools in terms
of identifying attacks: EMERALD and ADAM –labeled
as GMU– were the most accurate tools. (The numbers in
parenthesis indicate the attacks the tools detected out of

those they were supposed to detect.)

detected by those systems and missed by ADAM were those
that fell below our thresholds, being attacks that involved
usually only one connection and that can be best identi-
fied by signature-based systems. ADAM came very close
to EMERALD in overall attack identification, as shown in
Figure 6. Evaluation results can be found in [17].

III. Related Work

There are two kinds of intrusion detection systems: those
which use “signatures” to detect attacks whose behavior is
well understood and those which use some kind of statisti-
cal or data mining analysis to do the job. Of course, many
tools have both kinds of engines present to maximize the
likelihood of capturing the attacks.

A. Signature-based IDS

A.1 P-Best

P-Best [16] is a rule-based, forward-chaining expert sys-
tem that has been applied to signature-based intrusion de-
tection for many years. The main idea is to specify the
characteristics of a malicious behavior and then monitor
the stream of events generated by system activity, hoping
to recognize one intrusion ”signature”. Using a traditional
expert system is shown to yield good performance results
in real-time detection. Also, it is easy to use and it in-
tegrates well into existing OS environments, thanks to its
programmability at the C language level. In general, an
expert system production rule consists of a predicate ex-
pression (rule antecedent) over a well-defined set of facts,
and a consequent, which specifies which other facts are de-
rived when the antecedent is true. When any facts are
asserted that match the arguments of a rule antecedent,
the predicate expression is evaluated. If it evaluates to
true (the rule ”fires”), then the consequent is executed,
potentially resulting in other facts being asserted. This
process may create a chain of rule firings that yield new
deductions about the state of the system. In the context of
intrusion detection, facts are generally system events, with
a type such as ”login attempt” and additional context at-
tributes, e.g. ”return-code” with value ”bad-password”.
These attribute values can be used as arguments in the
rules antecedents. P-BEST was developed at SRI Interna-
tional and it was first deployed in the MIDAS ID system
at the National Computer Security Center. Later, P-BEST
was chosen as the rule-based inference engine of NIDES, a
successor to the IDES prototype [18]. The P-BEST expert
system shell is also used in EMERALD’s eXpert [21], a
generic signature-analysis engine.

A.2 USTAT and NSTAT

USTAT [11], a real-time intrusion detection system for
UNIX was developed in the Computer Science Department
of the University of California, Santa Barbara, and the
name stands for State Transition Analysis Tool for UNIX.
The original design was first developed by P. A. Porras
and presented in [20] as STAT, State Transition Analysis
Tool. STAT employs rule-based analysis of the audit trails
of multi-user computer systems. In STAT, an intrusion
is identified as a sequence of state changes that lead the
computer system from some initial state to a target com-
promised state. USTAT makes use of the audit trails that
are collected by the C2 Basic Security Module of SunOS
and it keeps track of only those critical actions that must
occur for the successful completion of the penetration. This
approach differs from other rule-based penetration identifi-
cation tools that pattern match sequences of audit records.
NetSTAT [24] performs real-time network-based intru-

sion detection by extending the state transition analysis
technique, first introduced in STAT [20], to the networked

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 14

environment. The system works on complex networks com-
posed of several sub-networks. Using state transition dia-
grams to represent network attacks entails a number of ad-
vantages, including the ability to automatically determine
the data to be collected to support intrusion analysis, re-
sulting in a lightweight and scalable implementation of the
network probes (speed advantages).

B. Statistic and Data Mining-Based IDS

B.1 IDES, NIDES and EMERALD

These three systems [18], [7], [2], [21] share a common
background and are built with a traditional signature-
based component that coexists with a statistical profiling
unit. The statistical profiling unit has as its guiding princi-
ple finding behavior that looks anomalous with respect to a
profile (in data mining this is known as finding “outliers”).
The statistical unit of these IDS maintains a knowledge

base of profiles, i.e., descriptions of normal behavior with
respect to a set of selected measures. (Full details about
the unit can be found in [12], [3].) The idea is to describe
the audited activity as a vector of intrusion-detection vari-
ables and compare this vector to another one defined by the
expected values stored in the profiles. If the audited activ-
ity vector proves to be sufficiently far from the expected
behavior, an anomaly is flagged. This vector, or summary
test statistic (in the terminology of IDES) is formed from
many individual measures, such as CPU usage and file ac-
cess. Each measure reflects the extent to which a particu-
lar type of behavior is similar to the historical profile built
for it. The way that this is computed is by associating
each measure to a corresponding random variable. The
frequency distribution of is built (and updated) over time,
as more audit records are analyzed. Examples of measures
are the rate of audit record activity every 60 seconds and
the user CPU time.
The frequency distribution is computed as an exponen-

tial weighted sum with a half-life of 30 days. The half-life
value makes audit records that were gathered 30 days in
the past to contribute with half as much weight as recent
records; those gathered 60 days in the past contribute one-
quarter as much weight, and so on. This is, in effect, a way
to control the number of audit records that play a role in
the distribution. The frequency distribution of Qi can be
computed in this manner for both continuous (numerical)
and categorical measures. (For details see [12], [3].) The
frequency distribution is kept in the form of a histogram
with probabilities associated with each one of the possible
ranges, or bins, that the measure can take. The cumulative
frequency distribution is then built by using the ordered set
of bin probabilities. Using this frequency distribution, and
the value of the corresponding measure for the current au-
dit record, it is possible to compute a value that reflects
how far away from the “normal” value of the measure the
current value is. The actual computation whose details

can be found in [12], [3], renders a value that is correlated
with how abnormal this measure is. Combining the values
obtained for each measure, and taking into consideration
the correlation between measures, the unit computes an in-
dex of how far the current audit record is from the normal
state. Records beyond a threshold are flagged as possible
intrusions.

B.2 JAM

The main idea in JAM [13], [14], [15] is to generate clas-
sifiers using a rule learning program on training data sets of
system usage. The output from the classifier, a set of clas-
sification rules, is used to recognize anomalies and detect
known intrusions. The main difference between JAM and
ADAM is that JAM aims to be a missuse detection sys-
tem by learning the characterization of the attacks (while
ADAM uses an anomaly-based approach). Specifically, the
approach of using classifiers is tested on two sets of data:
one from attacks that use sendmail, the other from net-
work attacks, using TCPdump. Sendmail data consists of
two sets of traces, one with normal and one with abnor-
mal data. The training data is fed to RIPPER [6], a rule-
learning program. RIPPER rules classify the training data
into the two classes ”normal” and ”abnormal”. Each trace
is then post-processed by comparing it with the RIPPER
predictions, in order to filter out spurious prediction errors.
The rationale for the post-processing scheme is that an ac-
tual intrusion is characterized by a majority of abnormal
adjacent call sequences. A second experiment described in
this work consists in computing classification rules using
only the normal traces. In this case, in order to detect
intrusions, the confidence information associated with the
generated rules is used. Each trace is given a score accord-
ing to whether a trace submitted to the classifier at runtime
violates one of the generated rules. In this case, the trace
score is incremented in proportion to the confidence of the
violated rule. Given a long trace with many sequences,
scores are assigned to each sequence, and the average score
is used to decide whether the sequence represents an intru-
sion. The TCPdump experiment shows how classifiers can
be induced from traffic data. Pre-processing is applied to
the TCPdump raw data and then RIPPER is applied to
the data. The paper reports on the results obtained, which
are less encouraging than expected. Finally, the authors
mention the use of a Meta-detection model that describes
how multiple base classifiers can be combined in order to
exploit combined evidence of multiple traffic patterns.

IV. Conclusions and Future Work

The behavior of ADAM in the DARPA 1999 competi-
tion gives us evidence about the usefulness of data mining
techniques in intrusion detection. There are, however, a lot
of issues to be solved:

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 15

• Threshold tuning It is important to obtain good thresh-
olds for declaring a connection suspicious. We are currently
performing statistical analysis of our results to obtain a
better sense on how to adjust these thresholds.
• Profiling Profiles play a crucial role in ADAM, since they
dictate what is considered “normal” behavior. We are cur-
rently experimenting with tailoring the profiles to different
days of the week and times of the day, in an effort to get a
good characterization of normality.
• Dependency on training data Unfortunately, for many
installations, obtaining training data is not easy. It is diffi-
cult to distinguish (without a lot of manual labor) between
normal connections and attacks in an audit trail to be ca-
pable of labelling the connections properly and use the data
stream as training data. (So future audit trails can really
be diagnosed automatically.) We are currently working in
two directions to make this problem more manageable:
1. Decrease ADAM’s dependency on attack training data:
We want to be able to start running ADAM in an installa-
tion for which only “normal” behavior is known as training
data. To do so, we are experimenting with a new technique,
based in Pseudo-Bayes estimators [5], that will allow us to
detect attacks even if no previous knowledge about the at-
tacks exists. (Of course, we will not be able to label the
attack name, but we will be able to attract the security’s of-
ficer attention to it.) Preliminary results indicate that the
technique is extremely succesful in identifying previously
unknown attacks.
2. Automate the process of obtaining a profile of normal
activity, starting from an audit trail for which the connec-
tions are not labelled. We are currently using statistical
techniques to detect outliers in an unlabeled stream of con-
nections. We are confident that by cleaning the data from
outliers, the stream of connections that is left will give us
a good profile of normal activity.
• Detect other types of attacks. So far, ADAM has con-
centrated in detecting PROBE and DOS attacks (and a
handful of other attacks that make use of a relatively large
number of connections). Our aim is to enhance the func-
tionality of ADAM by using other data mining techniques
for attacks that take place using a handful (or even one) of
connections. An idea is to model normality of these attacks
using time series and use a predictive tool that can distin-
guish when a series is abnormal, to flag it as an attack.

In summary, data mining is proving to play an impor-
tant role in intrusion detection. We are very confident that
ADAM will become, with time, a very strong tool to help
security officers in their daily work against intruders.

References

[1] R. Agrawal, T. Imielinski, , and A. Swami. Mining association
rules between sets of items in large databases. In Proc. of the
ACM SIGMOD Conference on Management of Data, Washing-
ton D.C., May 1993.

[2] D. Anderson and T. Frivold and A. Valdes. NIDES: A Summary.
In http://www.sdl.sri.com/nides/index5.html

[3] D. Anderson and T. Lunt and H. Javitz and A. Tamaru and A.
Valdes. Detecting unusual program behavior using the statisti-
cal component of the Next-generation Intrusion Detection Expert
System (NIDES). Technical Report, SRI-CSL-95-06, Computer
Science Laboratory, SRI International, May 1995.

[4] D. Barbará and S. Jajodia and N. Wu and B. Speegle. Mining
Unexpected Rules in Network Audit Trails. Technical Report,
George Mason University, ISE Dept. September 1999.

[5] Y.M.M. Bishop and S.E. Fienberg. Discrete Multivariate Analy-
sis: Theory and Practice. The MIT Press, 1975.

[6] W.W. Cohen. Fast Effective Rule Induction. In Proceedings of the
12th International Conference on Machine Learning, Lake Taho,
CA, 1995.

[7] D.E. Denning. An Intrusion Detection Model. In IEEE Transac-
tions on Software Engineering, February 1997, pp. 222-228.

[8] U.M. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthu-
rusamy. Advances in Knowledge Discovery and Data Mining.
AIII/MIT Press, 1996.

[9] General Accounting Office. Information Security: Computer
Attacks at Department of Defense Pose Increasing Risks.
GAO/AIMD-96-84, May, 1996.

[10] J. Han and M. Kamber Data Mining: Concepts and Techniques
Morgan Kaufmann, 2000

[11] K. Ilgun. USTAT: A Real-Time Intrusion Detection System for
UNIX. Master Thesis, University of California, Santa Barbara,
November 1992.

[12] H.S. Javitz and A. Valdes, The SRI IDES Statistical Anomaly
Detector. In http://www.sdl.sri.com/nides/index5.html

[13] W. Lee and S. Stolfo. Data Mining Approaches for Intrusion De-
tection. In Proceedings of the 7th USENIX Security Symposium,
1998.

[14] W. Lee and S.Stolfo and K. Mok. A Data Mining Framework
for Building Intrusion Detection Models. In Proceedings of the
IEEE Symposium on Security and Privacy, 1999.

[15] W. Lee and S.J. Stolfo and K. Mok. Mining Audit Data to Build
Intrusion Detection Models. In Proceedings of the International
Conference on Knowledge and Data Mining, August 1998.

[16] U. Lindqvist, P.A. Porras. Detecting Computer and Network
Misuse Through the Production-Based Expert System Toolset
(P-BEST). In Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy. pp. 146 -161.

[17] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba and K. Das. The
1999 DARPA off-line intrusion detection evaluation. In Computer
Networks, 34:579-595, 2000.

[18] T.F. Lunt and R Jagannathan. A Prototype Real-Time
Intrusion-Detection Expert System. In Proceedings of the IEEE
Symposium on Security and Privacy, 1988, pp. 18-21.

[19] MIT Lincoln Laboratories DARPA Intrusion Evaluation Detec-
tion. In http://www.ll.mit.edu/IST/ideval/

[20] P.A. Porras. STAT: A State Transition Analysis for Intrusion
Detection. Master Thesis, Computer Science Department, Uni-
versity of California, Santa Barbara, 1992.

[21] P.A. Porras and P.G. Neumann EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances. In Proceed-
ings of the National Information Systems Security Conference,
1997, pp. 353-365.

[22] I. Sager et al. Cyber Crime. In Business Week, February 21,
2000.

[23] S. Smaha. Haystack audit trail analysis system. Status Report
HS-STAT.TXT Haystack Laboratories, Colorado, Aug., 1990.

[24] G. Vigna and R. Kemmerer. NetStat: A Network-Based In-
trusion Detection Approach. In Proceedings of the 14th Annual
Information Theory : 50 Years of Discovery Computer Security
Application Conference, Dec. 1998.

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 16

