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Abstract

We extend prior research on system call anomaly detec-
tion modeling methods for intrusion detection by incorpo-
rating dynamic window sizes. The window size is the length
of the subsequence of a system call trace which is used as
the basic unit for modeling program or process behavior. In
this work we incorporate dynamic window sizes and show
marked improvements in anomaly detection. We present two
methods for estimating the optimal window size based on
the available training data. The first method is an entropy
modeling method which determines the optimal single win-
dow size for the data. The second method is a probability
modeling method that takes into account context dependent
window sizes. A context dependent window size model is
motivated by the way that system calls are generated by
processes. Sparse Markov transducers (SMTs) are used
to compute the context dependent window size model. We
show over actual system call traces that the entropy mod-
eling methods lead to the optimal single window size. We
also show that context dependent window sizes outperform
traditional system call modeling methods.

1 Introduction

Intrusion Detection Systems (IDS) are becoming an im-
portant part of computer security systems. A major advan-
tage of IDS is the ability of the IDS to detect new and un-
known attacks by examining audit data collected from a sys-
tem. Typically this detection is performed through a data
mining technique called anomaly detection [1]. Anomaly

detection builds models of “normal” audit data (or data
containing no intrusions) and detects intrusions based on
detecting deviations from this normal model. The perfor-
mance of these models depends greatly on the robustness
of the modeling method and the quantity and quality of the
available training data [2]. Much of this data is sequential
in nature. The basic units of the modeling technique are
short contiguous subsequences obtained with a sliding win-
dow. In this paper we present robust methods for choosing
the sliding window size and apply them to modeling system
call traces, a common type of audit data. We present two
methods for setting the window size. The first method is
information theory based and estimates the optimal single
window size for the data. The second method is probabil-
ity based and uses a dynamic window size set by the con-
text. We compare these methods to traditional system call
modeling methods and show how our methods outperform
previous approaches.

System call traces are a common type of audit data col-
lected for performing intrusion detection. A system call
trace is the ordered sequence of system calls that a process
performs during its execution. The trace for a given process
can be collected using system utilities such as strace. Sys-
tem call traces are useful for detecting a user to root (U2R)
exploit or attack. In this type of exploit, a user exploits a bug
in a privileged process (a process running as root) using a
buffer overflow to create a root shell. Typically, the system
call trace for a program process which is being exploited
is drastically different from the program process under nor-
mal conditions. This is because the buffer overflow and the
execution of a root shell typically call a very different set
of system calls than the normal execution of the program.
Because of these differences, we can detect when a process
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is being exploited by examining the system calls.
Traditionally, these methods typically build models over

short contiguous subsequences of the system call trace.
These short continuous subsequences are extracted with
a sliding window. Traditionally, system call modeling
methods employ a fixed window size. There have been
many different methods proposed for building models over
these short contiguous subsequences. A survey and com-
parison of anomaly detection techniques is given in [17].
Stephanie Forrest presents an approach for modeling nor-
mal sequences using look ahead pairs [4] and contiguous
sequences [7]. Helman and Bhangoo [6] present a statisti-
cal method to determine sequences which occur more fre-
quently in intrusion data as opposed to normal data. Lee
et al. [9, 8] uses a prediction model trained by a decision
tree applied over the normal data. Ghosh and Schwartzbard
[5] use neural networks to model normal data. Ye uses a
Markov chain-based method to model the normal data [18].

Each of these methods attempt to predict whether a sub-
sequence is more likely to have been generated by a normal
process or an exploit process. Typically, the only data that
is available is normal data, so this corresponds to predicting
how likely an observed sequence is normal or is consistent
with the normal data. One way to do this is to use a “pre-
diction” model. For a sequence of length � , we compute
how likely the first ����� system calls predict the � th sys-
tem call. The more consistent the subsequence is with the
normal data, then the more accurate the prediction.

All of the above methods use a fixed window size for
building the system call trace models. The size of the win-
dow is picked a priori presumably based on some intuitive
notion of what size works best for the modeling. There is
a tradeoff between using shorter or longer sequences. Let�

be the set of all system calls. Assuming all sequences
occur with equal probability and there are � � � different sys-
tem calls, we can assume that we see a specific � length
sequence with probability �� 	
� � . In general, if we use longer
sequences, we have a lot fewer instances of each subse-
quence in our data. However, intuitively, these instances
are more accurate than short sequences. Shorter sequences
occur much more frequently, but often are not as accurate
as longer sequences. Motivated by this tradeoff there is
some optimal sequence length for the models. In related
work, Marceau points out the problems of determining a
fixed window size and avoids the problem by presenting a
model of using multiple sequence lengths for building these
kinds of models [11].

As illustrated in this paper, we can determine the opti-
mal window size using the data. An information theoretic
framework for selecting optimal window size using entropy
modeling is described below. Intuitively, we would like to
pick the single window size based on what best fits the data
and use that window size for the modeling. We present

an analysis of this method and show empirically that the
method picks the optimal single window size.

However, we can do better than picking a single window
size. This is because the best size of the window depends
on the context. That is the optimal window size depends
specifically on the actual system calls in the subsequence
being modeled. For some system call subsequences a longer
window is optimal while for others a shorter window is op-
timal. This context dependency stems from the way a trace
is produced by a process. At different points in the process,
a different window size is optimal for modeling of system
calls. We motivate this assertion using “call graphs” below.
In addition, in any system call window, only a certain subset
of the system calls in the window are important in the mod-
eling. That is we can ignore some of the system calls. This
is equivalent to placing wild cards in the system call subse-
quence. Again, which system calls we can ignore depends
on the context.

In this paper, we present a context dependent window
size model for system call data. To model system calls with
context dependent window sizes, we use sparse Markov
transducers (SMTs) [3]1. SMTs are an extension of proba-
bilistic suffix trees [15, 16, 13]. SMTs use a mixture tech-
nique to estimate the optimal choices of context dependent
window sizes and placement of wildcards based on the data.
SMTs use sparse prediction trees which explicitly define
the context dependent choices of window sizes and wild
card placements. SMTs perform a mixture over possible
trees. The mixture allows the estimate of the “best” tree that
fits the data corresponding to the “best” choices of window
sizes and placement of wild cards. Since there are expo-
nentially many trees, SMTs employ an efficient method for
computing the mixture and efficient data structures to keep
the model in memory.

We perform experiments using SMTs and traditional
methods over real intrusion detection data. We perform ex-
periments over the 1999 DARPA Intrusion Detection Eval-
uation data created by MIT Lincoln Labs [12] as well as
data collected by the University of New Mexico [17]. We
compare the method presented in this paper with two tradi-
tional methods of intrusion detection, stide and t-stide [17].
We also compare the context dependent models to predic-
tion models with different fixed window sizes. We show
that our method performs significantly better than the tradi-
tional methods.

2 Entropy Modeling

We can use an information theoretic framework for
choosing the optimal system call window size. In this
framework we estimate how well different window sizes

1Sparse Markov transducers have been applied in [3] to biological se-
quence analysis problems in genomics.



will perform by computing the regularity of the data.
A detailed description of applying information theory to
anomaly detection is presented in [10].

The basic premise for anomaly detection is that there
is intrinsic regularity in audit data that is consistent with
the normal behavior and distinct from the abnormal behav-
ior. We will show empirically the more regular the data,
the better the performance of the anomaly detection algo-
rithm. The process of building an anomaly detection model
should therefore involve first measuring the regularity of the
data under different models. In our case, we are interested
in measuring the regularity under different window sizes.
Thus the regularity of the data can help choose the best win-
dow size.

To model the system call traces, we use a prediction
model whereby the probability of the � th system call is es-
timated from the previous � � � system calls. The way the
prediction model is trained is for each � � � sequence of
system calls present in the trace, we keep counts of the fol-
lowing system call. The prediction for a specific system call
given a sequence of � � � preceding system calls is simply
the count of that system call divided by the total count2.
Here the length � is the window size of the modeling al-
gorithm. We will measure the regularity of the data for the
prediction model under different values of � .

We propose to use an information theoretic measure to
measure regularity of data, conditional entropy, to help us
choose the value of � . The more regular the data, the lower
the entropy. Briefly, the definition of conditional entropy is:����� � ���	� � 
�� ������� ���

������� �����! !" �
�#� � � � (1)

where �
�#���$� � is the joint probability of

�
and

�
and �

��� � � �
is the conditional probability of

�
given

�
. In the context of

system calls we let
� � � be the set of system calls and�%� ��&(' � be the set of system call sequences of length� � � . We use the notation

�#����� � to represent a sequence of
length � . Let the set of all sequences in the trace be denoted)

. We use the notation � ���*�$� � � to be the number of times
the sequence appears in

)
and � ) � be the total number of

sequences in the trace. We can then write the joint prob-
ability as �

�#���$� �+� � , �� �.- �� / � . The conditional probability

�
��� � � � is the prediction of our model. Since �

�#����� �0�21
for a sequence

���*�$� � that does not occur in the trace and
conditional entropy is additive, we can represent the condi-
tional entropy for a window size � as:� & �#� � �3�4� � 
��� 	 � ��� 	 �6587 �

���*�$� ���9�� �" �
��� � � � (2)

� � 
, ��� �.-:� /
�
� ) �#;=<?> " �

��� � � �
2In order to avoid zero probabilities, we add a small initial count to

each system call.

Equation (2) can be computed efficiently.
We computed the conditional entropy values (

� & ��� � �@� )
for each of the system call data sets presented later in this
paper using different window sizes (values of � ) and plotted
them in Figure 1. The conditional entropy was computed
with cross validation. The data was split into two portions.
The prediction models was trained on the first portion of
the data and the entropy was computed over the second por-
tion. Then the first and second portions are reversed and we
again compute the entropy. Since entropy is additive, the to-
tal entropy is the sum of the entropy on each portion. If we
compare the entropy of a window size and the performance
of the model with that window size we notice that in gen-
eral the lower the entropy, the better the performance of the
model as shown in Figure 5. The specific method for eval-
uating the models and details about the data set are given
in section 5. In order to pick the optimal window size we
can use equation (2) to compute the entropy under different
window sizes and pick the window size with the minimum
entropy.

3 Program Call Graphs

The motivation for a context dependency of the window
size stems from the underlying mechanism of how a process
executes. A system call trace is a sequence of all of the sys-
tem calls that a process of a given program makes during its
lifetime. The system calls in the trace depend on the execu-
tion path of the process. A process execution path depends
on many factors such as inputs to the process as well as the
state of the system. These factors determine which execu-
tion path a process takes at each possible branch point.

We can model the set of all possible execution paths of
a program using a “call graph”. The call graph models the
program structure and defines the possible execution paths.
A call graph is a graph where each path through the graph is
a possible path of execution of a process of a program. The
nodes of the graph correspond to possible branch points of
the program and the edges of the graph are labeled with the
system calls between the branch points. There is a defined
start node for the graph and at least one end node. We can
view an execution path of a process as being a path through
the call graph associated with a program. A system call
trace is simply the system calls along the edges of the exe-
cution path of the process.

An example of a call graph and an execution path is
shown in Figure 2. Although a call graph exists for ev-
ery program, it is very difficult to obtain this graph. The
graph depends on the source code of the program as well as
the compiler used and the specifics of the operating system.
Even with the source code available, it is impractical to as-
sume that we can recreate the call graph from the observed
system call traces. Although it is impossible to determine
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Figure 1. Conditional Entropy under different window sizes for different data sets. Notice that most of the entropy curve has a minimum.
This is the optimal window size. Some of the curves do not have a minimum (ftp and ps (LL)) because the data for those processes is
extremely regular.

the specific call graph for a program, we can reasonably as-
sume that a call graph exists for each program and use this
to motivate the context dependency of the optimal window
size.

Applying the call graph framework to intrusion detec-
tion, there are a set of execution paths that correspond to
exploits. The goal of the system call modeling method is
to be able to determine whether a short subsequence of sys-
tem calls corresponds to a normal execution path or an ex-
ploit execution path. If we had access to the programs call
graph and it was labeled with normal and exploit paths, we
could match the subsequence to where it uniquely occurs in
the call graph. Notice that the tradeoff between longer and
shorter sequences is made explicit in the context of the call
graph. A longer sequence can more likely identify a unique
portion of the call graph, however, it is often too long to
fit within a single edge and must span some branch points.
For this sequence to be observed multiple times, the states
of the different processes where the longer sequence occurs
will all have to force the execution paths to be the same with
regard to those branches. This can introduce noise into our
model. Shorter sequences on the other hand, span fewer
branches. However, these shorter sequences can occur in

multiple points in the call graph causing it to be difficult
to determine uniquely where the short subsequence came
from and whether the short subsequence corresponds to an
exploit trace or a normal trace.

Ideally, for any given subsequence, we would like to take
the shortest subsequence that uniquely (or almost uniquely)
identifies the location of the call graph that generated this
subsequence. Because the branch points occur in different
places, the optimal length of the subsequence depends on
the specific system calls in the subsequence. Hence, the
optimal window size is context dependent.

Another common feature of call graphs is that they of-
ten have a branch which affects a single system call. An
example of a branch in a call graph is shown in Figure
3. In this portion of the call graph, there are two possi-
ble traces through it, “ioctl mmap open mmap unlink” and
“ioctl mmap close mmap unlink”. Because there are two
possibilities, the amount of observed system call traces from
this portion of the call graph are split into two parts. As dis-
cussed in the context of longer sequences, this is not optimal
for modeling. Intuitively, we want to be able to group these
two sequences into a single category. We can do this by
including wild cards in the subsequence. Both of the sub-
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Figure 2. A sample call graph and execution trace. Note
the execution path is marked on the graph in bold. The
system call trace of the execution path is the set of sys-
tem calls along the edges of the graph and in this case:��������� � �	��
��� < ��� ;  < ��� ; � ;#< ��� .

sequences can fit into the model of “ioctl mmap * mmap
unlink”. Again, the placements of the wildcards are context
dependent relating to the call graph. This motivates the in-
corporation of context dependent wild cards into the model.

mmap
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open

mmapioctl unlink

Figure 3. A portion of a call graph corresponding to a single
system call branch. Note the system call subsequence corre-
sponding to this call graph is “ioctl mmap * mmap unlink”.

4 Sparse Markov Transducers

In order to determine whether a system call trace subse-
quence corresponds to an exploit or normal trace, we build a
probabilistic prediction model which predicts the last ( � th)

system call given the previous ( ��� � ) system calls in the
subsequence. In this model, this can be represented as a
probability estimate of the last system call conditional on
the sequence of previous system calls. The size of the win-
dow and the placement of the wild cards correspond to the
length of the conditioning sequence and the specific posi-
tions in the conditioning sequence on which the probability
is conditioned. To model this type of probability distribu-
tion, we use sparse Markov transducers.

The prediction model is equivalent to computing the
probability

�
��� & � � &�' � � &(' " � &�'�� � &�'�������� � � � (3)

where
���

are random variables over the set of system calls�
. In this probability distribution the last system call

� & is
conditional on the � � � previous system calls.

As motivated by call graphs, the probability distribution
is conditioned on some of the system calls and not others.
The different window sizes correspond to different lengths
of the conditional sequence. For example, if the optimal
window size for a given context is � ��� , then the prob-
ability distribution would be conditional only on the first�

system calls in the sequence (
� � � " � � ). Depending on

the specific system calls in the sequence, there is a different
value of � .

Also dependent on the context is the placement of wild
cards. For any given sequence, the conditioning sequence
contains wild cards. For example, if the optimal window
size for a given context is � � � with the third system call
being a wild card, the conditioning sequence will be

� �"!� " � � where the symbol ! represents a wild card. We use
the notation ! & to represent � consecutive wild cards.

SMTs are used to model system call traces by estimating
a context dependent “predictive” probability as motivated
by the call graph framework. This is the probability of pre-
dicting the final system call in a subsequence given the pre-
vious subsequences. This probability estimation takes into
account the context dependent nature of the data. Once we
train this model over normal data from a given program,
we then have a predictive probability distribution for that
program. When evaluating new program traces to deter-
mine whether or not they correspond to exploits, we com-
pute the predictive probability for each subsequence. If the
subsequence probability is below some threshold, then we
know that the subsequence trace is very unlikely to have
originated from a normal process and we declare the pro-
cess trace an exploit. The value of the threshold defines the
tradeoff between the detection rate and the false positive
rate of the system. Higher thresholds will mean more traces
will be reported as exploits meaning a higher detection rate
at a potentially higher false positive rate. Likewise lower
thresholds will mean fewer traces will be reported as ex-
ploits which gives a lower false positive rate at a potentially



lower detection rate. Because of this tradeoff, we evaluate
the system under many different thresholds as described in
more detail in section 5.

In brief our approach is as follows. We define a type of
prediction suffix tree called a sparse prediction tree which is
representationally equivalent to sparse Markov transducers.
These trees probabilistically map input strings to a proba-
bility distribution over the output symbols. The topology of
a tree encodes the context dependent length and positions
of the wild-cards in the conditioning sequence of the proba-
bility distribution. We estimate the probability distributions
of these trees from the set of examples. Since a priori we
do not know the optimal window sizes or positions of the
wild-cards, we do not know the best tree topology. For this
reason, we use a mixture (weighted sum) of trees and update
the weights of the tree weights based on their performance
over the set of examples. We update the trees so that the
better performing trees get larger weights while the worse
performing trees get smaller weights. Thus the data is used
to choose the positions of the wild-cards in the conditioning
sequences. We use an efficient algorithm for updating the
mixture weights and estimating the sparse Markov trans-
ducer presented in [3]. The algorithm computes the exact
mixture weights for an exponential number of trees in a
highly efficient manner. Efficient data structures are used
to represent common subtrees exactly once, and hence the
mixture can be computed in time proportional to the number
of sequences (not proportional to an exponential number of
trees).

4.1 Sparse Markov Trees

To model sparse Markov transducers, we use a type of
prediction suffix tree called a sparse prediction tree. A
sparse prediction tree is a rooted tree where each node is
either a leaf node or contains one branch labeled with ! &
for � � 1 that forks into a branch for each element in

�
(each system call). Each leaf node of the tree is associated
with a probability distribution over the system calls,

�
. Fig-

ure 4 shows a sparse Markov tree. In this tree, leaf nodes,� � ������� , each are associated with a probability distribution.
The path from the root node to a leaf node represents the
conditioning sequence in the probability distribution. We
label each node using the path from the root of the tree to
the node. Because the path contains the wild-card symbol
! , there are multiple strings over

�
that are mapped to a sin-

gle node. A tree associates a probability distribution over
output symbols conditioned on the input sequence by fol-
lowing an input sequence from the root node to a leaf node
skipping a symbol in the input sequence for each ! along the
path. The probability distribution conditioned on an system
call sequence is the probability distribution associated with
the leaf node that corresponds to the system call sequence.

The length of the conditioning sequence corresponds to the
depth of a leaf node in the tree. Notice that the condition-
ing sequence length is different for different paths in the
tree. Also, the wild cards are in different places for differ-
ent paths in the tree. Thus a tree makes explicit the choices
of context dependent length and placement of wild cards.
As described later, the tree is trained with a training set of
system call length � � � subsequences

� &�' � � &�' " ����� � � and
their corresponding � th system call

� & .

7

31 64 5

mmap

execve
openmmap mmap

execve
open

open

*

*

*

0

1 2

execve

2

Figure 4. A sparse Markov tree.

For example, in Figure 4 the sets of input strings
that correspond to each of the two highlighted nodes
are �������
	����������� which corresponds to node � and
�����������	������������� which corresponds to node � . In
our application the two nodes would correspond to any
system call sequences ��������	����������� and �����������	
	����������� where ! denotes a wild-card. The node labeled
� in the figure corresponds to many sequences including
mmap ���������� execve and mmap ������� execve. Similarly for
the node labeled � in the figure corresponds to the sequences
execve ��������������� execve and execve ��������������� execve.
Also execve ������� �!����� execve ������� corresponds to node
� because the prefix of the sequence corresponds to node � .
The probability corresponding to an input sequence is the
probability contained in the leaf node corresponding to the
sequence. In this example �

� < � � � � ������� � � ����
 � � � �	��
�� �would be the probability of the symbol �!����� in the proba-
bility distribution associated with node � .

A sparse prediction tree, " , can be used to compute
a context dependent predictive probability for system call
windows. For a training example pair containing a system
call

� & and an input sequence
� &�' � � &�' " ����� � � , we can deter-

mine the conditional probability for the example, denoted

� #
��� & � � &�' � � &(' " ����� � � � . As described above, we first de-

termine the node $ which corresponds to the conditioning
sequence (

� &�' � � &�' " ����� � � � . Once that node is determined,
we use the probability distribution over output symbols as-
sociated with that node. The prediction of the tree for the



example is then:

� #
��� & � � &�' � � &�' " ����� � � �	� � #

��� & � $ � (4)

4.2 Training a Prediction Tree

A prediction tree is trained from a set of training exam-
ples of system calls trace subsequences. The conditioning
sequences are the first � � � sequences and the prediction is
the � th subsequence.

Each leaf node keeps counts of each system call that
reaches the leaf node. We smooth each count by adding
a constant value to the count of each output symbol. The
predictor’s estimate of the probability for a given output is
the smoothed count for the output divided by the total count
in the predictor.

For example, consider the prediction tree in Figure 4. We
first initialize all of the predictors (in leaf nodes � � ����� � � ) to
the initial count values. If for example, the first element
of training data is the system call ������� (

� & ) preceded by
the sequence ������� ������� �� ������� (

� &�' � � &�' " � ����� ), we would
first identify the leaf node that corresponds to the sequence.
In this case the leaf node would be node � . We then up-
date the predictor in node � with the system call ������� by
adding 1 to the count of ������� in node � . Similarly, if the
next � th system call is ���������� and corresponding preced-
ing sequence is ������� ���������� ���������� ������� , we would up-
date the predictor in node � with the system call � � �	��
�� . If
the next system call is ������� and corresponding sequence is
������� ����������������������� ���������� , we would update node� with the system call �!����� .

After training on these three examples, we can use the
tree to output a prediction for a sequence by using the prob-
ability distribution of the node corresponding to the se-
quence. For example, assuming the initial count is 1 , the
prediction of the the input sequence ��������������� ����������
which correspond to the node � and would give the prob-
ability for ���������� as � � and the probability of ������� as � � .
The probability of ���������� (.5) is the count (1) of ���������� in
the node divided by the total count (2) in the node. Simi-
larly, the probability of ������� (.5) is the count (1) of �������
divided by the total count (2).

4.3 Mixture of Sparse Prediction Trees

In general, we do not know the optimal size of the win-
dow or where to put the wild-cards. Thus we do not know
which tree topology can best estimate the distribution. In-
tuitively, we want to use the training data in order to learn
which tree predicts most accurately.

We use a Bayesian mixture approach for the problem.
Instead of using a single tree as a predictor, we use a mix-
ture technique which employs a weighted sum of trees as

our predictor. We then use a Bayesian update procedure to
update the weight of each tree based on its performance on
each element of the dataset. In this way, the weighted sum
uses the data to make the best prediction.

Our algorithm is as follows. We initialize the weights
in the mixture to the prior probabilities of the trees. Then
we update the weight of each tree for each training example
in the training set based on how well the tree performed on
predicting the last symbol in the window. At the end of
this process, we have a weighted sum of trees in which the
best performing trees in the set of all trees have the highest
weights.

Specifically, we assign a weight, ���# , to each tree in the
mixture after processing training example � (denoted with
superscript � ). The prediction of the mixture after training
example � is the weighted sum of all the predictions of the
trees divided by the sum of all weights:

� �
��� � & � � � &�' � ����� � � � �	�

� # ���# � #
��� � & � � � &�' � ����� � � � �� # � �# (5)

where � #
��� � & � � � &�' � ����� � � � � is the prediction of tree " for se-

quence
� � & � � &�' � � � &(' " ����� � � � .

One way to define the prior probability of a tree � �# , is
using the topology of the tree. Intuitively, the more compli-
cated the topology of the tree the smaller its prior probabil-
ity.

4.4 General Update Algorithm

We use a Bayesian update rule to update the weights of
the mixture for each training example. The mixture weights
are updated according to the evidence which is simply the
probability of the final system call

� � & given the input se-
quence

� � &�' � � � &�' " ����� � � � , � #
��� � & � � � &�' � � � &(' " ����� � � � � . The pre-

diction is obtained by updating the tree with the training
example and then computing the prediction of the training
example. Intuitively, this gives a measure of how well the
tree performed on the given example. The unnormalized
mixture weights are updated using the following rule:

� ��� �# � � �# � #
��� � & � � � &�' � � � &�' " ����� � � � � (6)

with � �# is defined to be the prior weight of the tree. Thus
the weigh of a tree is the prior weight times the evidence for
each training example:

� ��� �# � � �#
��
�
	 � �

# ��� � & � � � &�' � � � &�' " ����� � � � � (7)

After training example � we update the weights for every
tree " . Since the number of possible trees are exponential
in terms of the maximum allowed tree depth, this update
algorithm requires exponential time.



However, SMTs can be computed efficiently in both time
and space. An efficient update algorithm that computes the
exact mixture weights is presented in [3]. The efficient al-
gorithm stores and updates weights in the nodes of the tree
and uses those weights to compute the mixture of sparse
Markov trees. The algorithm for node weight updates does
not require exponential time.

5 Experiments over Audit Data

We applied SMTs to detect intrusions based on the anal-
ysis of process system calls and compared them to baseline
methods. We examined two sets of system call data con-
taining intrusions. The arguments to the system calls are
ignored for the analysis. In both of these sets, there was a
set of clean traces and a set of intrusion traces.

The first set of data is from the BSM (Basic Security
Module) data portion of the 1999 DARPA Intrusion Detec-
tion Evaluation data created by MIT Lincoln Labs [12]. The
data consists of 5 weeks of BSM data of all processes run
on a Solaris machine. We examined three weeks of traces
of the programs which were attacked during that time. The
programs attacked were: eject, ps, and ftp.

The second set of data was obtained from Stephanie For-
rest’s group at the University of New Mexico. This data set
is described in detail in Warrender et al. [17]. This data con-
tains up to 15 months of normal traces for certain programs
as well as intrusion traces. The data provides normal and
intrusion traces of system calls for several processes. We
examine the data for the processes that were attacked with
a “user to root” attack. The processes examined correspond
to the programs: named, xlock, login, and ps.

Tables 1 and 2 summarize the data sets and list the num-
ber of system calls and traces for each program. Traces from
each program in each data set were separated into a disjoint
training and testing portion. The training set contained ap-
proximately �

� �
of the traces and the test set contained the

remaining traces. We train and test on different sets of data
in order to simulate how the method may work in practice,
i.e. testing a model against data that has not been observed
when building the model.

5.1 Baseline Comparison Methods.

We compare our method against two methods, stide and
t-stide, shown to be effective in detecting intrusions in sys-
tem call data when trained over clean data in experiments
performed on the University of New Mexico data set [17].
We also compare our context based method to fixed window
size prediction models of different sizes.

The sequence time-delay embedding (stide) algorithm
keeps track of what sequences were seen in the training
data and detects sequences not seen in training. The method

builds a model of normal data by making a pass through the
training data and storing each unique contiguous sequence
of a predetermined length in an efficient manner. We used
a length of six because that is the length of the sequences
used in the published results of the method.

When the method is used to detect intrusions, the se-
quences from the test set are compared to the sequences in
the model. If a sequence is not found in the normal model,
it is called a mismatch or anomaly.

The threshold sequence time-delay embedding (t-stide)
algorithm is an extension of the stide algorithm which incor-
porates a threshold. In addition to unknown sequences, rare
sequences are also counted as mismatches. In this method,
any sequence accounting for less than 0.001% of the total
number of sequences is considered rare.

To detect intrusions, these methods compare the num-
ber of mismatches in a local region of 20 consecutive se-
quences. A threshold is set for these local regions between
1 and 20. If the number of mismatches reaches or exceeds
the local mismatch threshold, the process is declared an in-
trusion.

5.2 Experimental Results

We compare the performance of the method presented
in this paper with the baseline methods described above.
We empirically show that the methods presented in this pa-
per outperform the baseline methods when trained over the
same dataset.

If a process trace contains an anomaly, we declare that
process an intrusion. We consider an intrusion detected if
either the intrusion process is detected, or one of the pro-
cesses spawned by the intrusion is detected.

We compare the anomaly detection methods in both sets
of experiments using ROC curves which graph the false
positive rate versus the detection rate [14]. The detection
rate is the percentage of intrusions which are detected. In
order to be consistent with previous published results on
these data sets, the false positive rate is defined to be the per-
centage of normal system calls which are declared anoma-
lous [17]. The threshold of the methods is varied to obtain
multiple points on the ROC curve. The ROC curves have
few points because of the small amount of intrusion traces
in each data set. In the ROC curves, the optimal detector
is the graph closest to the y-axis, i.e. having the highest
detection rate with minimum false positive rate.

Examining Figure 5, we notice that different prediction
models have different levels of performance. We notice that
the optimal window size is different for each process. This
is consistent with the entropy modeling experiments. Also
note that in most cases the fixed window size methods are
outperformed by the context dependent window size meth-
ods as expected.
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Figure 5. ROC curves showing the comparison of SMTs, fixed window size prediction models, stide and t-stide trained over the same data.
The fixed window sizes used a window size of length 3, 5, and 7. The curves are obtained by varying the detection threshold. Notice that in
general the best performing fixed window size corresponds to the minimum of entropy curve (Figure 1). The curves show the comparison
trained over a different set of data: (a) ftpd, (b) ps (LL), (c) eject, (d) xlock, (e) named, (f) login, and (g) ps (UNM).



Table 1. Lincoln Labs Data Summary

Program # Intrusion # Intrusion # Normal # Normal % Intrusion
Name Traces System Calls Traces System Calls Traces
ftpd 1 350 943 66842 0.05%

ps (LL) 21 996 208 35092 2.7%
eject 6 726 7 1278 36.3%

Table 2. University of New Mexico Data Summary

Program # Intrusion # Intrusion # Normal # Normal % Intrusion
Name Traces System Calls Traces System Calls Traces
xlock 2 949 72 16,937,816 0.006%
named 2 1,800 27 9,230,572 0.01%
login 9 4,875 12 8,894 35.4%

ps (UNM) 26 4,505 24 6,144 42.3%

In general, the methods presented in this paper outper-
form t-stide and stide. The main difference between our
methods and t-stide and stide is the threshold. Our meth-
ods use a probabilistic threshold while the other methods
use the number of consecutive mismatches. Empirically,
the probabilistic threshold outperforms the number of mis-
match threshold even when the window size is the same as
shown in Figure 5.

6 Conclusion

We have shown that system call modeling methods can
be improved by using dynamic window sizes. We have pre-
sented two methods for using window sizes estimated from
the data. The first is using entropy modeling to determine
the optimal window size. We have shown empirically, that
the method can pick the optimal window size by measuring
the regularity in the data.

The second method takes advantage of the context de-
pendency of the optimal window size. We have presented
a new method for modeling system call traces using sparse
Markov transducers. This method takes advantage of the
context dependency of the optimal window size. The
method estimates the best window size depending on the
specific system calls in the subsequence based on their per-
formance over the training data. We have shown that this
method outperforms traditional methods in modeling sys-
tem call data.

Future work involves moving beyond sliding windows
for modeling system call traces. Intuitively, we can better
model system calls by looking at the underlying call graph.
A direction for future work would be to explicitly attempt
to construct a call graph from a set of traces and use this call
graph to attempt to improve the predictions. In this way we

may be able to incorporate more structural information into
the model to boost performance.
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