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Abstract:

This paper examines some of the theoretical founda-
tions of the distributable change detection method intro-
duced by Forrest et al. in [10], including fundamental
bounds on some of its parameters. A short overview is
given of the reasoning behind this method, its immuno-
logical counterpart and its computer implementation.
The amount of information that is lost by splitting a data
stream into unordered strings can be estimated, and this
estimate can be used to guide the choice of string length.
A lower bound on the size of the detector set is derived,
based on information-theoretic grounds. The principle of
holes (undetectable nonself strings) is illustrated, along
with a proof of their existence for a large class of match-
ing rules. The influence of holes on the achievable
failure rate is discussed, along with guidelines on how to
avoid them.

1. Introduction

One of the main problems in the field of computer
security is how to distinguish self (legitimate users,
authorized actions, original source code, uncorrupted
data, etc.) from nonself (intruders, computer viruses,
spoofing, Trojan horses, etc.) Nature, more specifically
the natural immune system, has been solving a similar
problem for millions of years and may have some clues
about how to approach this.

The body’s immune system comprises a whole range
of mechanisms, the interactions between which are still
being unraveled. These mechanisms are often catego-
rized as either “specific” or “nonspecific” depending
on whether they offer a specialized protection against a
known type of intrusion (such as antibodies reacting
against one specific kind of antigen), or a more general
protection against anything coming in from the outside
(such as the skin, or inflammatory responses against
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cell damage). Likewise, computer security measures
can be divided into specific (virus checking with signa-
tures, security analysis tools [9], etc.) and nonspecific
(good code hygiene, firewalls, encryption, etc.). How-
ever, most of the nonspecific measures are passive, in
the sense that they only prevent nonself from intruding
on the system but don’t detect intrusions in progress,
whereas the specific ones have a hard time keeping up
with the new attacks continually being developed or
discovered by malicious agents.

In earlier work by Forrest et al. [10], a change detec-
tion algorithm was developed based on one of the
mechanisms used by the immune system: the genera-
tion of T-lymphocytes in the thymus (see also [15] for
another possible computer security mechanism bor-
rowed from the immune system). T-lymphocytes, or T-
cells, are one of the many kinds of specialized cells in
the immune system. The surface of a lymphocyte is
covered with receptors that can bind to antigens
(foreign proteins). Each lymphocyte has one specific
kind of receptor, and each receptor binds to a small
group of structurally related antigens. The receptors on
T-lymphocytes are constructed by a pseudo-random
process. As the T-cells mature in the thymus, they
undergo a censoring process called negative selection,
in which those T-cells that bind self proteins are
destroyed [14, 17]. After censoring, T-lymphocytes that
do not bind self are released to the rest of the body and
provide the basis for our immune protection against for-
eign antigens. This mechanism in the immune system is
very robust because of its distributed nature, and re-
markably efficient. The repertoire of T-cells produced in
this way seems to cover most of the antigen space
(estimated at around 1016 different foreign molecules),
while tolerating an estimated 106 different body pro-
teins as “self” [13].

The algorithm presented in [10] works in a similar
way. Detectors are generated to match anything that
does not belong to self (for this reason, it is also some-
times called the “negative selection method”). In oper-
ation, these detectors are used in much the same way
as signatures are used to scan for specific computer
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Figure 1: Constructing a set of detectors R
for a set of self strings S, using generate-
and-test. The matching rule used here is “r-
contiguous-bits” with r=2. The strings in Ro
are generated at random. The ones that
match any of the strings in S are rejected.

viruses. However, a virus scan program only checks for
a small number of known signatures and needs to be
updated continuously with signatures for newly emerg-
ing viruses. Our method relies on having a large enough
set of random detectors that virtually all nonself strings
will be detected. In that sense it can be classified as an
active, yet nonspecific protection mechanism. In immu-
nology, T-cells are counted under the specific immune
response, because each individual T-cell responds to a
specific antigen. However, the generation of a reper-
toire of randomly generated T-cells covering almost all
of the antigen space may be viewed as a nonspecific
mechanism.

This method (as most other change detection meth-
ods) relies on having an accurate and stable description
of self.. In this sense it is very static (although some of
the more dynamic mechanisms in the immune system
could be used to counteract this). However, its applica-
tion is not limited to purely static data sets such as data
files. Current research is focusing more on applying it to
monitoring patterns of activity. For instance, the pattern
of "normal" sequences of system calls for certain run-
ning processes has been shown to be quite stable [11].
A lot of work has been done on making this method
more useful in practice. One of the difficulties in im-
plementing it is that there are many degrees of freedom
in choosing the parameters. [8] describes some practical
constraints on a number of the parameters involved and
gives guidelines on how to choose them. The work pre-
sented here is an attempt at a theoretical analysis of
the method and its properties, and derives some theoret-
ical bounds for these parameters.

Section 2 gives a short overview of the change
detection method and its main features. In Section 3, an
estimate is derived of the amount of information that is
lost by cutting a data stream into an unordered set of
strings of a given length, and offer suggestions on how
to choose the string length appropriately. Section 4
shows the derivation of a lower bound on the number of
detectors needed to achieve a certain level of reliabil-
ity of detection, based on mutual information between
the protected set and the detector set. Section 5 shows
that for most matching rules there may be nonself
strings which cannot possibly be covered by any detec-
tors, and the consequences of this. The basis for the
material in these last three sections can also be found
in [7]. Section 6 presents some conclusions and outlines
further directions of study.

2. The change detection method

To date, our research on this new change detection
method has focused largely on the case where both the
detectors and the data to be protected consist of fixed
length strings, over a given alphabet of symbols
(usually binary). Similar to the generation of T-cells in
the thymus, detector strings can be generated at ran-

dom. The ones that match any of the self strings to be
protected (according to a specified matching rule) are
eliminated. The ones that don’t match any of the self
strings are stored in the detector set (or “repertoire”) R.
This process is repeated until we have enough detectors
to ensure the desired protection level (defined in terms
of the probability of success in detecting any nonself
strings with at least one detector in R). This generate-
and-test method, illustrated in Figure 1, requires sam-
pling a number of candidate detectors which is expo-
nential in the size of the self set [5]. Using a dynamic
programming approach, two new algorithms were de-
veloped [12, 6, 7] that can generate a set of detector
strings for the “r-contiguous-bits” matching rule (in
which two strings are said to match if they are identical
in at least r contiguous positions) in linear time with
respect to the size of the self set.

The negative selection method has a number of fea-
tures which distinguish it from most other methods:

• Since this is a general change-detection method, no
prior knowledge of intrusions is necessary. This is in
contrast with signature-based virus scanners.

• Detection is probabilistic, but tunable. That is, in
general we will not be generating a complete reper-
toire of detectors (i.e. a set of detectors that covers
all possible nonself strings). Instead we will content
ourselves with matching all but a small fraction Pf  of
nonself strings, in exchange for a smaller set of
detectors. The desired probability of success in
detecting random nonself strings with a single set of
detectors can be weighed against the cost of generat-
ing, storing and checking detectors.



• The detection scheme is inherently distributable:
small sections of the protected object can be checked
separately, different sites can have independently
created detector sets for the same object, and the
detectors in the detector set can themselves be run
independently. No communication between detectors
or detector sets is needed until a change is detected.
This makes it a promising tool for computer security
in networked or distributed computer environments, or
in a scheme with autonomous agents such as the one
presented in [4].

• The set of detectors at each site can be unique. This
means that if one site should be compromised, others
would still be protected. For independent detector
sets, the system-wide failure probability decreases
exponentially with the number of sites protected. This
may allow us to choose a fairly high Pf  (and thus
small detector sets) for the individual systems.

• The set of self strings and the detector set are mutu-
ally protective, meaning that the detector set protects
the self set against change and vice versa. Also,
detection is local: we can pinpoint the individual
string (or detector) which has been changed.

3. Splitting data into strings

The change detection method described above works
on an unordered set of strings. In order to apply the
method to a real data set (such as a file on disk, an
audit trail, the representation of the behavior of a pro-
cess, a sequence of system calls of a running program,
etc.), we will usually have to preprocess the data by
splitting it into strings of length l over an alphabet of
size m . Reducing a continuous data stream to an un-
ordered set of strings destroys some of the internal
structure of the data that could be used to make the
detection proceed more efficiently. When trying to dis-
tinguish self from nonself, we will want to make use of
as much information as possible about what constitutes
self. Loss of information about self may imply a smaller
achievable success rate, therefore we would like to
minimize this information loss. In the following analysis
we will assume a binary alphabet (m=2), but extension
to larger alphabets is straightforward.

The information lost by splitting up a stream Ŝ  into a
set of unordered strings S  is equal to the amount of
information (in bits) we would need to be given in order
to reconstruct the original stream from the unordered
set, or alternatively the amount of information we
would gain by being given the original stream Ŝ  if we
already knew S. This can be denoted by H S S( ˆ | ) (i.e.
the conditional entropy of Ŝ  given S). In information
theory, this quantity is often called the Doubt, since it
is the amount of information about Ŝ  that is missing in
the encoding S. For a given string length l, a stream Ŝ
of LS  bits will be split up into a set S of NS  l-bit self

strings. Usually, not all of these strings will be unique,
so S is really a multiset. Let’s say we get k unique l-bit
strings, where each string si  appears Ni  times:
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possible rearrangements of these strings. If we assume
that each possible rearrangement is equally likely (i.e.
we have no prior information about the nature of the
data stream), then the amount of information lost is:
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From Stirling’s approximation for the factorial func-
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where H N Ni S( )  stands for the entropy associated with
the relative frequencies of occurrence of the strings in
S. Taking the logarithm base 2, this becomes:

N H
N

N

N k

N

N

N N N

N H
N

N

S
i

S

S

S

S

k

S
i

S

⋅






−
+ −





≤
⋅ ⋅ ⋅







≤ ⋅






log

log
,

2

2
1 2

1

  

  

or

log
,2

1 2

N

N N N
O N H N NS

k
S i S⋅ ⋅ ⋅







= ⋅ ( )( ) .
Therefore, as a bound on the amount of information

lost, we get:1

∆I O N H N N O L H N N lS i S S i S1 = ⋅ ( )( ) = ⋅ ( )( ) .
This analysis suggests that if we measure the aver-

age entropy per bit of the strings in S for different string

1Interestingly, it can be shown that the average Kolmogorov
complexity of a member of a simply described ensemble is almost
identical to its entropy. More formally (see [2, 16, 1]),
H p s p s K s H p s K s p s Oi i i i i i( ) ( ) ( ) ( ) , ( )( ) ≤ < ( ) + ( ) + ( )∑ 1 , where K si( )

is the Kolmogorov complexity of string si , and K s p si i, ( )( )  is the
complexity of the ensemble of strings. This would mean that
∆I O N K si i= ⋅( )∑ ( )  if K s p si i, ( )( )  is small: the information lost by
splitting a data stream into strings is of the order of the sum of the
Kolmogorov complexities of the resulting strings!



0

5

10

15

20

0 16 32 48 64 80 96 112 128

string length l
( a )

en
tr

o
p

y 
H

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

0 16 32 48 64 80 96 112 128

string length l
(b)

en
tr

o
p

y 
p

er
 

b
it

 
H

/l

Figure 2: Entropy of the set of strings
obtained by splitting an emacs binary into l-
bit strings. The dotted lines indicate the
envelope within which H must fall, delimited
by H≤l and H≤log2 (LS/l)  (corresponding to,
respectively, having all l-bit strings being
present in equal frequency in S, and all
strings in S being unique). (a) shows the
entropy H (N i/NS) of the resulting set of
strings. (b) shows the entropy per bit of
these strings, which is proportional to ∆I1 .

lengths l, we could minimize the information loss by
choosing the value of l for which the entropy per bit is
minimal. In general, this will only be one of many fac-
tors that need to be considered in the choice of l.
Choosing a small l tends to reduce the entropy of the
strings because it reduces the size of the total string
space. The entropy per bit will tend to go up with
decreasing string length though. Also, as l gets smaller
S will occupy a larger and larger fraction of this space,
which will adversely affect the behavior of the detec-
tion algorithm itself. On the other hand, increasing l

beyond the point where most of the strings in S  are
unique will reduce entropy because it reduces the num-
ber of strings in S , but choosing a large l will make
generation of detectors difficult in terms of space and
time requirements.

Figure 2 illustrates how H N Ni S( )  changes with
respect to l for a real data file. The data chosen was an
emacs binary (GNU emacs v19.25.2 SGI binary,
3.2MB). The file was split up into strings of length l=1
(single bits), 2, 4, and multiples of 8 (i.e. at byte
boundaries) up to 16 bytes long. For each value of l, the
entropy of the resulting set of strings was calculated.
Figure 2(a) shows clearly that there are minima in the
entropy at multiples of 4 bytes, corresponding to the 32-
bit RISC instruction set this binary is compiled for. The
values plotted here at 8-bit intervals are themselves
minima as well.: for intermediate values of l the en-
tropy would be much higher, because this corresponds
to cutting up the data at non-byte boundaries, ignoring
the natural byte structure present in this data. The en-
tropy per bit plotted in Figure 2(b) is proportional to
∆I1  (apart from a constant factor LS ). This graph is uni-
formly decreasing, so in order to minimize information
loss for this data we would want to choose l as high as
our other constraints allow, with a preference for multi-
ples of 4 bytes.

This calculation of the information lost by splitting
up the data at l-bit boundaries does not only hold for the
change-detection method described here. In fact, this is
a general result for any method which transforms a
stream of data into an unordered set of strings. In par-
ticular, it would also hold for methods that take into
account the frequency of occurrence of the self strings.
However, in our method there is a second source of
information loss, which is that the change-detection
algorithm does not encode how many duplicates of
each unique l-bit string si  occur in S. If we assume NS

is known, then if we are given the set of k  unique
strings in S ( , ... )s s sk1 2 , there are
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k
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possible ways of assigning the values for Ni  (such that
they sum up to NS ), and thus of reconstructing the
unordered multiset S. If each of those assignments is
equally likely (again, assuming we have no prior
knowledge of the contents of the data stream), the
amount of information (in bits) lost by ignoring the
frequencies of the strings is given by:
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In general, ∆I2  will be small compared to ∆I1  and
can be ignored. If we do want to minimize ∆I2 , mini-
mizing NS  by choosing a large string length l would be
the obvious way to do it. This will tend to reduce the
number of duplicate strings and thus the amount of
information lost by ignoring duplicates, although this
may in some cases increase ∆I1  because of an increase
in H N Ni S( ) .

4. Choosing the number of detectors

The number of detectors needed to achieve a certain
acceptable failure rate Pf  is an important factor in
comparing different parameter settings, because this
affects the time needed to generate the detector set, the
storage space needed for the detector, the amount of
nonself space covered by each detector, etc. It is possi-
ble to derive a theoretical lower bound on the number
of detectors needed, again based on the amount of
information about S that can be stored in R.

A set of detectors R  constructed for a given set of
self strings S  can be viewed as a message encoding
information about that self set. Given a "perfect" detec-
tor set R´, that is a set of detector strings that exactly
recognizes all nonself strings, it is possible to recon-
struct the original self set S (by checking for each string
in the string space whether it is detected by any detec-
tor in R´). Therefore, this set R´ would have to contain
at least the same information as the original set S. By
calculating the information content of the original file
of self strings it is possible to get an absolute lower
bound on the information content, and thus on the size,
of the detector set. If the self set S consists of indepen-
dently chosen self strings, its information content will
be of the same order as its size in bits. This means that
the perfect detector set R´ would have to be of approx-
imately the same size (in bits) as the self set S . For
large self sets this may not be acceptable.

We can alleviate this problem by allowing a certain
amount of error in the self-nonself detection performed
by the detectors. For the purpose of this analysis, we
will assume that a fraction Pf  of the nonself strings are
not matched by the detectors. In other words, we allow
at most P N Nf U S( )−  (where U is the total string space,
and N UU = ) false negatives (nonself strings not
detected) but no false positives (no self strings classi-
fied as nonself). Not requiring an exact encoding of the
self set S  means that we can get away with a much
smaller information content, and thus a much smaller
size, for the detector set.

If we choose the self strings from the set of all possi-
ble strings U, then there are

M
N

N
U

S
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possible self sets of size NS . If we assume (i) that the
set S of self strings is independent, i.e. that each string

is chosen at random out of the set of all possible
strings, then each of those sets is equally likely, so the
average information content (i.e. entropy) of a self set
of size NS  is:

H S
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S
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log2  .

Given a detector set R constructed for this self set S
we could try to reconstruct S. Since R  has been con-
structed to allow a certain amount Pf  of false nega-
tives, we won't be able to reconstruct S exactly from R.
Instead we would get a set ′S  consisting of the NS

original self strings plus P N Nf U S−( )  unmatched non-
self strings.

Assumption (i) says that the self strings are indepen-
dent of each other. We will make a second assumption
(ii) that the unmatched nonself strings are also inde-
pendent, and independent from the self strings. In other
words, given S´ we have no knowledge of which subset
of NS  strings constitutes the original set S. The amount
of information about S that is missing in the encoding R
is then H S R( ) (i.e. the amount of information we would
gain by being given S  if we already knew R ) .
Assumptions (i) and (ii) tell us that any subset of size
NS , taken from the set ′S  of size N P N NS f U S+ −( ) , is
equally likely to be the original self set S, so:
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The difference between H(S) and H S R( ) (i.e. the in-
formation in S, minus the information about S that is
missing in R) represents the amount of information
about S  that is preserved in the encoding R  and is
called the Mutual Information of S and R (denoted by
I S R;( )):
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The next two steps hold under the assumption (iii)
that N NU S>>  and P N Nf U S>> . Further simplifying we
get:



l NS NR ( Pf = 0 1. ) NR ( Pf = 0 01. )

16 62500 12977 25953

20 50000 8305 16610

24 41667 5768 11535

28 35715 4238 8474

32 31250 3245 6489

36 27778 2564 5127

40 25000 2077 4152

Table 1: lower bounds on NR  for a 1Mbit
long data set, for different string lengths.
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(Similar results can be obtained using (1)). Since R
needs to contain at least this much information, this is
a lower bound on the size of the detector set, expressed
in bits (the detector set may contain spurious informa-
tion introduced by the stochastic generation of the set).
If the detectors are strings of length l in an alphabet of
size m, the number of detectors NR is given by:

N
N P

l mR

S f≥
⋅ ( )
⋅
log

log ( )
2

2

1
 . (2)

Table 1 illustrates this theoretical lower bound for
NR as a function of string length l for a data stream of
one million bits. Note that for a tenfold decrease in
failure rate we only need a twofold increase in the
number of detectors.

If the self strings are not independent of each other
(as is often the case in reality), this will affect both
assumptions (i) and (ii). Assumption (i) (self strings are
independent) led us directly to the formula for H S( )
because we were allowed to assume that all self sets
were equally likely. In reality this will not be the case.
Real data sets tend to have more similarity between the
self strings than sets of totally random strings. This may
affect H S( ) because real data will tend to form only a
subset of all possible sets, and thus any single real data
set may contain less information than a random one.
However, given only one single self set it is impossible
to judge how likely this set is, and therefore how much
information it contains. Obviously, we would need to
use more high-level knowledge about the nature of the
ensemble of "normal" self sets in order to be able to
estimate the entropy of a single set. In any case, H S( )
will probably be smaller than the value used above,
allowing for a smaller encoding.

It is unclear what effect non-independent self strings
would have on assumption (ii). Clearly, if the
P N Nf U S−( )  undetected nonself strings in S´ are inde-
pendent of each other but the NS  self strings in S´ are
dependent, we may some information about which sub-
set NS  of strings are more likely to be the original self
file S and therefore H S R( | )  can be smaller. However,
the character of the undetected nonself strings will
largely depend on the matching rule and repertoire con-
struction algorithm chosen. With our current matching
rules and algorithms, we would expect the undetected
nonself strings to lie approximately in the same region
of space as the self strings. This may mean that
assumption (ii) still holds. Of course, in practice it is
recommended to check the real failure probability
achieved with the generated detector set, by sampling
nonself strings or expected intrusion strings, if the dis-
tribution of these is known.

Assumption (iii) states that P N Nf U S>> . In general
it will be reasonable to assume at least N NU S>>
(otherwise almost all possible detector strings would
match at least one of the self strings, and most of the
nonself strings would in fact be undetectable holes). For
failure rates that are not excessively small, assumption
(iii) will usually still hold. For instance, with Pf = 0 1. ,
every single nonself string has 10% chance of escaping
detection by the detectors. If an intrusion in the self file
consists of one single changed string, 10% may be
quite a large error rate. However, usually we will have
to deal with intrusions consisting of several different
nonself strings and it is sufficient to catch only one of
these to sound the alarm. If we have to use a much
smaller value for Pf , our approximation may no longer
hold.

Although the above analysis was done with the
change detection algorithm in mind (and bit strings for
detectors and self strings), it is clear that this approach
is a lot more general than that. In fact, the result above
holds for any possible encoding of a set S with zero
false positives and Pf  false negatives. In particular,
these are some of the methods covered:
• generating a detector set for Hamming distance

based matching rules
• matching rules with variable radius for each detector
• matching rules with symbolic descriptions of S

and/or R
• matching rules based on complementarity of 3-D

matching sites on antigen and detector proteins
• self/nonself recognition using some positive selec-

tion method (i.e. by recognizing what is self, instead
of what is nonself) such as Neural Networks etc.

• other methods (such as k-nearest-neighbors) for self-
nonself detection
A second lower bound for NR particular to the nega-

tive selection method can be derived, given the aver-
age matching probability Pm  (probability that a ran-
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Figure 3: if self strings are presented as
points in a plane and the matching rule
is Euclidean distance, three self strings
s1 , s2 , s3  may induce a hole h for which
no valid detector can be generated.

domly chosen string and detector match according to
the specified matching rule) [18]. At best, we can
spread the detectors apart such that no two detectors
match the same nonself string. The amount of string
space covered by NR detectors is then P N Nm R U⋅ ⋅ .
This needs to be at least as big as 1 −( )P Nf U , in order
to cover enough nonself strings for a failure probability
of Pf  (ignoring NS  with respect to NU ), so:

N P PR f m≥ −( )1  .

5. The existence of holes

Having found a lower bound for the number of detec-
tors needed to achieve a certain failure probability, we
would like to know the best achievable failure probabil-
ity Pf . This depends largely on the specific matching
rule used. One that has been examined in detail is the
“r-contiguous-bits” matching rule (two l-bit strings
match each other if they are identical in at least r con-
tiguous positions). Efficient detector generating algo-
rithms [12, 5] have been developed for this rule, making
it possible to generate a complete detector repertoire, in
the sense that it covers all nonself strings that can be
covered. As shown in [8], it turns out that for this
matching rule there may be some nonself strings, called
“holes,” for which it is impossible to generate valid
detectors. For clarity, I have reproduced the example
presented there:

If S contains two strings s1 and s2 that match each
other over (r-1) contiguous bits, they may induce two
other strings h1 and h2 that cannot be detected because
any candidate detector would also match either s1 or s2,

as shown below:
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where a a b c ci i i i i,  ,  ,  ,  and ′ ′  are single bits.
A similar argument shows that we also can have

holes using a Hamming distance matching rule (where
two strings match if their Hamming distance is less
than or equal to a fixed radius r). Figure 3 shows a sim-
ilar situation that occurs when self strings are repre-
sented as points in a Cartesian plane and a match
between a string and a detector is said to occur if the
Euclidean distance between the corresponding points is
smaller than a certain radius r.

It can be shown that all practical matching rules with
a constant matching probability (i.e. each detector
matches equally many strings and vice versa) can
exhibit holes even with a non-trivial set of self strings.

Let U be the set of all strings, S the set of self strings
to be protected, M d( )  the strings matched by detector
d , and ′( )M s  the detectors matching string s, then
h U∈  is a h o l e  iff ∀ ∈ ′( ) ∃ ∈ ∈ ( )d M h s S s M d, :  (3).
Given a string h and a matching rule M  with constant
matching probability Pm , it suffices to show that we can
construct a non-trivial self set S such that h is a hole.
Starting with the empty set, for each detector d match-
ing h, we pick one string sd matched by d and add this
string to S. Then, by construction, for each possible
detector for h there exists a self string matching that
detector, such that (3) holds. The set S constructed in
this way will be non-trivial if it does not need to con-
tain a significant portion of the total string space U in
order for h to be a hole.2 If we are using a matching
rule with a constant matching probability Pm , a self set
of size N M h P NS m U= ′( ) = ⋅  always suffices to induce
holes. Of course we may already get holes for smaller
self sets than that. As we have shown earlier, two self
strings matching over r-1 contiguous bits are sufficient
for the r-contiguous-bits matching rule.

The existence of holes imposes a lower bound on the
failure probability Pf  we can achieve with a detection
method because it will always fail to detect holes (see
Table 2). If we calculate the required number of detec-
tors to achieve a certain acceptable Pf  without taking
holes into account, the real Pf  achieved with this
detector set may be substantially higher than expected.
Further, the failure probability associated with the holes
themselves does not improve by distributing the algo-
rithm if we use the same matching rule at all the sites.
Although the detector set on each machine may be
generated independently from the other machines, the

2An example of a trivial set S inducing holes would be U h− { } .
For this self set, h would be a hole for almost all matching rules.



LS

(a)
NS

(b)
l

(c)
r

(d)
Pm

(e)

number
of holes

(f)

lowest
possible Pf

(g)
500B 250 16 10

9
8

0.00391
0.00879
0.01953

634
4438

21076

0.0097
0.0677
0.3216

1KB 250 32 11
10
9
8

0.00562
0.01172
0.02441
0.05078

2649
24911

2150714
5.1815e+08

6.1676e-07
5.8000e-06

0.0005
0.1206

500 16 11
10
9

0.00171
0.00391
0.00879

882
3854

24937

0.0135
0.0588
0.3805

2KB 500 32 12
11
10
9

0.00269
0.00562
0.01172
0.02441

4787
52318

2420706
4.6564e+08

1.1145e-06
1.2181e-05

0.0006
0.1084

1000 16 12
11
10

0.00073
0.00171
0.00391

1353
5428

23933

0.0206
0.0828
0.3652

4KB 1000 32 13
12
11
10

0.00128
0.00269
0.00562
0.01172

8475
85798

3991790
5.2296e+08

1.9732e-06
1.9976e-05

0.0009
0.1218

Table 2: Number of holes and best achiev-
able Pf  for different configurations. These
results were calculated on randomly gen-
erated test files, with sizes 500B, 1KB,
2KB and 4KB. (a): size of test data. (b), (c),
(d): parameters chosen for the matching
rule (r-contiguous-bits). (e): corresponding
matching probability Pm . (f): number of
holes present. (g): resulting best achiev-
able failure rate Pf  .

same holes occur on all machines. It may therefore be
useful to try spread the self strings apart as much as
possible, reducing the number of holes between them.
This could be done by encrypting each self string in
some way.

Another option is to try to eliminate the holes alto-
gether. This can be achieved either locally or in a dis-
tributed fashion. Locally, this can be achieved by using
a matching rule which does not exhibit holes. For in-
stance with the r-contiguous-bits rule, we can choose a
different value of r for each detector, between r= 1
(detector matches almost the entire string space) and
r=l (detector only matches a single string: itself). The
value of r will have to be stored with each detector.
This method also has the advantage that very large
sections of string space can be covered with only a few
detectors. Note that although this seems to be a much
more efficient way to cover the nonself string space,
the size of the detector set still has to conform to
equation (2).

In a distributed setting on the other hand, with sever-
al sites running their own detector sets we can choose a
different matching rule (same rule with different
parameters or different rule altogether) for each
machine. Each will have a different set of holes which
hopefully will be covered by some other machines.

Note that the existence of holes can be a blessing
instead of a curse. Since holes are generated by interac-
tion between a number of self strings, holes will tend to
be “close to” (according to the matching rule used)
these self strings. In some applications, we may not
wish to detect strings which are that close to self. For
instance, if this method is used to monitor the behavior
of a process, small deviations from the known normal
behavior may be acceptable. On the other hand, if the
method is being used to detect viral code in a binary
program file, both the self strings and the viral strings
will consist of short machine code segments. Pieces of
viral code will then be more similar to the valid self
strings than to a totally random string of the same
length, and thus be more likely to be obscured by holes.
In either case, it may be wise to calculate Pf  based on
the a priori probabilities of expected changes (if
known) instead of on random nonself strings.

6. Conclusions

Previous work on this new immunological approach
to change detection has shown its feasibility. As a very
general-purpose change detection method it can be a
useful supplement to more specific, and therefore more
brittle, protection mechanisms. Non-specific yet active
methods such as this are needed to intercept those in-
trusions that evade the specific mechanisms. The work
presented here provides a good start at understanding
the theoretical foundations of this method and its prop-
erties. Furthermore, some of the analysis (specifically
Sections 2 and 3) is more general in scope and could
be of importance to other domains.

A number of issues we have touched on only briefly
here may be interesting avenues for further research:

• It should be feasible to come up with more general
formulas for systems in which a certain amount ′Pf  of
false positives is allowed as well.

• It may be interesting to investigate further the rela-
tionships between the Kolmogorov/Chaitin complex-
ity of the self strings and the minimal repertoire size,
or the information loss due to splitting up the data
into strings.

• The result derived in Section 3 assumes that we split
a file of LS  bits into L lS  strings of l bits. In practice,
we may want to use all possible l-bit strings present
in S by using a sliding l-bit window. This would give
us L lS − + 1 partially overlapping self strings and a
much smaller information loss. It should be feasible



to get an estimate for the amount of information lost
in that case.

• It may be possible to derive approximate formulas for
non-random data by looking at some measures of the
self strings (entropy, number of unique self strings,
etc.).

• In order to eliminate the negative effect of holes on
the system-wide failure probability, one would want
to have a family of matching rules with the same
basic parameters. This would allow the parameters to
be chosen optimally for the task, while still allowing
for an effectively different matching rule at each site.
For example, each site could perform a different
permutation on the bits in the bit strings before apply-
ing the r-contiguous-bits matching rule, or all strings
could be encrypted with a site-dependent key. The
combination of the permutation (or encryption) plus
the r-contiguous-bits rule generates an entire family
of matching rule, one for each different permutation
(or encryption key).
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