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Introduction 
 

The increasing of network utilization and the weekly increase in the number of critical 
application layer exploits means Network Intrusion Detection Systems (NIDS) designers must 
find ways to speed up their attack analysis techniques when monitoring a fully-saturated network 
and maintaining a good false positive to false negative ratio. 
 While increasing the CPU speed and RAM of the NIDS will help deal with more content 
analysis there is a point where the amount of money spent on the new hardware will not be 
proportional to the increase in speed of the content analysis. In general there are only a few 
things a user can do to help the NIDS keep up with today’s demands, such as limiting the amount 
of attacks that the NIDS looks for or load balancing via a layer 7 switch. The rest is up to the 
NIDS developers. 

Bottlenecks 
 
There are four main areas that take up a considerable amount of time in the current 

version (1.8.3) of snorti, but only one of them gives a considerable amount of performance 
increase while maintaining the portability of snort. 

 
1. Getting the packet off the wireii. == Snort uses libpcap to get the packets off the 

wire.  Libpcap is almost the standard for grabbing packets off the wire and is 
used by many protocol-decoding applications. The libpcap library is good for 
most applications but does not lend itself well to high-speed data acquisition 
because only one libpcap function can be used at any one time. The snort 
community could develop custom drivers that would be OS- and possibly NIC-
specific, but that would severely hinder the portability of snort.  

2. Clearing out data structures. == Every packet that comes in has to be stored in 
some type of data structure. This also means that all of these data structures 
need to be cleared out to make room for other packets. According to Marty 
Roesch, some of this could be tweaked by a little “code tightening and 
rethinking some of our base assumptions.”iii 

3. Pattern matching. == The snort community has looked at implementing 
different pattern matching algorithms to improve the speed of snort on 
saturated networks at high speeds. By implementing a different algorithm snort 
2.0 will have about a 500 percent increase in performanceiv. 

4. Checksum verification. == To help verify the integrity of the packet snort 
verifies all protocol checksums. This means that for every packet snort must 



compute the checksum and then verify that it matches the current packet’s 
checksum. 

 
Performance can also be affected by preprocessors and the parameters that they are loaded with. 
The parameters that are specified to the preprocessor can also affect the false-positive ratio and 
the effectiveness of NIDS evasion techniques. We will take a brief look at how preprocessors can 
affect performance. An in-depth discussion of how to effectively configure preprocessors is 
outside the content of this paper. Each preprocessor has a different area of  responsibility (i.e. 
frag2 => IP fragmentation reassembly, stream4 => TCP reassembly/stateful inspection, 
http_decode => normalize HTTP requests, etc.) the performance gained or lost would be specific 
to: 
  

1. The type of traffic that the NIDS monitors. This would also include the amount of 
traffic for a particular protocol. 

2. The parameters that are specified to the preprocessor. The parameters will determine 
things like what port(s) to look for, how much memory to use, how long to hold onto 
the information, etc.  

 
Proper configuration of the preprocessors will take some time to fine tune. This would involve 
the person installing the NIDS to have: 
  

1. A good understanding of the network that is being monitored. This would include  
protocols, applications and traffic patterns. 

2. An in-depth understanding of the protocols on the network. The NIDS installer 
should be able to do protocol analysis on the traffic to determine thresholds, false-
positives, etc. 

3. Knowledge of the preprocessors and how they work and how they can be configured.  
Some of the preprocessors are as easy as just defining them (i.e. frag2, 
telnet_decode). Some preprocessors only take a few arguments that won’t require 
much protocol analysis of the network because they are straight forward (i.e. 
rpc_decode, http_decode, unidecode). Then there are the ones that will take a lot of 
time and research to fine tune (i.e. stream4, stream4_reassemble, spade). 

Brief History of Snort and Pattern Matching 
 
 In earlier days, snort used brute force pattern matching which was very slow and was 
seen as a place where performance could be improvementv. The first thing done to boost 
performance was implementing a partial Boyer-Moore pattern matching algorithm. After a 
couple of months a full implementation of Boyer-Moore was implementedvi. Next was the 
implementation of a “2-dimentional linked list with recursive node walking,” which gave snort a 
200 to 500 percent performance increasevii. Then snort developers rewrote the detection engine 
to include a “linked-list-of-function-pointers”, also called a “three-dimensional linked list”,viii 
which is where snort is today. 

Overview of Snort Rules  
 



Figure 1. Snort rule. 
 
alert udp $EXTERNAL_NET any -> $HOME_NET 177 (msg:"MISC xdmcp query"; 
content: "|00 01 00 03 00 01 00|";reference:arachnids,476; 
classtype:attempted-recon; sid:517; rev:1;) 
 

Snort rules are broken into two pieces; the rule header and the rule option(s). The rule 
header is everything up to the first parentheses. The rule option(s) are everything within the 
parentheses. The rule header can be loosely mapped to the RTN (Rule Tree Node) and the rule 
options can be loosely mapped to the OTN(s) (Optional Tree Node).  

There are 35 keywords in snort 1.8.3 that can be used in the rule option(s), 20 of which 
will be used in the OTN’s. Of the 20 items that will be in the rule options, 17 will be either a 
true/false (i.e. equal to or not equal to) value or greater than/lower than value. The snort engine 
can easily pass this information through the linked list with little overhead. Most of the 
computational overhead comes from the use of the following three keywords: content, content-
list and uricontent. Each of these keywords calls the pattern-matching engine to parse the data 
portion of the packet for a particular pattern. Because of the overhead that the pattern-matching 
engine causes it is the last part of the rules option(s) that is checked. Of the 1270 rules, 1086 
rules contain either the “content” or “uricontent” keyword1. 

Rule Parsing and Detection Engine 
 
When snort initializes and parses the rules it creates a separate rule tree for TCP, UDP, 

ICMP and IP. Within each rule tree there will be a separate three-dimensional linked list of 
RTNs (dimension one) and OTNs (dimension two) and function pointers (dimension three). The 
RTNs will include the IP address information and port information. 

 
Figure 2. An example of the chain header (RTN). 

 
Src ANY

Dst HOME_NET
Src_P ANY
Dst_P 21

Src ANY
Dst HOME_NET

Src_P ANY
Dst_P 23

Src ANY
Dst HOME_NET

Src_P ANY
Dst_P 25

Src ANY
Dst HOME_NET

Src_P ANY
Dst_P 80

 
 

When snort sends a packet through the detection engine it first sees what IP protocol the 
current packet is so that it can send it to the correct rule treeix. Once the packet is sent to the 
correct tree for evaluation it will be checked against each RTN, from left to right, until a match is 
found. When checking the RTNs, snort will first look at the IP addresses and then the port 
information, if necessaryx.  If an RTN is found that matches the current packet, then it goes down 
the OTNs one by one to see if a match can be found. Each OTN is not checked for every option 
                                                 
1   $ls *.rules | wc -l 
     33 
     $egrep -v "^#" *.rules | egrep [a-z] | wc -l 
     1270 
     $egrep -v "^#" *.rules | egrep content | wc -l 
     1086 
 



that is available because it would be a waste of resources to check for things that do not exist (i.e. 
checking for content on a non-content packet). Instead each OTN has a linked list of function 
pointers (dimension three) to the tests that need to be carried out for that particular OTN. 

 
Figure 3. An example of chain headers (RTNs) and chain options (OTN’s). 

 
Src ANY

Dst HOME_NET
Protocol TCP
Src_P ANY
Dst_P 21

Src ANY
Dst HOME_NET

Protocol TCP
Src_P ANY
Dst_P 23

Src ANY
Dst HOME_NET

Protocol TCP
Src_P ANY
Dst_P 25

Src ANY
Dst HOME_NET

Protocol TCP
Src_P ANY
Dst_P 80

flags:A+
content:".forward"

flags:A+
content:"_RLD"

flags:A+
content:"HELP "

flags:A+
uricontent:".ida"

flags:A+
content:"cwd

~root"

flags:A+
content:"to su

root"

flags:A+
content:"vrfy

decode"

flags:A+
uricontent:"ps%20"

flags:A+
content:"MKD

AAAAAA"

flags:A+
content:"4Dgifts"

flags:A+
content:"|0a|Croot|

0d0a|Mprog"

flags:A+
uricontent:"wget

%20"

flags:A+
content:"pass -

iss@iss"

flags:A+
content:"|FF F6 FF

F6 FF FB 08 FF
F6|"

flags:A+
content:"mail

from|3a20227c|"

flags:A+
uricontent:"uname

%20-a"

flags:A+
content:"CWD ..."

flags:A+
content:"OutOfBox

"

flags:A+
content:"reply-
to|3a| a~.`/bin/"

flags:A+
uricontent:"/bin/

chmod"

 
 

Snort uses the Boyer-Moore pattern-matching algorithm when attempting content 
matching on the packet payload.xi. This pattern-matching algorithm is one of the most efficient 
algorithms for string matching and is often used for the “search” and/or “replace” commands 
within a text editorxii. The Boyer-Moore algorithm is good for a single string search, but when 
dealing with a NIDS a single packet can partially match many different rules and for each rule 
the algorithm will have to be run. For example, a packet is matched for the pattern 
/cfdocs/cfmlsyntaxcheck.cfm  (web-coldfusion.rules shown below) and the next 15 OTNs all 
contain the same /cfdocs/ directory in the beginning of the pattern.  After searching the current 
packet it is certain that /cfdocs/ does not appear anywhere in the packet. The next 15 OTN 
searches will all fail but are performed anyway. 

A new pattern-matching algorithm was needed to help overcome this shortcoming. 
Silicon Defense did some initial research on this matter and tested a new algorithm that uses the 



best aspects of the Boyer-Moore algorithm and the Aho-Corassick algorithm to gain a significant 
performance boost over the current Boyer-Moore algorithmxiii. 
 
 Figure 4. Partial contents of web-coldfusion.rules: 
 

/cfdocs/cfmlsyntaxcheck.cfm 
/cfdocs/exampleapp/ 
/cfdocs/exampleapp/email/application.cfm 
/cfdocs/exampleapp/email/getfile.cfm 
/cfdocs/exampleapp/publish/admin/addcontent.cfm 
/cfdocs/exampleapp/publish/admin/application.cfm 
/cfdocs/examples/cvbeans/beaninfo.cfm 
/cfdocs/examples/mainframeset.cfm 
/cfdocs/examples/parks/detail.cfm 
/cfdocs/expeval/ 
/cfdocs/expeval/displayopenedfile.cfm 
/cfdocs/expeval/exprcalc.cfm 
/cfdocs/snippets/ 
/cfdocs/snippets/evaluate.cfm 
/cfdocs/snippets/fileexists.cfm 
/cfdocs/snippets/gettempdirectory.cfm 

Overview of the Boyer-Moore Algorithm 
 

Before going into the basics the following is a layout of the terminology. 
 

1. Pattern to match will be noted as P. 
2. Text to match against (payload) will be noted as T. 
3. The length of pattern (P) will be noted as LP. 
4. The length of text (T) will be noted as LT. 
5. The first and last character of P will be noted as P1 and PLP respectively. 
6. The first and last character of T will be noted as T1 and TLT respectively. 
7. When initially matching up the P and T the last character in P, PLP, will match up 

with TLP. 
 

Pattern to look for: EXAMPLE 
Text to look in:      HERE IS A SIMPLE EXAMPLE2 

 
With a naïve pattern-matching algorithm P would be searched in T as follows: 
  

1. Align the left end of P with the left end of T so that P1 and T1 are aligned (Figure 5). 
 
 
 
 
 

                                                 
2 Moore, Strother J. The Boyer-Moore Fast String Searching Algorithm, http://www.cs.utexas.edu/users/moore/best-
ideas/string-searching/index.html, (18 Feb 2002). 

http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/index.html
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/index.html


Figure 5. 
 

P1                PLP 
 EXAMPLE 

  HERE IS A SIMPLE EXAMPLE 
 T1                TLP                                                      TLT 

 
2. Match the characters of P against T from left to right until either a mismatch of 

characters occurs or P is exhausted. In this case P1  = E and T1 = H and 
E ≠ H (Figure 5). 

3. If a mismatch occurs the algorithm will shift P one character to the right and start the 
matching process again (Figure 6). This time P1  = “E” will be aligned with T2 = “E”. 
Since “E” = “E” it will check P2 = “X” against T3 = “R”. Since “X” ≠ “R” it will shift 
P one character to the right and start all over again. 

 
Figure 6. 
 

   P1                PLP 
    EXAMPLE 

HERE IS A SIMPLE EXAMPLE 
  T2                                                                       TLT 

 
4. The above process will continue until either a complete match of P if found in T or 

until PLP shifts past the right end of TLT.  
 

In the above case it took the naïve algorithm 28 attempts to find a match. As you can see 
this is a “brute force” matching algorithm that can take a long time to either make a match or 
determine that a match cannot be made. This is similar to the way that snort started off with its 
pattern matching techniques. 
The Boyer-Moore algorithm has three strengths that are not contained in the naïve algorithm that 
make it efficient and very good even in a worst-case scenario.  
 

1. Right to left scan. This is in contrast to the naïve method that scans from left to right. 
The left end of P is still aligned with the left end of T but the matching starts on the 
right end of P and moves left until a mismatch occurs (Figure 7). 
 
Figure 7. 
 

P1                PLP 
 EXAMPLE 

  HERE IS A SIMPLE EXAMPLE 
 T1                TLP                                                      TLT 

 
2. Bad character shift. The first match attempt will start at PLP = “E” and 

TLP = “S” (Figure 7). Like many advanced pattern-matching algorithms Boyer-Moore 
preprocesses the pattern and gains heuristic information. It will use this information 



to compute the amount to shift P to the right. The algorithm has to determine the 
right-most character in P that it can match in T. In this case it would be the letter “E” 
(Figure 8). 

 
Figure 8. 

 
                     P1                  

                       EXAMPLE 
PLP 

  HERE IS A SIMPLE EXAMPLE 
 T1                TLP                        TLP + 9               TLT 

 
3. Good Suffix shift. Once this match is made the algorithm will start matching at the 

right end of P. This time PLP = “E” will match TLP + 9 = “E” (Figure 8). Now it will 
match PLP-1 = “L” against TLP + 8 = “L”. Again we have a match so PLP-2 = “P” will be 
matched against TLP + 7 = “P”. This is also a match so it will attempt PLP-3 = “M” 
against TLP + 6 = “M”. Since it is still matching it will attempt PLP-4 = “A” against TLP + 

5 = “I”. This time a mismatch occurs. Because of the preprocessing of the pattern it 
has found that T contains the string “MPLE” and it will look for the next occurrence 
of that string in T . Then it will shift P to the right so that the string “MPLE” of P will 
be aligned with the next occurrence of the string “MPLE” in T (Figure 9). 
 
Figure 9. 

 
                                        P1                  

                                          EXAMPLE 
PLP 

  HERE IS A SIMPLE EXAMPLE 
 T1                TLP                                                TLT 
 
4. Once this shift is complete the matching of characters will start again from the right 

of P. In this case when every character of P is matched to T starting at PLP  = “E” and 
TLT = “E” a full match occurs. 

 
With the Boyer-Moore algorithm the above search took only 12 attempts before a 

successful match was detected. This is more than twice as fast as the brute force method. 
 

Aho-Corasick_Boyer-Moore Hybrid 
 
While the name would imply that the new algorithm is a mix between the Aho-Corasick 

and Boyer-Moore algorithms it really is not. It is a “Boyer-Moore like algorithm applied to a set 
of keywords held in an Aho-Corassick like keyword tree that overlays common prefixes of the 
keywords.”3. This new algorithm takes the best characteristics of both the Boyer-Moore and 
Aho-Corasick algorithms. 

                                                 
3 Coit, Jason and  Staniford, Stuart and McAlerney, Joe. (21 June 2001), 
http://www.silicondefense.com/software/acbm/speed_of_snort_06_21_2001.pdf page 3, (19 Feb 2002) 

http://www.silicondefense.com/software/acbm/speed_of_snort_06_21_2001.pdf


 
1. Similarities: 

a. Boyer-Moore -> Bad character shift. 
b. Aho-Corasick -> Keyword tree. 

2. Variances: 
a. Boyer-Moore -> Instead of using the original good suffix shift the new 

algorithm will use the good prefix shift. 
b. Boyer-Moore -> While the packet (text, T) will be searched from right to left, 

the tree (pattern, P) will be searched from left to right. 
c. Aho-Corasick -> Instead of building a tree based on suffixes this tree will be 

built on prefixes. 
 

By looking at our original problem (Figure 4) we have 16 different rules that share some 
common information. If we had loaded just those 16 rules in the AC_BM keyword tree it would 
look very different (Figure 10). 
 
 Figure 10. Partial web-coldfusion.rules. 
 

/cfdocs/
ex

peval/

ample
app/

s/

email/
application.cfm

getfile.cfm

publish/admin/a
ddcontent.cfm

pplication.cfm
cybeans/beaninfo.cfm

mainframeset.cfm
parks/detail.cfm

displayopenedfile.cfm
expracalc.cfm

snippets/
fileexists.cfm

gettempdirectory.cfm

cfmlsyntaxcheck.cfm

evaluate.cfm

 
 

At first glance this tree may look more confusing than Figure 4, but once you study this 
tree you can see how efficient it is. A mismatch can eliminate many rules from being searched 
that will eventually fail. With a normal Aho-Corasick keyword tree the pattern would be 
searched for one character at a time like the naïve algorithm. With the addition of the Boyer-
Moore good prefix shift and bad character shift, the algorithm can quickly determine if a match 
occurs or the current packet does not match any current patterns. This algorithm is outlined in 
Dan Gusfield’s “Algorithms on Strings, Trees and Sequences: Computer Science and 
Computational Biology” as a “Boyer-Moore Approach to Exact Set Matching.” 

The AC_BM algorithm shows a slight performance increase when used in non-content 
matching rules, but difference really shows when it comes to content matching rules. In snorts 
current implementation the number of content matching rules will significantly affect the 
performance and will not scale well. This is why new pattern matching algorithms have been 
researched and show promise. 



Current Issues 
 

Even though the new algorithm has better performance for content matching rules it does 
have some areas that either should be improved upon or taken into account when implementing 
the AC_BM version of snort. 

First, since AC_BM starts the matching at the right end of the packet and moves to the 
left end of the packet it may trigger a different rule than the original Boyer-Moore algorithm 
when the same packet is sent to the respective algorithm for analyzing. For example, if you have 
two rules that only differ by the content that is searched for: 
 
 Rule 1 content: Firstpartofpacket 
 Rule 2 content: Lastofpacket 
 Packet Data (Text): FirstpartofpacketandthentheLastofpacket 
 

When the packet data is sent to the Boyer-Moore algorithm it will trigger on rule 1. When 
the same packet data is sent to the AC_BM algorithm it will trigger on rule 2. This is a result of 
the different directions in which each algorithm examines the packet data. If the AC_BM 
algorithm were set up to examine the packet data from left to right, like Boyer-Moore, it would 
get rid of the anomaly. The only reason that it was not done in the initial implementation of snort 
with AC_BM is that it was a proof of concept implementation. 

Like many other products (Cisco access-lists, CheckPoint FireWall-1 rules, etc.) snort is 
a “first rule match wins” type of architecture. The problem that arises is with the AC_BM 
keyword tree is the first match will be the shortest match, which may not be the right match. 
When AC_BM builds the keyword tree it loses the ordering of the rules. The ordering of the 
rules is what allows the current version of snort to find the longest match. 

This longest match rule is preferred for applications like IP routing (EIGRP, OSPF, BGP-
4) and regular expressions. With the longest match rule, the most specific rule will always be 
triggered. Hankxiv takes it a bit further. Hank alerts to all matches. This type of alerting gives the 
NIDS administrator, or whoever looks at the alerts, more information than most NIDS today. 
This will change in snort 2.0, which will move toward a “last-exit”xv match. Basically this will 
make snort look for the longest match and make it more accurate. 

The only thing kept in the AC_BM keyword tree is the content for which to search. They 
had to figure out a way to keep the various non-content options. Since the AC_BM 
implementation was only meant as a proof of concept, they (Silicon Defense) had to either 
change the preprocessing of the rules or change the way that snort organized the RTNs and 
OTNs. To keep snort as close to the original architecture as possible they chose to change the 
way that snort imported the rules. To do this they separated the content and non-content rules 
and handled the option rule checking differently depending on the type of rule. In doing the rule 
separation they also changed the way that content rules are handled. In the original snort all 
options are checked first before Boyer-Moore is called to check the content. In snort with 
AC_BM all the other options are checked after AC_BM is called to the check the content of the 
rules. 

Protocol Analysis 
 



 When most people think of a NIDS they think of pattern matching. There is another way 
to implement NIDS though, and that is through protocol analysis. Protocol analysis products 
have been around for many years and have the ability to analyze the data (real time) for the user 
so that they can quickly determine what problems are occurring on their network. By taking this 
to the next level you would get a protocol analysis NIDS. 
 The architecture for a protocol analysis NIDS is very different from a pattern matching 
NIDS. The protocol analysis NIDS will decode each packet according the protocol specification. 
It will then it will check each field to make sure that it conforms to the standard. If it doesn’t then 
the NIDS will flag the packet accordingly. For packets that conform to the standards but are still 
an exploit (i.e. showcode.asp, /bin/sh) the NIDS can do a pattern match in the particular field that 
needs to be checked instead of the entire packet. BlackICE takes a different approach to the 
pattern matching issues that could be a bottleneck. In the case of a HTTP packet the user can 
specify the text to match for in the URI. For example in the packet below BlackICE would split 
the URI into separate components, in this case “SAMPLE” and “showcode.asp”. Then it would 
do an exact match for each component in a list of exploitable components. Since it does an exact 
match and not a pattern match it can determine if the component is a match or not quicker.   

Snort started to become protocol aware when the keyword “uricontent” was added. This 
gave snort users the ability to search only the  URI portion of a HTTP packet instead of the entire 
packet/payload (Figure 11). 
 
 Figure 11. 
  

HTTP - Hyper Text Transfer Protocol 
   Command:              GET 
  URI:                         /SAMPLE/showcode.asp 
  Version:                   HTTP/1.1.. 

Accept:                     */*.. 
Referer:                    http://www.victim.com/.. 
Accept-Language:   en-us.. 
Accept-Encoding:   gzip, deflate.. 
User-Agent:             Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt).. 
Host:                        www.victim.com.. 
Connection:             Keep-Alive.. 
Cookie:                    RoxenUserID=0x673b30.... 

 
The performance increase from this methodology will all depend on many factors, like packet 
size, field size, components to check for, etc.  
 One of the big drawbacks of a protocol analysis NIDS is that every vendor implements 
the protocol according to how they interpret the RFC. This can cause false positives if the NIDS 
developers are validating the packets differently than a vendor that has traffic that is seen by the 
NIDS.  
 The second drawback is that if someone finds a way to evade the protocol analysis NIDS 
the decoding engine will have to be rewritten. For example when Rain Forest Puppy came out 
with Whiskerxvi it had some very new and interesting IDS evasion techniques. While users who 
ran snort could easily update the signatures so that they could catch someone scanning them with 
Whisker, NetworkICE’s BlackICE had to be rewritten to catch these exploits. In the end though 



the developers of BlackICE addressed the issue (evasion techniques) and not the program 
(Whisker). By addressing the techniques and not the program the developers will be able to 
develop a NIDS that can not only alert to the current NIDS evasion techniques but also to other 
similar techniques that have taken advantage of the same issues within that protocol. 
 The third drawback for a protocol analysis NIDS is how it deals with a packets that it 
does not have a decode for. This could be as simple as sending the user an alert that the NIDS 
has seen a packet that it does not know how to decode or it could attempt to run some heuristics 
on the packet to see if it is a protocol that is knows about, but is listening on a different port. 
 The strength of a protocol analysis NIDS is that exploits that are new should be easier to 
catch since it does not rely on matching a known pattern. Evasion techniques like polymorphic 
shellcode, URL encoding, session splicing, etc. are still easy for the protocol analysis NIDS to 
detect for the same reason. 

Depending on the network architecture, regulations and level or paranoia you might want 
to run a NIDS inside of your network. This could be a simple as a single NIDS watching a major 
portion of your network or as complicated as a distributed NIDS environment with each NIDS 
configured to watch traffic that is specific to that particular segment. By placing the NIDS on the 
LAN you run into many more situations where a protocol analysis NIDS would be the 
appropriate tool. Below I will outline some areas that would be best suited for a protocol analysis 
NIDS. 

1. Most large companies run some sort or interior routing protocol to keep the 
network up and running. Most of these routing protocols update via multicast 
(OSPF, EIGRP) or broadcast (RIP, IGRP). In the past few years there have 
been utilities (irpasxvii, nemesisxviii, nmapxix)  written that will either gain 
information from these types of protocols or spoof these protocols. With these 
types of utilities an attacker could seriously disrupt the network by injecting 
bad routes or DoSing nodes with bad packets. Even worse an attacker could 
spoof a gateway and capture the packets as it redirects the packets to the correct 
gateway. Network engineering departments are usually not concerned with 
security and see security as a nuisance. Because of this attitude, plus the false 
sense of security of being behind a firewall, attacks on the routers and routes 
can be easy to execute and hard to detect. A NIDS might be able to detect 
routing protocols, but it does not have any way of knowing of what types of 
protocols are suppose to be running or how they are suppose to be configured. 
For example if you have EIGRP as your only routing protocol and you run only 
one AS, 50, you would have a hard time detecting an EIGRP packet that had a 
different AS. Even harder would be to look for route injection or modification.  

2. Not all security professionals take layer two spoofing seriously. Some people 
are still under the assumption that if you are in a 100% switched environment 
that you are safe from sniffers and other packet capture software. Enter dsniffxx 
and ARP0cxxi. These two tools give the attacker the ability to fool switches into 
sending the attacker packets that it is not suppose to. Since these two tools only 
work on the LAN not many people focus on detecting these attack methods. 
While the protocol analysis NIDS would not see anything wrong with the way 
that the packets are constructed it may have some sort of anomaly detection 
function built into it to help with these types of attacks. 

 



Stateful Inspection 
 
 The term stateful inspection has long been associated with firewalls. When dealing with 
firewalls, stateful inspection usually deals only with layer 4 protocols (i.e.TCP, UDP). Firewalls 
have having to become more protocol aware as new protocols are developed that take advantage 
of a setup channel and a data channel. An early example of this is the FTP protocol. FTP utilizes 
a two separate connections, one for control information (TCP port 21) and one for data transfer 
(TCP 20). When a firewall sees a FTP connection (TCP port 21) to a FTP server it knows to 
open up a dynamic rule that would allow the data connection (TCP port 20) from the server back 
to the client. This dynamic rule will be torn down depending on the information in the control 
connection (i.e BYE command).  

In the early days NIDS developers did not worry about the state that a connection was in 
to determine how a packet should be handled. Starting with fragrouterxxii NIDS developers have 
had to worry about packet reassembly at the IP layer. When fragrouter first came out it was able 
to evade many of the NIDS on the market. Snort added what is now know as the frag2 
preprocessor to handle these types of evasion techniques. Some commercial NIDS only alert the 
NIDS administrator that  fragmented IP packets have been detected but it doesn’t reassemble the 
fragmented packets. 

Then hackers came out with tools like stickxxiii and snotxxiv. These tools could be used to 
overload the NIDS with packets that match NIDS rules and overload the NIDS administrator 
with a lot of false positives. This took advantage of the fact that most pattern matching NIDS 
only looked in the current packet to see if it matched a rule. These tools don’t even setup a TCP 
session properly (i.e Three Way Handshake) before sending the data. They just send just enough 
data to trip the NIDS by using existing snort rules to generate the forged packets. To take care of 
this DoS against the NIDS itself the snort community added the stream4 preprocessor with the  
“-z est” option. This allows snort to track the state of the TCP connection before sending the 
packets to the detection engine. Since packets generated via stick and snot don’t establish a TCP 
connection they would not get sent to the detection engine. Depending on how the stream4 
preprocessor is setup snort could alert the NIDS administrator that it has seen a TCP packet that 
is not part of an existing connection. 

Protocol Analysis NIDS developers take the term stateful inspection differently. They are 
aware how certain protocols are suppose to act and react and can watch each protocol 
“statefully”. By tracking not only the stimuli but also the response, the protocol analysis NIDS 
can do a better job at determining if the attack is successful. In the case of a HTTP exploit a  
pattern matching NIDS would alert you to the fact that is saw a packet that matched a rule, but a 
protocol analysis NIDS would be able to tell you with a certain amount of accuracy if the attack 
was successful or not by watching the HTTP message generated by the server. 

Where are we now and where do we go from here? 
 

The research done by Silicon Defense is also closely followed by research done by a joint 
effort of Mike Fisk and George Varghese. They implemented a new algorithm called Setwise 
Boyer-Moore-Horspool. Their results were different from those of Silicon Defense, but still 
showed that with a different pattern matching algorithm snort and other devices that need high 
speed pattern capabilities would be less susceptible to a DoS of the device due to the slow 



pattern matching algorithm. They noted that a special algorithm that would change from a 
standard Boyer-Moore-Horspool to a Setwise Boyer-Moore-Horspool to an Aho-
Corasick_Boyer-Moore depending on the size of the patterns to search for performed better than 
any other variant. 

Todd Lewis, author of Hank, liked the idea of AC_BM and took it a bit further. Instead of 
implementing what had already been done by Silicon Defense he took a step back and looked at 
what areas of AC_BM could be improved upon and implemented the changes. Silicon Defense 
noted their issues with memory consumption and shortest pattern match and these issues are 
implemented differently in Hank. Hank triggers all rules that match and has a more memory-
efficient AC_BM implementation. 

We have only touched the surface of what can be done to increase the performance of 
NIDS in regards to pattern matching there is still a lot more room for research in this area.  

NIDS developers are still at odds over which NIDS technology is better (pattern-
matching (snort 1.x, ISS RealSecure) or protocol analysis (ISS Sentry –formerly NetworkICE 
Sentry). Newer NIDS implementations (ISS 7.0, snort 2.0xxv) seem to be combining the best of 
both worlds. The combination of a protocol analysis engine and a pattern matching engine would 
capture the strengths of both worlds and make a NIDS that is fast, hard to evade and able to catch 
new (zero day) exploits. 
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