
Computer Forensics and Incident
Response: Bringing Sexy Back

Jamie Butler

Agenda

•  Traditional Forensic Analysis
–  Purpose
–  Why the disk is not enough

•  More Common Threat Model
–  Infected Processes
–  Causes
–  Example Canvas

•  Designing a Memory Analysis Tool
–  Requirements
–  Building blocks
–  Demonstration of the usefulness of Windbg

•  Putting it all together
–  Demo – Were we just expoited by Canvas?

Traditional Forensic Analysis

•  The focus was on disks where files were always
written, so it worked

•  This type of analysis usually involved a focused
toolset that provided:
– Parsing file systems (EXT2, XFS, NTFS, FAT32, etc.)
– Hashing files
– Analyzing file times
– Recovering deleted files

Traditional Forensic Analysis

•  Evidence of illegal or malicious behavior does
not have to reside on disk

•  Three examples
– Canvas

•  Injects shellcode into other processes that provides a
callback function

– Metasploit Meterpreter
•  Injects arbitrary DLLs into a process’s address space

– Sliver rootkit
•  From a kernel driver injects any DLL into any process
•  Injects shellcode to steal any type of process handle

Code Injection Basics

•  “Code Injection” refers to techniques used to run
code in the context of an existing process

•  Motivation:
– Evasion: Hiding from automated or human detection

of malicious code
•  IR personnel hunt for malicious processes

–  Impersonation: Bypassing restrictions enforced on a
process level

•  Windows Firewall, etc
•  Pwdump, Sam Juicer

User Mode Injection Techniques

•  Windows API
– SetWindowsHookEx
– OpenProcess
– VirtualAlloc/Ex
– WriteProcessMemory

•  AppInit_Dll
•  Detours

Kernel Process Injection

Two Halves of the Process
• User land processes are comprised of two parts

– Kernel Portion
•  EPROCESS and KPROCESS
•  ETHREAD and KTHREAD
•  Token
•  Handle Table
•  Page Tables
•  Etc.

Two Halves of the Process
• User land Portion

– Process Environment Block (PEB)
– Thread Environment Block (TEB)
– Windows subsystem (CSRSS.EXE)
– Etc.

Kernel Process Injection Steps
• Must find suitable target

– Has a user land portion
– Has kernel32.dll and/or ntdll.dll loaded in its address space
– Has an alterable thread (unless hijacking an existing thread)

• Allocate memory in target process
• Write the equivalent of “shellcode” that calls

LoadLibrary
• Cause a thread in the parent to execute newly

allocated code
– Hijack an existing thread
– Create an APC

Allocate memory in parent process
• Change virtual memory context to that of the

target
– KeAttachProcess/KeStackAttachProcess
– ZwAllocateVirtualMemory

•  (HANDLE) -1 means current process
•  MEM_COMMIT
•  PAGE_EXECUTE_READWRITE

Creating the Shellcode
• “shellcode” that calls LoadLibrary

– Copy function parameters into address space
– Pass the address of function parameters to calls
– Can use the FS register

•  FS contains the address of the TEB
•  TEB has a pointer to the PEB
•  PEB has a pointer to the PEB_LDR_DATA
•  PEB_LDR_DATA contains all the loaded DLLs

APC
• Cause a thread in the parent to execute newly

allocated code - Create an APC
– Threads can be notified to run an Asynchronous

Procedure Call (APC)
– APC has a pointer to code to execute
– To be notified, thread should be Alertable

Finding an Alertable Thread
PETHREAD FindAlertableThread(PEPROCESS eproc)
{
 PETHREAD start, walk;

 if (eproc == NULL)
 return NULL;
 start = *(PETHREAD *)((DWORD)eproc + THREADOFFSET);
 start = (PETHREAD)((DWORD)start - THREADFLINK);
 walk = start;

 do
 {
 DbgPrint("Looking at thread 0x%x\n",walk);

 if (*(PUCHAR)((DWORD)walk + ALERTOFFSET) == 0x01)
 return walk;
 walk = *(PETHREAD *)((DWORD)walk + THREADFLINK);
 walk = (PETHREAD)((DWORD)walk - THREADFLINK);
 }while (walk != start);

 return NULL;
}

How do we begin to detect this?
Memory Analysis

• Requirements
– No use of APIs to gather data.

– Ability to use any analysis solution on both live memory and
offline memory image dumps.
(Implies the ability to do all memory translation independently.)

– Do not require PDB symbols or any other operating specific
information.

Steps to Memory Analysis
• Ability to access physical memory

• Derive the version of the OS – important to know
how to interpret raw memory

• Find all Processes and/or Threads

• Enumerate File Handles, DLLs, Ports, etc.

Steps to Memory Analysis
• Virtual to Physical Address Translation

– Determine if the host uses PAE or non-PAE
– Find the Page Directory Table – process specific
– Translate prototype PTEs
– Use the paging file

Derive the version of the OS
• Find the System Process

– Allows the derivation of:
•  The major operating system version in question
•  The System Page Directory Table Base
•  HandleTableListHead
•  Virtual address of PsInitialSystemProcess
•  PsActiveProcessHead
•  PsProcessType

Operating System Version

• Find the System image name

• Walk backwards to identify the Process Block

• The spatial difference between major versions of
the OS is enough to begin to tell us about the
operating system version

Operating System Version
• Drawback: Ghosts

– There can be more than one System Process
•  Open a memory crash dump in Windbg
•  Run a Windows operating system in VMWare

– Solution:
•  Non-paged kernel addresses are global
•  We know the virtual address of PsActiveProcessHead
•  PsActiveProcessHead and other kernel addresses should be

valid and present (translatable) in both live or dead memory

Memory Translation
• PAE vs non-PAE

– Different ways to interpret the address tables
– The sixth bit in the CR4 CPU register determines if

PAE is enabled
– Problem: We do not have access to CPU registers in

memory analysis
– Solution?

•  Kernel Processor Control Region -> KPCRB ->
KPROCESSOR_STATE -> KSPECIAL_REGISTERS -> CR4

Memory Translation
• CR4 Heuristic

– Page Directory Table Base and the Page Directory
Table Pointer Base look very different.

• CR3 is updated in the KPCR
– This can be used to identify a valid Page Directory

Table
– The Page Directory can be used to validate the

PsActiveProcessHead

Enumerating Injected DLLs
• Problem:

– APIs lie.
– Malware can unlink from the PEB_LDR_DATA lists of

DLLs

• Solution:
– Virtual Address Descriptors (VADs)

VADs
• Self balancing binary tree [1]
• Contains:

– Virtual address range
– Parent
– Left Child and Right Child
– Flags – is the memory executable
– Control Area

1. Russinovich, Mark and Solomon, Dave, Microsoft Windows Internals, Microsoft Press 2005

A Memory Map to a Name
• VAD contains a CONTROL_AREA
• CONTROL_AREA contains a FILE_OBJECT
• A FILE_OBJECT contains a UNICODE_STRING

with the filename

• We now have the DLL name

Leveraging existing tools

•  Memory Acquisition
–  dd by George Garner http://gmgsystemsinc.com/fau/

•  Memory Translation
–  IA-32 Intel Architecture Software Developer’s Manual, Volume 3,

Chapter 3
•  Finding Things in Memory

–  Windbg
•  Processes
•  Drivers
•  Etc.

–  VADs
•  Russinovich, Mark; David Solomon Microsoft Windows Internals,

(Fourth Edition), Microsoft Press December, 2004.
•  Dolan-Gavitt, Brendan. The VAD Tree: A Process-Eye View of

Physical Memory Digital Investigation 4S (2007) S62-S64

Demo – catching Dave Aitel

Conclusion

Questions?

• Email: jamie.butler AT mandiant.com

• Job searchers: always looking for talented people
to work with.

