
Towards an Invisible Towards an Invisible Towards an Invisible Towards an Invisible 

HoneypotHoneypotHoneypotHoneypot Monitoring ToolMonitoring ToolMonitoring ToolMonitoring Tool

HITB06HITB06HITB06HITB06

Nguyen Anh Quynh
<aquynh –at- gmail com>

Keio university, Japan



Who am I ?

�Nguyen Anh Quynh, a PhD student of 
Takefuji-lab, Keio university, Japan

�Interests: Network/Computer Security, 
Operating system, Robust system, 
Virtualization

�Non-geek hobby: traveling, reading and 
playing soccer



Motivation

�Sebek is a de-facto data capture tool of 

honeynet architecture

�But there are various ways to defeat Sebek 

because Sebek is not “invisible” enough

�Xebek is our solution on Xen Virtual Machines to 

address Sebek's problems

� More “invisible”

� More flexible

� Better performance



Overview

�Honeynet architecture and Sebek

�Sebek's problems

�Xebek comes to rescue

� Introduction to Xen Virtual Machine

� Xebek architecture & implementation

� Demonstration

�Q & A



Part I

�Honeynet architecture and Sebek

� Honeypot introduction

� Honeynet architecture

� Sebek technology



Honeypot technology

�What is a honeypot?

� The information system resource whose value 

lies in unauthorized or illicit use of that resource

� Has no production value, anything going in/out 

the honeypot is likely a probe/attack/compromise

� Primary value to most organizations is 

information



Honeypot impact
�Advantage

� High valuable data

� Reduce false 

positives

� Catch new attacks (0-
day bug?) & false 

negatives

�Disadvantage

� Limited view

� Risk of take over



Honeypot types
Categorized based on level of interaction

Low-interaction

� Emulate services, 
applications, OSes

� Low risk and easy to 

deploy/maintain

� But capture limited 

information

High-interaction

� Real services, 
application, OSes

� Capture extensive 

information

� But high risk and 

hard to maintain

Honeyd Honeynet



How honeynet works
� A highly 

controlled 
network 
where every 
packet 
entering or 
leaving is 
monitored, 
captured 
and analyzed



Honeynet components
2 key components

� Data capture

� Data logging & analysis



Data capture
�Capture activities at various levels

� Application

� Network

� OS level



Data analysis
�Manage and analysis captured data from 

honeypots

� Investigate malware

� Forensic purpose



Honeynet generations
�Gen I

�Gen II, Gen III (currently)

� radical change in architecture focuses on the 

data capture tool

Sebek as a data capture tool



Sebek: a data capture tool
�Born in Honeynet Gen II

�Play a key role in Honeynet architecture

�Gen III (currently)



Sebekarchitecture
� Sebek components

� Data capture tool

� Central logging server

Sebek
client

Sebek server
(sebekd)



Sebek clienttechnique
� Data capture tool: patches system-calls 

(open/fork/read/write/socket)

� Send out gathered data via network-stack (UDP protocol)



Sebekfeatures

�hidden kernel module

�dumps activity to the network via UDP 
protocol to a central logging machine

�fool attacker by modifying network stack, 
so Sebek traffic is invisible (well, almost!)



Part 2
�Current problems of Sebek

� Easy to identify

� How easy it is?

• Possible even with unprileged user

� How ?

� 7 methods to defeat Sebek



Sebek clientrequirement

�Most vital requirement for a data capture 
tool: Function as covert as possible => 
Invisible problem

� Otherwise, game over

• No more chance to watch out the attacker

• No more chance to catch 0-day bug (daydream?)

• Attacker can destroy the honeypot

• Who fools who then?



But can Sebekdeliver?
�Hmm, not really. Various ways to defeat 

Sebek

� 1. Can be discover by even unprivileged user

� 2. Network statistics disclose Sebek

� 3. Brute-force scanning method

� 4. System-call address checking

� 5. Remove Sebek is feasible

� 6. Sniff at the right place

� 7. Bring down the central logging server



Method (1)
�Sebek can be discover by even unprivileged 

user

� dd-attack

• Generate lots of data

dd if=/dev/zero of=/dev/null bs=1

• Check to see if network congestion ?

Why?

Network stack is employed to send data out



Method (2)

�Network statistics disclose Sebek

� Compare dev->getstats()->tx_bytes with value 

found in /proc/net/dev

Why?

Network stack is employed to send data out



Method (3)

�Brute-force scanning method to detect 
hidden kernel module

� Look for hidden kernel module

� linux-airt tool by madsys

Why?

Sebekis implemented as a (hidden)kernel module



Method (4)
�System-call addresses checking

� System-call addresses at abnormal places?

Why?

Sebekreplaces 
original system-
calls



Method (5)
�Remove Sebek is feasible

� (unsebek.c by J.Corey)

� Look for the sys_call_table by scanning in 

memory

� Recover original system-call with exported 

symbols

Why?

Sebekreplaces orginal system-calls



Method (6)

�Detect honeypot with Sebek

� Sniff at the right place from outside

sebekd

Sebek client UDP
packets

Attacker with sniffer

Why?

Sebeksends data 
out to other 
machine



Method (7)
�Bring down the central logging server

� Data logging server (sebekd) has vulnerable 

libpcap?

Sebekd
with buggy libpcap

Attacker Malicious
packets

Why?

sebekdexposed to 
network



Reasons make Sebeksux☺

�(1) Uses network stack to send data out

�(2) Logging data sent out can be sniffed online

�(3) Function as kernel module + replace 
original system-calls

�(4) Central logging server (sebekd) exposed to 
the network

�(5) Data transfer might not be reliable (UDP)



Do you still think that current 

honeynet can fool skillful 

hackers?

�I seriously doubt that!

�Should we give up? 

�No, let's keep fighting and raise 
the bar a little bit ;-)



Part 3

Xebek comes to rescue

�Virtual honeypot on virtual machine

�Xen Virtual Machine technology

�Xebek solution



Fix Sebek's problems

�Bring up virtual machine technology: Xen

�Exploit the advantage introduced by Xen 
to address discussed problems



Xen 3.0 Architecture

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device 
Manager & 
Control s/w

Domain-0

Native
Device
Driver

GuestOS
(XenLinux)

Unmodified
User

Software

Domain-U

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

Domain-U

Front-End
Device Drivers

Unmodified
GuestOS
(WinXP))

Unmodified
User

Software

Domain-U

Safe HW IF

Xen Virtual Machine Monitor

Back-End Back-End

VT-x

32/64bit

AGP
ACPI
PCI

SMP



Xen's main components 

�Xen hypervisor runs on top of hardware

�Domains with modified kernel for Xen 

architecture, run on top of Xen

�Special device drivers in Dom0 & DomU 

(backend-frontend architecture)

�Xen control tools in Dom0 (xend, xm)

�Others: xenbus, xenstore, event-channel, 

balloon driver, ...



x86 CPU virtualization 

�Xen runs in ring 0 (most privileged)

�Ring 1/2 for guest OS, 3 for user-space
� GPF if guest attempts to use privileged instr

�Xen lives in top 64MB of linear addr space
� Segmentation used to protect Xen as switching 

page tables too slow on standard x86

�Hypercalls jump to Xen in ring 0



MMU Micro-Benchmarks

L X V U

Page fault (µs)
L X V U

Process fork (µs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

lmbench results on Linux (L), Xen (X), VMWare Works tation (V), and UML (U)



Xen's future: Bright 

�Xen 3.0 was realeased at the end of 2005

�Object: to be gradually merged into Linux 

kernel in 2006

�Already adopted by ISPs, datacenters, banks,...

�Will be widely used in the near future



Xen-based honeynet

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device 
Manager & 
Control s/w

Domain-0

GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

Unmodified
GuestOS
(WinXP))

Unmodified
User

Software

Safe HW IF

Xen Virtual Machine Monitor

Back-End SMP

Front-End
Device Drivers



Xebeksolution for Xen-based 

honeynet

�Xebek: Goals and approaches

�Xebek Architecture

�Xebek Implementation’s issues

�Xebek Evaluation

�Hardening Xebek

�Detecting Xebek



Xebekgoals and approaches

�(1) Capture data as Sebek does, but with some 

improvements

�(2) Eliminate problems of leaving too many 

traces when forwarding data out

�(3) Harden the central logging server



Goal (1)
� Capture data as Sebek does, but with some 

improvements

� Sebek3 captures data by intercepting system-calls 
(read/write/open/fork/socket)

� ==> so Xebek does.

� But Xebek patches the system-calls, so Xebek does 

not run as a kernel module

(1) Uses network stack to send data out

(2) Data can be sniffed

(3) Function as KLM & replace original system-calls

(4) Central logging server exposed to the network

(5) Data transfer might not be reliable (UDP)



Goal (2)
� Eliminate problems of leaving too many traces when 

forwarding data out

� Xebek does not use network stack to deliver data as 
Sebek does

� Using shared memory between DomU and Dom0 

instead to exchange data

(1) Uses network stack to send data out

(2) Logging data can be sniffed online

(3) Function as KLM & replace original system-calls

(4) Central logging server exposed to the network

(5) Data transfer might not be reliable (UDP)



Goal (3)
�Harden the central logging server

� Put the central logging server in Dom0 to pick 

up data forwarded from DomU

� No more exposed to the network

(1) Uses network stack to send data out

(2) Data can be sniffed

(3) Function as KLM & replace original system-calls

(4) Central logging server exposed to the network

(5) Data transfer might not be reliable (UDP)



Xebekarchitecture



xebekU

�Xebek component in DomU's kernel

� patch the system-calls 

(open/read/write/fork/socket)

� establish shared memory with Dom0

� put the gathered data from system-calls to 

shared-memory, then notify xebekd



xebekd
�logging recorder in Dom0

� waits for notification from xebekU

� pick up data in shared-memory, then save to 

corresponding logging file

� notify xebekU on completion



Xebekutilities



Implementation issues

Shared memory structure

�Need to be accessed at the same time by 
2 parties

� xebekU writes to shared memory

� xebekd reads from shared memory

ring buffer format



Ring buffer format

struct ringbuf {
{

u32 write; /* write head */
u32 read; /* read head */
u32 size; /* buffer size */
char buf[0];

} __attribute__((packed));

Buffer with 2 heads

�Write head: fill up buffer

�Read head: realease buffer space



xebekd: multiple threading
�main thread

�worker 
thread

� host_ring: 
ring buffer 
structure



Coding
� Version 0.2 – Linux based DomU only ATM

� Kernel patch

� Kernel module is also available (NOT encourage!)

� xebekd + xebeklive+ xkeys: 1676 lines

� xebekU: 1848 lines (linux-2.6.16-rc2)

� Small increase in kernel binary size

• 946550 bytes -> 948494 bytes

� Small patch to kernel 



Patching kernel/fork.c::do_fork())
#ifdef CONFIG_XEN_XEBEK

struct xebek_packet p;

if (my_private.active) {

p.event = EVT_FORK;

fill_time(&p.time);

p.size = sizeof(current->comm);

p.version = XEBEK_VERSION;

p.magic = XEBEK_MAGIC;

p.uid = current->uid;

p.ppid = current->parent->pid;

p.pid = current->pid;

copy_to_buffer(&p, current->comm, p.size, 0);

}

#endif



Compile Configuration



Xebekevaluation

1085.241 (3.25%)1100.262 (4.68%)1050.991UDP

1004.912 (19.31%)1276.562 (51.56%)842.256TCP

900.421 (~0%)900.433 (~0%)900.380FORK

1.822 (64.69%)1.113 (-)1.106WRITE

1.968 (61.13%)972.649 (~976 times)1.221READ

9.720 (18.62%)1509.073 (~184 times)8.194OPEN

XebekSebekNativeMethod

LMBench benchmark results



Hardening Xebek

�Harden DomU: 

� Protect kernel binary? No need ☺

� Protect kernel symbol? No need ☺

� Shutdown all the paths to the kernel

• No kernel module loading

• /dev/{kmem, mem, port} removed

�Harden Dom0

� Harden system (SELinux, LIDS, AppArmor)

� Run Dom0 with no network access



DetectingXebek
�Intruder gains kernel access ?

� We are hopeless against brute-force scanning kernel 
memory

� Block all path to kernel.

�Intruder has no kernel access?

� Timing attack based on syscall latency?

� Impossible to solve completely !!! �

�Removing kernel access might be suspicious !!!



Demonstration



Future work

�Analysis tool: Adapt Walleye for Xebek

�Maintenance Xebek patch for different kernel 

versions (costly?)

�Make Xebek more flexible

� Adapt Xebek to the Sebek scheme

� Optimize to reduce latency

� Port Xebek to other platforms like *BSD/Solaris/…

� ???



Conclusions

Xebek is a robust data capture tool for Xen-
based virtual honeypot

� More “invisible”

� More reliable/flexible

� Open source: To be released under GPL licencse
soon (when I have more free time �)



Thank you!

Questions/Comments?

Towards an Invisible 
Honeypot Monitoring Tool

HITB06

Nguyen Anh Quynh
<aquynh –at- gmail com>

Keio university, Japan


