8% ol
- SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Marc Schénefeld, Diplom-Wirtschaftsinformatiker

For Science: External doctoral student @ Lehrstuhl flr praktische
Informatik at University of Bamberg, Bavaria, Germany

Thesis project:
REFACTORING OF SECURITY ANTIPATTERNS IN
DISTRIBUTED JAVA COMPONENTS

For Living: Security Management for large financial group in Germany
Java, J2EE, CORBA [CSMR 2002]

design and development
Security Hardening
code audit

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Java (we cover J2SE here, some aspects also apply to J2EE)

is designed as a programming language with inherent security features
[Gong, Oaks]

JVM-Level: Type Safety, Bytecode integrity checks
API-Level: SecurityManager, ClassLoader, CertPath, JAAS
Crypto-Support: JCA/JCE, JSSE

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

...Java Runtime Environment May Allow Untrusted Applets to

...Java Virtual Machine (JVM) May
the Java Media Framework (JMF)...

...Java Runtime Environment Remote
Vulnerability ...

...Opera Java Applets have
... Mac OSX Java

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

A platform (like the Java runtime environment) can only support the
programmer’s intent

What is programmer’s intent ? Reflects different perspectives ...
[application programmer]

Java has a large API with lots of predefined functions (sockets, files, ...)
and [middleware programmer]

Java provides communication and marshalling on different semantic levels
(Sockets, RMI, CORBA, Raw-Serialisation, XML-Serialisation, ...)

[security architect]
Java provides Isolation Support, Crypto-Objects and Secure Sockets out of the box
[adversary]
Undermine security by finding the weak spots

Java VM and core libraries have vulnerabilities (lots of!)

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

Bootstrap e System classes
Class Loader (re/lib/™ . jar)

Al
FPermissions

Extension
classes
defines (jre/lib/ext/™.jar)

Extension
Class Loader

Applicaton
Classl. oader

Applicaton classes
defines

Policy
Java Networl%.a defines . accordlh_gt
= — va.security.
g'l‘ggoscl?(lbaderm— Fhindtiileziatmueny : it olic =
classes P Y
property

ContextClass L oader defines JSP/Serviet
(tomcat)

classes

defines
Some other class loader Other classes

e e L Y

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

Component based software development

3 party middleware components (web servers, graphics libraries, PDF
renderer, ...) are all over the place

We REUSE many of them in trusted places (bootclassloader)

But can we really trust them ?

Questions:

Does my 3"d-party library include vulnerable code which can be
triggered by an attacker ?

Is my desktop JVM secure in isolating confidential data from malicious
applets loaded into the same JVM ?

Object serialisation is coded by Sun, so it is safe, isn’t it ?

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Client Tier

Standalone-
Client

Presentation Tier

JVM

Browser-
Client

Enterprise Tier

Backend Tier

Web-

JVM

Applet
JNLP-Client
Java.exe
Jvm.DLL embedded

=] I ==uv*=1u

SecConf

Container

Enterprise-
Container

Database

JVM

JVM

JSP
Servlet

4oL

2005

26th - 29th September 2005 Kuala Lumpur Malaysia

JVM

Session Beans
Entitiy Beans
Message-Driven Beans

Enterprise

Adapter
JVM

Enterprise Adapter
Enterprise Resource
Java Stored Procedure
Java UDF

illegalaccess.org

Client Tier Presentation Tier Enterprise Tier Backend Tier

Standalone-
Client
JVM

Database

JVM

. Enterprise-
Web- i Container

Browser- : Container .
Client : : JVM

JVM ! JVM

Evil Twin | Denial-Of-Service, |
: Enterprise
waAttack | | Adapter

JVM

Applet _ . Session Beans _ Enterprise Adapter
JNLP-Client ' JSP ' ” ' Enterprise Resource
Entitiy Beans
Java.exe Servlet Messaae-Driven Beans Java Stored Procedure
Jvm.DLL embedded g Java UDF

0 ﬁsueuc;(:ucgr:fzwouolsl illegalaccess.org

26th - 29th September 2005 Kuala Lumpur Malaysia

Sun’s Security Code Guidelines (last update Feb 2, 2000!) :
Careful usage of privileged code
Careful handling of Static fields
Reduced scope
Careful selected public methods and fields

Appropriate package protection

If possible Use immutable objects

Never return a reference to an internal array that contains
sensitive data

Never store user-supplied arrays directly
Careful Serialization
Careful use native methods

Cle f SenSItIVG Informatlon http://java.sun.com/security/seccodequide.html
;; [

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

Security unaware coding creates vulnerabilities

Typical Java Secure Coding Antipatterns:

lgnoring Language Characteristics (i.e. Integer Overflow)

Careless Serialisation , careless use of privileged code
Inappropriate Field and Method Visibility

Covert Channels in non-final Static Fields
Antipatterns hide in your own code and the libraries you use

Due to academic interest we audited parts of the Sun JDK 1.4.x and
present the findings on the following slides

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

useful only if source code is
available and complete [in most of
the cases it isn't]

Source Code pPMD,
Detectors Checkstyle

Decombilers JAD (!), Time consuming analysis,
P JODE needs experience

Bytecode detectors (visitor pattern):
Bytecode Findbugs (bases Y (P)

audit on Apache predefined (software quality)

BCEL)

analyzers Self-written (for security audit)

Policy | jChains p;’ren\:,itsgig;]%gram needs specific
evaluation (http:/ichains.de Useful to reverse engineer

tools v.java.net) protection domains

; ; pﬂrj[wﬂﬂ(\[ﬂﬂﬂm illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

The following discussion bases on JVM bytecode analysis

Findbugs (htip://findbugs.sourceforge.net)
Statical Detector for bug patterns in java code

Developed by the University of Maryland (Puth and Hovemeyer)

Open Source
based on the BCEL (Apache Bytecode Engineering Library)
Visitor-pattern analysis of

class structure and inheritance
control and data flow
GUIl/command line

And: Extensible, allows to write own detectors (!!!)

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Antipatterns (bugs, flaws) in trusted code (like rt.jar) cause
Vulnerabilities

Availability:

AP1: Integer, the Unknown Type (java.util.zip.*)
AP2: Serialisation side effects (java.io.*)

Integrity:

AP3: Privileged code side effects (Luring attacks break sandbox)

AP4: Inappropriate Scope (Access control violation)

AP5: Non-Final Static Variables (Covert channels between applets)
Secrecy:

AP6: Insecure Component Reuse (org.apache.* , Sniff private
XML data between applets)
Goal: Define a binary audit toolset to in your own and
the 3rd-party components to be able to

== u

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

According to blexim (Phrack #60) ,
integer overflows are a serious
problem in C/C++, so they are in
NEVEE

Integer. MIN_VALUE= Integer. MAX_VALUE+1

All Java integers are bounded
in the [] range

In Java this is true: -231=23141

Silent Overflow is a problem:
Sign changes are not reported
to the user, no JVM flag set

Code of JDK was based
on the false assumption that java
integers are unbounded, which led
to a range of problems in the

e md‘age Integer value range
[illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

The crash is caused by a parameter tuple
(new byte [0],x,Integer.MAX VALUE-v), Where

silent overflow in the trusted JDK routines by fooling the parameter
checks, so the overflow is neither detected by the core libraries nor the
JVM.

The native call updateBytes to access a byte array leads to an
illegal memory access. Consequently the JVM crashes.

D:\ > java CRCCrash
An unexpected exception has been detected in native code outside the VM.
Unexpected Signal : EXCEPTION_ACCESS_VIOLATION occurred at PC=0 x6D3220A4
Function= Java_java_util_ zip ZipEntry initFields+0x288
Library=c:\java\l.4.1\01\jre\bin\zip.dll
Current Java thread :
at java.util.zip.CRC32.updateBytes (Native Method)
at java.util.zip.CRC32.update (CRC32.java:53)

? at CRCCrash.main(CRCCrash.java :3)
Dynamic libraries:

26th - 29th 0x00400000 - 0x00406000 c:\javall.4.1\01\jre\bin\java.exe

The CRC32 class allows to calculate a checksum over a buffer:

If you have a byte buffer (1,2,3,4) and want to calculate the checksum
over it you need to call:

CRC32 ¢ = new java.util.zip.CRC32 ();

c.update (new byte []1{1,2,3} ,0 ,3);

But if you do the following:

Cc.update

You will crash the JVM of JDK 1.4.1 01 and some
versions of JDK 1.3.1

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Risk:
If the attacker manages to exploit this function in an environment were
multiple users share a single JVM (like a Lotus Domino server or a Tomcat
HTTP server) he may cause a denial-of-service condition.

Extent:

More trusted functions were found vulnerable:

Adler32().update();
Deflater().setDictionary();

(
CRC32 ().update();
Deflater().deflate();
CheckedOutputStream().write();
CheckedInputStream().read();
Bidi.<init >;

http://developer.java.sun.com/developer/bugParade/bugs/4811913.html

also bugnr = {4811913, 4812181, 4812006 , 4811927 , 4811917,
4982415, 4944300, 4827312,4823885}

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

public void update(byte][] b, int off, int len) {
if (lb==null) { throw new NullPointerException(); }

{

throw new ArraylndexOutOfBoundsException();

}

crc = updateBytes(crc, b, off, len);
}

public void update(byte][] b, int off, int len) {
if (b == null) { throw new NullPointerException(); }

) {

throw new ArraylndexOutOfBoundsException();

}

illegalaccess.org
SecConfz 005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

Before (1.4.1_01)

After (1.4.1_02)

. iload_2
:iflt 28
: iload_3
Ciflt 28

. iload_2
:iflt 28
: iload_3
:iflt 28

25: if_icmple 36 . if_icmple

5= - L

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

illegalaccess.org

find candidate methods by detecting opcodes

Check if uses user-supplied stack data (put on the stack by
previous ?) to perform a range check

Is a native method called afterwards (
), that takes the same data

This process can be implemented by a bytecode detector

o (PO

illegalaccess.org
SecConf2005
26th - 29th September 2005 Kuala Lumpur Malaysia

The JVM does not provide an overflow flag like a normal x86
processor (designed in 1978), so there is no way to detect those
conditions during runtime. The JVM in Java 1.5 (aka 5.0 aka Tiger)
27 years later does not improve this shortcoming

So you have to check for integer overflow in your own code (like
using the hints from phrack #60)

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

The normal way to create a java object is to use the Instruction,
which calls the constructor of a class

But: There are hidden constructors

The Java serialisation APl (part of package) allows to
bypass constructors and create new instances of a class by
simply sending byte arrays to an

(OIS), which can be bound to a socket, a file

OIS’s are commonly used by remote communications such as RMI

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Risk

Reading serialized objects may
that are called in the readObject method

readObject methods may linger in in your own code, the JDK classes and
any 3rd party library you use

Attacker may prepare special handcrafted data packets with serialized binary
data

Extent

java.util.regex.Pattern Triggers complex computation,
~JVM may become “ISun Alert 57707]
java.awt.font.ICC_Profile Causes JVM on Win32 (fixed in JDK 1.4.2_09)

java.util.HashMap Eats a lot of Heap space and triggers an unexpected

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

lava.lang yefledtiProx JVM crash if number of interface names > 65535 (1.5.0
p_ﬂ‘__imﬂj—m_ﬂﬂﬁ—\ and 1.4.2 JVMs still vulnerable) I
Hiega access.org

RTTOT ; ik & EE b RoEcl DD [s Dec .

Sun(sm) Alert Notification

= Sun Alert IO 57707

« Zynopsis Java Buntime Environment Remote Denial-of-Service (Do) Yulnerability
o Category: Security

« Product: Java SDH and JRE

= BuglDs: 50357001

« Avoidance: Upgrade

« State: Rezalved

« [Date Relegzed: 20-Dec-2004
. Diste Clessed TI0 Dy 00

ny,

| 1. Impact

A vulnerahilty in the Java Rurtime Environment (JEE) involving object deserialization could be exploted remotely
to cauze the Java Yidual Machine to become unresponszive, which iz a type of Denial-of-Zetvice (DoZ). Thiz
izzue can affect the JRE if an application that runs on it accepts serialized data from an untrusted source.

=COME
untru

Zun acknowledges with thanks, Marc Schoenefeld, for bringing this issue to our attention.

? Contributina Factors
| Makch case

Uiy g Ly I illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

private void readObject (java.io.ObjectInputStream s)throws..
s.defaultReadObject () ; // Initialize counts
groupCount = 1;
localCount = 0; // Recompile object tree
if (pattern.length() > 0)

else
root = new Start(lastAccept);

private void readObject (java.io.ObjectInputStream s)throws..
s.defaultReadObject () ; // Initialize counts
groupCount = 1; //
localCount = 0; //
JDK compiled = false;
if (pattern.length() == 0) {
1.4.2 root = new Start(lastAccept);

06 matchRoot = lastAccept;

compiled = true;

?mﬁwmmm

SecConf2005 illegalaccess.org

26th - 29th September 2005 Kuala Lumpur Malaysia

find candidate classes by detecting definitions

For these classes determine if the control flow branch into harmful
code

Search for algorithmic complexity (does it compile a regex for
the next 800 years?)

Search for endless loops (look for bytecode backward branches)

Does to code call into vulnerable native code and propagates
the payload ?

This process can be implemented by a bytecode detector

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

The method is designed primarily for accepting and
checking data

Don’t expose ObjectinputStream to untrusted input

Try to defer complex operations from the time of creation to the
time of first usage

Similar considerations apply for the method which
Implements the receiving part of the Interface

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

The Basic Java Access Algorithm:

“A reqguest for access is granted if, and only if every protection
domain in the current execution context (call stack) has been
granted the said permission, that is, if the code and principals
specified by each protection domain are granted the
permission.”

Which means: An access right (opening a file) is only granted
when all methods on the

stack are in protection

domains on the

stack have permission p

o (PO

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Privileged code (doPrivileged blocks) is used to break out of the
stack inspection algorithm

Needed where the permissions on the application level (

) do not match the needed permissions to perform
necessary operations on the middleware/system level (zt . jar)

Graphics application initializeDocument
A graphics routine generateTmpFile
Java.io.File createTempFile
Java.io.File checkAndCreate
java.lang.Security.Manager checkWrite Syst
java.lang.Security.Manager checkPermission ystem
Java.security. AccessController checkPermission
java.security.AccessControlContext checkPermission

Graphics application initializeDocument
Some graphics library generateSymbolFont

Java.awt.Font éﬂea.teEQm\
java.security.AccessController € doPrivilegec]
Java.awt.Font$1

Java.io.File createTempFile
Java.io.File checkAndCreate
java.lang.Security.Manager checkWrite
java.lang.Security.Manager checkPermission
java.security.AccessController checkPermission
26th - 29th September 2005 Java.security.AccessControlContext checkPermission

Risk
An attacker may misuse this condition to escalate privileges and escape a
limited protection domain (such as the JNLP or applet sandbox)

he knows the privileged code blocks in the JDK and the privileged
codesources of the application

by a luring attack he tries to trick control into privileged code blocks and
force that block to use parts of his injected payload

Extent

java.awt.font.ICC_Profile escape the applet sandbox and test existence of files
on the client’s machine

java.awt.Font (i) transport temporary files (such as executables) to
the client’s machine, which can be launched later
(http://www.derkeiler.com/Mailing-Lists/Full-

Disclosure/2004-07/0462.html)

Java.awt.Font(ii) Allows applet to fill up the free space of file system of
J, AA with a large file containing zero bytes

; [LMWJ—“ ﬁ mh illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

9 Full-Disclosure: [Full-Disclosure] IE sucks : sun java virtual machine insecure tmp file creat

Bearbeiten Ansichk & Ls & sz Hilfe

" Getting Started L) Lakest Headlines

Mewrs:

Der o
LIDESA-2005:038 - Updated emacsiemacs

J(d l ' er . s by Gorge e e

Home = hailing-Lists = Full Disclogure = 2004-07 MNews MNewsgroups Service UNIE [Linux f Coding f Shop §f Directory Privacy

[F'ull-Disclosure] IE sucks : sun java virtual machine insecure tmp file creation

From: Jelmer (jluperus_af planef nl)
Date: 0770204

* MNext message: Hick FitzGerald: "Re: [Full Disclosure] Mo shell == secure?"

Previous message: bipin gautam: "[Full-Disclosure] Fe: Norton A ntiVitus Scanner Bemote DioS [terap. FIEI] [Part: 117"

Next in thread: SAPASL: "[Full-Disclosure] Another [E trick (Fe: [E sucks : sun java virtual rachine insecure trap file creation)”
Reply: 3APL3A: "[Full-Disclosure] ¬her IE trick (Fe: [E sucks : sun java virtual rnachine ingecure trop file creation)”
Messages sorted hy: [date] [thread] [subject] [author] [attackenent]

To: full-disclosurel@lists netssys.com, bugtragq@securityfocus.com
Date: Fri, 09 Jul Z004 14:01:10 +0E00

INTRODUCTION

Actually I wasn't really sure if T onght to post this, but after soree
consideration I decided that it might serve as an exaraple of the completels
messed up state we find nternet explorer in today.

There's avery minor issue with the way the sun java virtual machine creates
ternporary files frorn applets. IE blows it off the chart, combining this with
some unresobved issues in [E can lead to remote code execution

9

No refactorings available

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

find candidate classes by detecting blocks calls
(inner classes)

For these classes determine if user-supplied data is propagated to
the privileged code block that causes to

Pass access to protected resources
leak secret data
Perform unwanted modifications

to untrusted code

This process can be partially implemented by a bytecode
detector

o (PO

illegalaccess.org
SecConf2005
26th - 29th September 2005 Kuala Lumpur Malaysia

Conclusion

doPrivileged is a construct to tweak protection
domains

Suggestion
To Sun:

To Developers:

Check 3 party libraries uses doPrivileged blocks before usage, as they
may break your security policy

Keep privileged code in own code as short as possible
[hitp://java.sun.com/security/seccodequide.html]

ﬂmpplied data before propagating it to privileged code
;; [

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

As a rule, reduce the scope of methods and fields as much as
possible. Check whether package-private members could be made
private, whether protected members could be made package-

private/private, etc. [Sun Security Code Guidelines]

This should be especially true when you design trusted JDK extensions,

such as the Java Media Framework (JMF) which is code by Sun©

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Risk
An attacker can exploit the trusted protection domain “AllPermissions” of a

java extension in jre/lib/ext to . For example the JMF
installs extra trusted classes to jre/lib/ext

accesses system memory via native routines

The public JMF class com.sun.media.NBA exposes a public pointer to

physical memory [long value data]

So untrusted applets may read your system memory

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

ition Below---

* Patches

* Support Documents

¥ Security Information
-Latest Security
Bulletin
-Security Bulletin
Archive
-oecurity Sun Alerts
-mecurity T-Fatches
-iew T-FPatches
License
-Download T-Patches
-molaris Fingerprints
-Security PGP Key

* Sun Systemn
Handboak

* Advanced Search

* Japan-Only

Jump to |App|ies Ta j
Font Size[Increase | [Decrease |

dovumentiafsmopsie

Java Virtual Machine (J¥M) May Crash Due to Wulnerability in the Java Media Framework 14
LR T (-JMF) 201

Sun(sm) Alert Notification

® Sun Alert |D: 54760

= Synopsis: Java Yirual Machine (M) May Crash Due to Yulnerahility in the Java Media Framewno
* Categary: Security

* Product: Java Media Framework

= BuglDs: 4350093

= Awoidance: Upgrade

1. Impact

A vulnerability in the Java(Thi) Media Framewark (JMF) may potentially allow an untrusted applet to exit
unexpectedly ("crash”) the Java “irtual Machine (MR or gain unautharized privileges..

4y -Help

S

unexpectedlj,; ("crash™) the Java Virtual Machine (;I”v“hﬂfl or g_ai'n unauthorized privileges..

R N e | Search SunSolve:

—

| Sun acknowledges, with thanks, Marc Schoenefeld for bringing this issue to our attention.

Before (JMF 2.1.1¢c) After (JMF 2.1.1e)

public class NBA { public final class NBA {

public void finalize() protected final synchronized void finalize()
public Object getData() public synchronized Object getData()
public Object clone() public synchronized Object clone()

public void copyTo(NBA nba) public synchronized void copyTo(NBA nba)
public void copyTo(byte javadatal]) public synchronized void copyTo(byte
javadatal])

1) Creation of subclasses is forbidden, to prevent leaking of secret data by new methods

Scope of public finalize method degraded to protected, so no class can overwrite it

1' \l» A FA‘
S22 LA A
. I .
Hiegailaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

find candidate classes by detecting classes

For these classes determine if

Data fields and methods are declared as

Internal references to private, protected data are returned by a
method

The candidate selection can be implemented by using the predefined
detectors of

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Conclusion

Inappropriate Scope on fields and methods may allow to bypass
access control mechanisms

Suggestion [hiip://java.sun.com/security/seccodeguide.html]

Refrain from using public variables.

Instead: Use accessor methods with calls to centralized security
checks

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

~Refrain from using non-final public static variables
[Sun Security Code Guidelines]

According to Sun Microsystems [
http://www.sun.com/software/security/glossary.htmi]

the term covert channel has the following definition:

A communication channel that is not normally intended for data
communication. It allows a process to transfer information indirectly in a
manner that violates the intent of the security policy.

We will show that the Antipattern allows
malicious code to exploit

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

Risk
Static Variables that are loaded by the boot classloader (like the ones in rt.jar)
or by the extension classloader are singleton objects in a JVM

to protection domains that are not privileged to access them

Browser VM

Applet from site A Applet from site B
| Serial obj. | | Serial obj. |

Protection Domain A Protection Domain B

v org.apache.xalan.processor.XSLProcessorVersion.LANGUAGE
org.apache.xalan.processor.XSLProcessorVersior.S_VERSION
javax.swing.JDesktopPane.LIVE_ DRAG_MODE

Protection Domain
/lib/rt.jar ,AllPermissions*

26th - 29th September 2005 Kuala Lumpur Malaysia

IJ—HJ_.'—-I

O/ UJ’J JJ'Jj
|Sun:he... j

7-Tage-News
News-Archiv
News mobil
Newsletter
News einbinden

heise online - ¢t -

i# - Technology Review - Telepolis - mohil - Security -

G

.{‘? Versteht nicht [eder,

Ist auch besser sol

23102003 10:27
<< Worige | Hachste »>

Unsignierte Java-Applets brechen aus
Sandbox aus[Update]

igetel s nterarhiedlichen Wakias

ctT - Johs -

[T-hzrk

Abo & Heft
E ontalt
IMediadaten

MNewsletter kastenlos
abonnisran,

7/

—
S

f
—

26th - 29th September 2005 Kuala Lumpur Malaysia

LAut Grundlage der Java-Elasse

arg.apache. xalan.processar. AsLProcessorlersion mur
Werarbettung von XIL-Daten hat Schoenefeld eine Demonstration
des Fehlers progratmiert. Ein unsigruertes Applet hest daber Daten
aus etner Vanablen emnes signierten Applets emer anderen Doméane.
Werandert das unsigmerte Applet den Inhalt der Vanablen, kann das
sigrierte Applet sogar abstirzen. Getestet wurde das Werhalten mit
Suns JDESSDE 1.4.2 01, emne Lésung fir das Problem gibt es

derzett mcht.

Thann rich wmat Aiccar Sicharbaitelinelra Srrotarna e csean st aran Tanean

Before (JDK1.42_04) After (JDK1.42_05)

public class org.apache.xalan.processor. public class org.apache.xalan.processor.
XSLProcessorVersion { XSLProcessorVersion {

public static final java.lang.String PRODUCT; public static final java.lang.String PRODUCT;
public static java.lang.String LANGUAGE; public static java.lang.String LANGUAGE;
public static int VERSION; public static int VERSION;

public static int RELEASE; public static int RELEASE;

public static int MAINTENANCE; public static int MAINTENANCE;

public static int DEVELOPMENT; public static int DEVELOPMENT;

public static java.lang.String S_ VERSION; public static java.lang.String S_ VERSION;

The modifier prohibits modification of a variable after initial value was set.
Initially they only used it to protect their product name ©

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

Via a built-in detector find candidate classes by searching
for classes

For these classes find

Primitive Data fields and Strings are declared as
, hon-

Object Type Data fields, Arrays and Containers are declared as

Methods that allow access on non-public instances of (I + Il)

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Conclusion

Non-final static final fields allow to establish covert channels between
protection domains

Bypass restrictions such as the applet sandbox .

Suggestion [hiip://java.sun.com/security/seccodeguide.html]

To the extent possible, refrain from using non-final public static
variables (can be altered by all classes)

In general, be careful with any mutable static states that can cause
unintended interactions between supposedly independent
subsystems.

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

31 — party components might be built with a functionality based
programmer intend, whereas the control of the confined execution models
of the JDK require a security based programmer intend.

JDK as a component-structured middleware application uses a lot of XML
functionality from the Apache foundation. Is there enough protection
against vulnerabilities of these 39-party components embedded in JDK ?

,Distributed component-structured applications can consist of software
components which are supplied by different vendors. Therefore one has to
distinguish between application owners and software component vendors
and there is a needs for corresponding protection®: [Hermann, Krumm]

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Risk

The XSLT parser embedded in JDK is directly taken from a previous apache
XALAN standalone version, downloadable from htip://xml.apache.org

It is highly configurable, especially it allows to customize the functions that
may be employed during XSLT (extensible stylesheet language
transformations)

data throughout the entire JVM name space

We will show that the Antipattern allows
malicious code to exploit

o (PO

illegalaccess.org
SecConf2005 illegalaccess.or

26th - 29th September 2005 Kuala Lumpur Malaysia

= Products & Services ¥ Support & Training

Pleaze let us know if your SunSolve vizit =aved you & callto Sun Suppart! | ---Select Option Below--- j Submit |

FrinterFriendl

Document Audience: PUBLIC

Document I0: a7E13

Title: Documeant I0 5761 3

Synopsis: Jarva Runtime Environment May Allow Untrusted Applets to Escalate Privieges
Update Date: 2004-03-02

Sun{sm} Alert Hotification

= Zun Alert ID; S7E13

« Synopziz: Java Furtime Environment May Allovy Untrusted Applets to Escalate Privieges
o Category: Security

» Product: Java JRESDK

= BuglDs: 5020333, 4954066

o miclar-s Llneracds

1. Impact The X5LT processor included with the Java Euntime Environment (JEE) may allow an
untrusted applet to read data from another applet that is processed using the X5LT proceszaor and
sy ity &llovy the untrusted applet to escalate privileges.

the XELT processor and may allowy the untrusted applet to escalate privieges .

26th - 29t Sun acknowledges | with thanks, Marc Schoenefeld for bringing these izsues to our sttention.

Before (JDK1.42_05) After (JDK1.42_06)

public class public class
org.apache.xpath.compiler.FunctionTable { org.apache.xpath.compiler.FunctionTable {

public static static

org.apache.xpath.compiler.FunclLoader(] org.apache.xpath.compiler.FuncLoader(]
m_functlons; m functions;

[-.] [...]

TheI rT(]ijdiﬁﬁr prgribits malicious
allowed an untrusted applet to insert applets to modify the table consisting the
callback functions that are triggered built-in functions of the XSLT parser.
in every XSLT operation in the JVM (to This refactoring in 1.4.2_06 adjusts the
sniff XSLT data from other applets) functionality of the component to the level
needed for running the component
securely in a confined execution model
such as the sandbox. Technically the
? ﬂwjﬂﬂnmm refactoring cures antipattern 4 and
| SecchanOOS antlpattem D. illegalaccess.org

26th - 29th September 2005 Kuala Lumpur Malaysia

The vulnerable version in 1.4.2_05

3rd-party components may include all types of antipatterns, from our
experience check at least for the antipatterns presented here

Integer Overflow
Proper Serialisation, be aware for side effects

Check use of privileged code, especially when executed in the
“AllPermission” protection domain

Adjust fields and methods to appropriate scope to the level
needed

Add security checks to public available fields and functionality

Check for covert channels in static non-final fields and static
mutable container types (such as arrays, hashtables, ...)

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Conclusion

Even if your own code is secure, 39 — party components may ruin
your security concept

Suggestion
Ask the vendor of the components you reuse , whether they check

their components with findbugs or similar tools

Ask for a findbugs report before buying, this may increase your trust in
the component

A lot of open source projects already include a findbugs report,
but some closed source guys still have to learn

; ; ﬂﬂ%ﬂﬁ[ﬂﬂﬂﬂ'\ illegalaccess.org

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

Contact

marc/at/marc-schoenefeld.com

o (PO

SecConf2005

26th - 29th September 2005 Kuala Lumpur Malaysia

illegalaccess.org

