
A Test Harness for Fuzzing Font Parsing Engines in Web Browsers

James Fell, james.fell@alumni.york.ac.uk

Originally published in 2600: The Hacker Quarterly, Volume 34, Number 3, Autumn 2017

This article presents a cross-platform test harness written in Python that assists the user in searching for
vulnerabilities in web browsers, specifically by fuzzing their font parsing functionality. The tool automates
the delivery of test cases (font files in this context) into a web browser. The source code for the test harness

should be available to download at https://www.2600.com/code/. To get the most out of this article

it is recommended to have the source code open to refer to at the same time.

Fuzzing
Fuzzing is an established software testing process consisting of repeatedly delivering malformed input to an
application while monitoring it for evidence of abnormal behaviour. Various memory corruption bugs such as
use-after-free, double free and buffer overflows can be revealed in this way. Fuzzing is one of the most
common methods for detecting vulnerabilities in software today. It is a form of dynamic analysis, as the
software is being tested whilst it is executing. This is in contrast to static analysis which covers methods of
examining an application's source code or a disassembly of the application's binary, without actually
executing it.

There are two fundamental approaches to fuzzing based on how the malformed test cases are created;
mutation and generation fuzzing. Mutation fuzzing takes one or more valid sample inputs and makes changes
to them in some way, such as flipping bits. For example, a selection of PNG image files downloaded from
the web could be randomly modified in order to fuzz an image viewer. Generation fuzzing on the other hand
uses a specification of the format or protocol being fuzzed in order to generate test cases from scratch. For
example, a grammar describing the JavaScript language could be used to generate slightly incorrect scripts to
use as test cases when fuzzing a JavaScript interpreter.

In the context of this article, and the supplied test harness, we are using malformed font files to fuzz web
browsers and it does not really matter how they were created. A simple example of applying mutation to
sample font files is given later in the section titled Corpus Preparation, but many other approaches are
possible.

Although the concept of fuzzing sounds quite simple (merely loading dodgy input into an application and
seeing if it crashes) once you start trying to actually do it (and do it well) it often has a way of becoming
complex. Issues such as creating good test cases, dealing with checksums or compression, delivering test
cases to the target application, maximising code coverage, analysing crashes and so on can actually be quite
tricky. The more advanced approaches to fuzzing also make use of techniques like taint analysis, symbolic
execution and genetic algorithms to create better test cases. For anyone wanting to read more about the topic,
Chapter 17 of The Shellcoder's Handbook [6] and Chapters 8-10 of Gray Hat Python [7] are good starting
points.

Two excellent open source fuzzing tools that the reader should also download and take a look at are
American Fuzzy Lop (AFL) [1] and Radamsa [2]. Reading their documentation and then experimenting with
these two tools is a good way to get started with practical fuzzing and learn more.

Font Rendering
Most web browsers can read custom fonts from a web site in various formats including OTF (OpenType
Font), TTF (TrueType Font) and WOFF (Web Open Font Format) files. The font can then be used for
rendering some or all of the text that appears on that web site. The specific list of supported font formats
varies from browser to browser and can generally be found in their documentation. In any case, the
functionality in the browser responsible for parsing the font file after reading it from the remote web server
can of course contain vulnerabilities. In such a case, a specially crafted font file can possibly cause arbitrary
code to be executed on the target's computer.

As an example of this kind of vulnerability, back in 2011 the state-sponsored Duqu malware made use of a 0-
day vulnerability (now assigned CVE-2011-3402) in the TrueType font parsing engine in win32k.sys on
Microsoft Windows [3]. Duqu itself exploited this by having a malicious font file embedded in a Word
document, but the same vulnerability could be exploited by convincing the target to visit the attacker's web
page using Internet Explorer and delivering the TTF file in that web page.

The reader will probably have noticed that since win32k.sys is handling the font parsing in the example
above this means that the vulnerability was not actually in Internet Explorer itself, but rather in the Windows
XP kernel. Similarly, on the modern Windows 10 operating system the Edge web browser uses the
DirectWrite library Dwrite.dll to handle fonts rather than having its own custom functionality. This may raise
the question, why not just write a wrapper to dwrite.dll or the equivalent library if you intend to fuzz it,
instead of processing fuzzed fonts through a web browser? However, that approach requires a separate test
harness for each font parsing library on each platform. Also, some browsers actually do use their own custom
font engines instead of passing the job to the operating system. The test harness presented here can be used
unmodified to fuzz the font parsing functionality of any web browser on any OS, as long as there is a Python
interpreter available. It is not the only way to approach the task but having one test harness that can be used
for many targets seems like a good thing.

Corpus Preparation
The test harness that is presented here deals with injecting a corpus of malformed font files into a web
browser and causing the browser to attempt to parse each font. Before this is described, it is worth giving a
quick explanation of how such a set of font files could be created. There are many ways of achieving this,
and it is not the focus of this article, but here is one example of how a corpus of malformed TTF files could
be created.

First, it is necessary to obtain some samples of valid TTF files from somewhere. A simple Google search will
be a good start, but the more variety in the sample files the better.

The user should then install Radamsa [2] on a Linux system and use it to mutate the valid TTF files as shown
below.

radamsa -o output/test-%n.ttf -r input -n 50000

This will instruct Radamsa to read all of the valid TTF files in the directory called input. The tool will then
create 50,000 new, mutated TTF files in the directory called output. These font files will each be slightly
invalid in interesting ways that may trigger bugs when used. The precise ways in which Radamsa mutates
input are described in the tool's own documentation.

Because Radamsa is a general purpose mutation fuzzer and is not aware of the specific format that it is
mutating, some work now needs to be done to fix up the checksums inside the 50,000 mutated TTF files.
Otherwise, the font parser being fuzzed will most likely reject each font file immediately and the only thing
to be tested will be the bit of code that inspects checksums. In order to have our mutated files be fully

processed and potentially trigger bugs, we need to ensure that they will pass the basic checks that are likely
to be carried out. Fortunately, there is a tool available on Windows called MsFontsFuzz [4] that can be used
for this, at least when dealing with OTF and TTF fonts.

After copying the 50,000 mutated TTF files in the output directory over to a Windows system (or perhaps
just use wine on the Linux system, I didn't check but it would probably work), the user can run the following
from the command prompt. This assumes that the mutated fonts are now in c:\fonts on the Windows system.

for /f %%f in ('dir /b c:\fonts\') do msfontsfuzz test c:\fonts\%%f --fix-crcs

The command above will fix the checksums in each TTF file so that when they are loaded into the target they
should not be immediately rejected. Once this command has finished, the contents of c:\fonts should be a
corpus of 50,000 mutated TTF files now with valid checksums ready to be used in fuzzing.

Test Harness
The test harness presented here is essentially a web server written in Python that accepts connections from
web browsers and delivers web pages to them containing malformed font files that are read from a filesystem
directory. The user specifies two command line options when starting the harness; the path to the directory
where the font corpus is stored and the TCP port to bind to on localhost.

This is the point in the article where it will be really helpful for you to download and open the source code
and take a look at it.

Upon startup, the corpus directory is scanned and a list data structure containing all the font files in it is
created. The Twisted framework [5] is then used to create a HTTP server listening on the requested port. If

you do not already have this Python library, it can be installed by running pip install twisted.

The render_GET function contains the code that will be executed every time a HTTP GET request is

received from the browser being fuzzed. It is in here that we must build up the web page to return to the
browser and make sure that it uses a new font file each time.

The render_GET function handles three different cases of HTTP request URLs. When the document root

(/) is requested we return the full web page. When the font (/font) is requested we read a font file from the

corpus and return its contents. When any other URL is requested (for example the browser might request

/favicon.ico or something automatically) we simply return an empty string in the HTTP response.

First we look at how to build a suitable web page when the document root (/) is requested. It is possible to

load a custom font file into a web browser and use it for displaying text by using the @font-face CSS rule in
a web page. The following snippet of CSS illustrates this.

@font-face {
 font-family: 'fuzzFont';

src: url(/font);
}

This can be followed with further CSS to cause all text in the body of the web page to be rendered using that
specified custom font.

body {
 font-family: 'fuzzFont';

}

Placing some text in the HTML body will now result in it being rendered using the font that is retrieved from

the web server using /font as the URL.

A couple more things need to be added to the HTML web page before it is ready to be given to the browser.
The harness places two meta tags into the web page header. The first causes the web browser to reload the
page after one second, which in turn causes the web server to read and deliver the next font file, and causes
the process to continue until all font files have been parsed.

<meta http-equiv="refresh" content="1">

The second is a meta tag to instruct the web browser to disable caching.

<meta http-equiv="cache-control" content="no-cache">

This is used simply to make sure that when the browser reloads the page it does not use any cached content
(especially the font) but instead requests it all again from the web server, and hence receives the next font.

Whenever the render_GET function receives a request for /font it reads the next font file from disk and

returns its contents in a HTTP response. The index into the font list data structure is incremented each time
this happens until we have eventually served up all the fonts and reached the end of the list.

The screenshot below shows the test harness being started up.

At this point we would start up the web browser that we would like to fuzz and put the URL

http://127.0.0.1:8000 into the address bar to get the process started. The screenshot below shows

this happening.

At this point you will see the web browser reloading the same page repeatedly every second. This is due to
the refresh meta tag mentioned earlier. Each time the browser reloads the page it is receiving, and attempting
to parse, a new font file from the corpus directory. It will also attempt to render the string “Testing a font”
using the current font. We are now hoping that one of these mutated, malformed font files will crash the web
browser when it attempts to make use of it. This would indicate a bug in the browser's font engine, and
potentially an exploitable security vulnerability.

Now that the harness is running it is also writing to a log file. This is created in the same directory as the

Python script and has the filename fontharness-log-n.txt where n is replaced with whichever TCP

port you chose. In our example it would be 8000. Each time a new font file is served to the browser, its
filename is appended to the log file. This is necessary for determining which font caused the browser to
crash, when this eventually occurs.

Browser Instrumentation
Some final words are needed regarding instrumenting the web browser. The test harness does not handle this
due to its requirement for being cross-platform and so the user must take care of it herself. Without
instrumentation you will not be able to see what is happening inside the browser process and you will not
detect bugs unless the entire browser actually crashes. The available options depend mostly upon which
operating system you are using at the time.

On Linux systems, when fuzzing an open source web browser it is best to compile it using Asan
(AddressSanitizer) [8] as this is excellent for detecting memory errors. This can be done simply by adding

the -fsanitize=address option for gcc or clang on the command line when you compile it. You can

also download precompiled Asan builds of both Chromium and Firefox from their respective web sites
making it even easier for those two. If you have trouble getting the target browser to compile with Asan or
you do not have the source code another option is to simply start it up and then attach gdb (GNU debugger).

On Windows it is good practice to enable Page Heap for the specific browser process before you start it. This
can be done by typing the following command in an Administrator command prompt.

gflags /p /enable c:\path\to\browser.exe /full

This acts a little bit like Asan on Linux by causing an exception to be raised if any heap memory corruption
occurs. Unfortunately some browsers implement their own memory management instead of using the
operating system and so Page Heap has no effect on them. Either way, you can then attach a debugger such
as WinDbg or Immunity Debugger to the running browser process before you begin fuzzing.

Conclusion
The Python software presented in this article allows the user to cause a web browser to sequentially process
each font file in a given directory. When combined with a corpus of mutated and malformed font files this
allows the testing of the font parsing functionality in any web browser on any operating system, as long as a
Python interpreter is available. By attaching a debugger or other suitable instrumentation to the web browser,
error states can be detected and investigated. These can potentially be exploitable security vulnerabilities.

The test harness is pretty simple and can certainly be improved upon, but it is good enough to get started
with. My hope is that the tool and this article will help more people to get started in fuzzing. I am happy to
receive feedback or questions by email.

References
[1] – Michal Zalewski, “American Fuzzy Lop”. http://lcamtuf.coredump.cx/afl/

[2] – Oulu University Secure Programming Group, “Radamsa”. https://github.com/aoh/radamsa

[3] – Mitre, “CVE-2011-3402”. https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-3402

[4] - Oleksiuk Dmytro, “MsFontsFuzz: OpenType font format fuzzer for Windows”.
https://github.com/Cr4sh/MsFontsFuzz

[5] – Twisted Matrix Labs, “Twisted”. https://twistedmatrix.com/

[6] – Chris Anley et al, “The Shellcoder's Handbook: Discovering and Exploiting Security Holes”, Second Edition.
Wiley Publishing, 2007.

[7] – Justin Seitz, “Gray Hat Python: Python Programming for Hackers and Reverse Engineers”. No starch press, 2009.

[8] – Google, “AddressSanitizer”. https://github.com/google/sanitizers/wiki/AddressSanitizer

	Fuzzing
	Font Rendering
	Corpus Preparation
	Test Harness
	Browser Instrumentation
	Conclusion
	References

