

A Bounds Checking C Compiler

By
Richard W.M. Jones
(rj3@doc.ic.ac.uk)

Supervisor
Paul Kelly
(phjk@doc.ic.ac.uk)

Second marker
Naranker Dulay
(nd@doc.ic.ac.uk)

Final Report, May and June, 1995
�
Abstract
This report describes in detail how array bounds and pointer checking were added to the GNU C compiler. It also discusses alternative approaches and suggests drawbacks with those methods. It includes detailed guidance for the programmer who wishes to add this support to their own compiler. The method we actually implemented adds checking similar to that supplied by Modula-2 at run time. Programmers may freely mix checked and unchecked code, and link with libraries where the source code for those libraries is not available.

Acknowledgments
I would like to thank my supervisor, Paul Kelly, for invaluable help and suggestions, and support even when the project seemed impossible! Also, Naranker Dulay for his time spent reading and improving the original draft of this report.

�
� TOC \o "1-3" �Abstract	� GOTOBUTTON _Toc327776192 � PAGEREF _Toc327776192 �3��
Acknowledgments	� GOTOBUTTON _Toc327776193 � PAGEREF _Toc327776193 �3��
Introduction	� GOTOBUTTON _Toc327776194 � PAGEREF _Toc327776194 �6��
Background	� GOTOBUTTON _Toc327776195 � PAGEREF _Toc327776195 �7��
Tracking pointers and tracking objects	� GOTOBUTTON _Toc327776196 � PAGEREF _Toc327776196 �8��
Using a 4-byte handle	� GOTOBUTTON _Toc327776197 � PAGEREF _Toc327776197 �10��
Tracking objects at run-time	� GOTOBUTTON _Toc327776198 � PAGEREF _Toc327776198 �12��
At what level do we alter the compiler?	� GOTOBUTTON _Toc327776199 � PAGEREF _Toc327776199 �13��
Prepass	� GOTOBUTTON _Toc327776200 � PAGEREF _Toc327776200 �13��
Altering GCC's intermediate level code	� GOTOBUTTON _Toc327776201 � PAGEREF _Toc327776201 �13��
Altering the object files (‘*.o’) containing assembler code	� GOTOBUTTON _Toc327776202 � PAGEREF _Toc327776202 �14��
Related works	� GOTOBUTTON _Toc327776203 � PAGEREF _Toc327776203 �15��
Hardware checking schemes for current systems	� GOTOBUTTON _Toc327776204 � PAGEREF _Toc327776204 �16��
Implementation	� GOTOBUTTON _Toc327776205 � PAGEREF _Toc327776205 �17��
Overview	� GOTOBUTTON _Toc327776206 � PAGEREF _Toc327776206 �17��
Alterations to GCC pointer arithmetic	� GOTOBUTTON _Toc327776207 � PAGEREF _Toc327776207 �18��
Substituting for &* and related identities	� GOTOBUTTON _Toc327776208 � PAGEREF _Toc327776208 �19��
Suppressing pointer arithmetic modifications	� GOTOBUTTON _Toc327776209 � PAGEREF _Toc327776209 �20��
Making GCC track memory objects	� GOTOBUTTON _Toc327776210 � PAGEREF _Toc327776210 �20��
Heap	� GOTOBUTTON _Toc327776211 � PAGEREF _Toc327776211 �20��
Stack	� GOTOBUTTON _Toc327776212 � PAGEREF _Toc327776212 �21��
Static	� GOTOBUTTON _Toc327776213 � PAGEREF _Toc327776213 �23��
Function pointers	� GOTOBUTTON _Toc327776214 � PAGEREF _Toc327776214 �27��
Adding padding between objects when they are in memory	� GOTOBUTTON _Toc327776215 � PAGEREF _Toc327776215 �27��
Additional GCC functions in ‘c-bounds.c’	� GOTOBUTTON _Toc327776216 � PAGEREF _Toc327776216 �28��
Checking library vs. inline checking functions	� GOTOBUTTON _Toc327776217 � PAGEREF _Toc327776217 �29��
Implementation of the checking library	� GOTOBUTTON _Toc327776218 � PAGEREF _Toc327776218 �29��
‘objects.c’ and ‘check.c’	� GOTOBUTTON _Toc327776219 � PAGEREF _Toc327776219 �29��
‘init.c’	� GOTOBUTTON _Toc327776220 � PAGEREF _Toc327776220 �31��
‘functions.c’	� GOTOBUTTON _Toc327776221 � PAGEREF _Toc327776221 �32��
‘malloc/’ subdirectory	� GOTOBUTTON _Toc327776222 � PAGEREF _Toc327776222 �32��
‘alloca.c’	� GOTOBUTTON _Toc327776223 � PAGEREF _Toc327776223 �33��
‘string.c’	� GOTOBUTTON _Toc327776224 � PAGEREF _Toc327776224 �33��
‘error.c’ and ‘print.c’	� GOTOBUTTON _Toc327776225 � PAGEREF _Toc327776225 �34��
Dealing with unchecked objects in the checking library	� GOTOBUTTON _Toc327776226 � PAGEREF _Toc327776226 �34��
Correctness	� GOTOBUTTON _Toc327776227 � PAGEREF _Toc327776227 �35��
Terms	� GOTOBUTTON _Toc327776228 � PAGEREF _Toc327776228 �35��
Assumptions	� GOTOBUTTON _Toc327776229 � PAGEREF _Toc327776229 �37��
Verification	� GOTOBUTTON _Toc327776230 � PAGEREF _Toc327776230 �37��
Argument	� GOTOBUTTON _Toc327776231 � PAGEREF _Toc327776231 �37��
Performance	� GOTOBUTTON _Toc327776232 � PAGEREF _Toc327776232 �39��
The performance of the splay tree	� GOTOBUTTON _Toc327776233 � PAGEREF _Toc327776233 �39��
Effectiveness keeping the splay tree balanced	� GOTOBUTTON _Toc327776234 � PAGEREF _Toc327776234 �43��
The splay tree and the size of the working set	� GOTOBUTTON _Toc327776235 � PAGEREF _Toc327776235 �44��
Behaviour of the splay tree when traversing linked lists	� GOTOBUTTON _Toc327776236 � PAGEREF _Toc327776236 �45��
The large overhead of procedure calls	� GOTOBUTTON _Toc327776237 � PAGEREF _Toc327776237 �47��
Optimization of for loops	� GOTOBUTTON _Toc327776238 � PAGEREF _Toc327776238 �50��
Conclusions and Future Enhancements	� GOTOBUTTON _Toc327776239 � PAGEREF _Toc327776239 �54��
Bounds checking and C	� GOTOBUTTON _Toc327776240 � PAGEREF _Toc327776240 �54��
Debugging C programs with bounds checking	� GOTOBUTTON _Toc327776241 � PAGEREF _Toc327776241 �54��
Suitability of C to bounds checking	� GOTOBUTTON _Toc327776242 � PAGEREF _Toc327776242 �54��
Improvements to the current project	� GOTOBUTTON _Toc327776243 � PAGEREF _Toc327776243 �55��
Optimization	� GOTOBUTTON _Toc327776244 � PAGEREF _Toc327776244 �55��
Improving unchecked pointers	� GOTOBUTTON _Toc327776245 � PAGEREF _Toc327776245 �55��
Checking C++	� GOTOBUTTON _Toc327776246 � PAGEREF _Toc327776246 �56��
Recursive type system	� GOTOBUTTON _Toc327776247 � PAGEREF _Toc327776247 �56��
Minor improvements	� GOTOBUTTON _Toc327776248 � PAGEREF _Toc327776248 �56��
Different approaches to the bounds checking problem	� GOTOBUTTON _Toc327776249 � PAGEREF _Toc327776249 �56��
Bibliography	� GOTOBUTTON _Toc327776250 � PAGEREF _Toc327776250 �58��
User Manual	� GOTOBUTTON _Toc327776251 � PAGEREF _Toc327776251 �59��
Installation	� GOTOBUTTON _Toc327776252 � PAGEREF _Toc327776252 �59��
Compiling a program with bounds checking	� GOTOBUTTON _Toc327776253 � PAGEREF _Toc327776253 �59��
Fixing <stdarg.h> and <varargs.h> header files	� GOTOBUTTON _Toc327776254 � PAGEREF _Toc327776254 �60��
Using bounds checking with signal handlers and threads	� GOTOBUTTON _Toc327776255 � PAGEREF _Toc327776255 �60��
When you cannot use bounds checking	� GOTOBUTTON _Toc327776256 � PAGEREF _Toc327776256 �60��
Customizing bounds checking	� GOTOBUTTON _Toc327776257 � PAGEREF _Toc327776257 �61��
Mixing checked and unchecked code at the level of the object file or library	� GOTOBUTTON _Toc327776258 � PAGEREF _Toc327776258 �61��
Calls to malloc and free are checked too	� GOTOBUTTON _Toc327776259 � PAGEREF _Toc327776259 �62��
Adding unchecked objects by hand	� GOTOBUTTON _Toc327776260 � PAGEREF _Toc327776260 �63��
Tuning bounds checking programs to run quickly	� GOTOBUTTON _Toc327776261 � PAGEREF _Toc327776261 �64��
Using GDB to debug bounds checked programs	� GOTOBUTTON _Toc327776262 � PAGEREF _Toc327776262 �64��
Common problems when running GCC with bounds checking	� GOTOBUTTON _Toc327776263 � PAGEREF _Toc327776263 �65��
��
Introduction

The C programming language is famous for allowing the programmer freedom and speed at the expense of safety. While Pascal goes to great lengths to check your programs at compile time and at run time, C makes only minimal compile time checks (which you may override) and provides no run time checking at all. Naturally, then, C compilers are usually smaller and faster than Pascal compilers and may produce faster code. However, it is clear that the extra checking that Pascal compilers provide would be nice in C: developers could then have more confidence that their code was correct, and could later turn off checking to gain the extra speed of C. With C becoming the most popular language in modern operating systems, correct C code is becoming more and more necessary.

In one recent paper, Flater, Park and Yesha (June 1993, see bibliography) isolated the following “insidious” problems with C program: the assumption that array bounds go from 1 .. N (as in Pascal), returning pointers to local data from a function and referencing NULL pointers. All these things may clobber memory at random. Such clobbered memory may not be used later in the program - in which case the error will never be spotted. It may have low sensitivity� to change - the program may fail subtlely or not appear to fail at all. Even if high sensitivity data is clobbered, the failures may be random and there is often no way to tell which part of the program is wrong.

This project adds the safety features of Pascal to the GNU C compiler. In addition, it allows programmers to mix their own checked code with libraries that were not compiled with checking switched on. This is a particularly important feature, since programmers often do not have the source code to commercial libraries, or the time and expertise necessary to recompile all of them. The changes made to the GNU C compiler to do this were quite minimal (only a few thousand lines of code were added to the 500,000 lines of source).

In this report, I will discuss the many different approaches to the problem. In the future, programmers trying to solve this problem may find it educational to learn from my mistakes and successes - in particular our findings on the important issues of correctness and optimization.

�
Background

Operating systems that run in protected mode - Unix, NT and OS/2 - already provide a very crude form of checking. Such operating systems, for security and reliability reasons, separate processes from each other. So if one process accidentally or deliberately tries to read or write the memory of another process, the first process is prevented from doing this. Often the first process is killed outright. In a sense, then, there is a primitive form of checking going on. A process that has crashed, that is stopped behaving as it is supposed to behave, will usually start to read or write a location in memory which is beyond the space allocated for it, and as a result will be killed by the operating system. When this happens, Unix, for instance, gives the message

	Segmentation fault

and the program is killed. Other operating systems, Windows NT for instance, give slightly more information: register contents or the violation address. This message tells the programmer that the program definitely is faulty, but gives no guidance as to where the fault might lie. The programmer needs to know which line the program failed at, and what object the program was trying to manipulate at the time. In addition, such checking is extremely crude, and only finds the worst errors. For instance, the following C program runs without giving any error message on at least one Unix system.

	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	int p[10];
	5
	6	main ()
	7	{
	8	 int i;
	9
	10	 for (i = 0; i < 100; ++i)
	11	 printf ("%d\n", p[i]);
	12	}

The program should, of course, fail at line 11 when it tries to read element p[10]. If we look at the memory layout of this program on the particular operating system that it is running on, we see at once why it didn't fail.

program code�p[0] .. p[9]�spare memory��0				8192					16384

This particular operating system allocates program sections in multiples of 8K. So all addresses between 0 and 16383 are allowable. The expression 'p[99]' corresponds to the 4-byte integer at address 8488. The operating system considers this to be a valid address. On another operating system, this program might or might not fail.

The following program is also wrong, but will run on just about every version of Unix without a hitch.

	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	int p[10], q[10];
	5
	6	main ()
	7	{
	8	 int i;
	9
	10	 for (i = 0; i < 20; ++i)
	11	 printf ("%d\n", p[i]);
	12	}

Again, it should fail at line 11, trying to read p[10]. But in fact, it will happily read the next array in memory, q.

These unsafe behaviours stem from the fact that C does not
check that the address it is about the read from or write to lies within the program's allocated memory, or
enforce a strong separation between separate entities in memory (such as arrays p and q in the example above).

Hardware is available which will accomplish the first of these safety goals. For instance, the Intel 386 family is able to check that a pointer lies between addresses 0 and N where N is any arbitrary byte address. This support is not universal though. Other processors are only able to check pointers to the nearest page boundary. The second goal is much more difficult to achieve in hardware. The Intel 386 can be persuaded to do it provided that you have fewer than 16K memory objects, and the compiler is prepared to reload segment selectors every time you reference a different object. Reloading a segment selector is very slow on a 386, and only 4 data selectors can be loaded at once. The 16K limit is too restrictive for programs of any significant size. In addition, objects would have to be placed in separate 4K pages, so small objects would waste huge amounts of memory. Other processor families are not even capable of this level of checking.

With the hardware needed not widely available, we are forced to do the checking in software.

There are several possible strategies for adding bounds and pointer checking in software, and several levels in the compiler at which we could add this checking. I will explain the particular method that we used in this project in the next chapter, Implementation. But first I would like to talk about alternative methods, some of which we rejected and some of which would be possible strategies for future implementations.

Tracking pointers and tracking objects
A simple analysis of the problem suggests that we need to somehow
track everything in memory: variables, arrays, structures and so on - from now on I will call these ‘objects’, and/or
track every pointer that the program uses.

Tracking pointers seems at first sight like the most obvious way to implement bounds checking. A common suggestion is that we replace the simple 4 byte� pointer/address with an aggregate that contains all the extra information needed. For instance we might define the following type (in C++ notation):

	template <class T> struct _pointer_t {
	 T *pointer;	/* The original pointer value. */
	 T *base;		/* The base address of the object pointed to. */
	 T *extent;		/* The limit (last byte + 1) of the object. */
	 /* Other information ... */
	};

We now alter the compiler, so that pointer types are substituted with _pointer_t wherever they occur. For instance, the following program:

	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	main ()
	5	{
	6	 int i[10], *p;
	7
	8	 for (p = &i[0]; p < &i[10]; ++p)
	9	 *p = 0;
	10	}

would be compiled as if it were:

	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	main ()
	5	{
	6	 int i[10];
	7	 _pointer_t<int> p;
	8
	9	 p.pointer = &i[0];
	10	 p.base = &i[0];
	11	 p.extent = &i[10];
	12	 while (p.pointer < &i[10]) {
	13	 if (p.pointer >= p.base && p.pointer < p.extent)
	14	 *(p.pointer) = 0;
	15	 else
	16	 bounds_error (...);
	17	 ++(p.pointer);
	18	 }
	19	}

Briefly, at line 7, we declare a large checked pointer-to-int p. The assignment ‘p = &i[0]’ is replaced with a more complex C++-like constructor (lines 9-11), so that the pointer becomes intelligent and knows the base and size of what it points to. Accesses through the pointer, such as ‘*p = 0’ are replaced by checking code (lines 13-16). Simple pointer operations, such as ‘++p’, which don't access memory stay essentially unchanged (line 17).

There are several reasons why we rejected this approach. Firstly, GCC likes pointers to fit into registers. These large checked pointers are 12 or more bytes long, and so don’t fit into a register. Making GCC understand such a large pointer would be very difficult - requiring extensive changes to all parts of the compiler. The alternative would perhaps be to make this an extra pass before running GCC - perhaps extracting the lexical analyzer and parser from GCC so that the prepass understands exactly the same language as GCC.

Secondly, the size of static objects is not always known at compile time, particularly if those objects are declared as external. For instance, suppose that we declared ‘int i[10]’ in the program above as ‘extern int *i’, ie. referring to a global array in another file called ‘i’. The program would still be correct, but GCC would have no way of knowing how many elements were in ‘i’, and could not build the assignment to ‘p.extent’ (line 11) correctly. (A way to overcome this problem, incidentally, is to store the size of the static object along with the object, say as the first word of the object.)

Thirdly, these pointers are incompatible with code compiled by other compilers for the same target machine, and with code compiled by GCC with bounds checking switched off. For instance, on a typical 32-bit target machine, the following structure is 12 bytes long with bounds checking off, but 28 or more bytes long with the above bounds checking scheme:

	struct tree {
	 struct tree *left;
	 struct tree *right;
	 int datum;
	};

Checked and unchecked code cannot be mixed with this scheme. So on a Sun, for example, the supplied C library could not be used, since it is compiled using Sun's own version of the Portable C Compiler (‘cc’) and the source code is not available.

Nevertheless, with operating systems like Linux where the complete library source is available, this scheme starts to look more attractive�, since it is likely to be quite fast in practice (provided the problems I have outlined above can be overcome). In the chapter on Performance, I will discuss the difficulties that we had optimizing for loops similar to the one above. The loop above can be simply and easily optimized automatically by GCC. For instance, constant propagation will replace the if condition with:

	13	 if (p.pointer >= &i[0] && p.pointer < &i[10])

which can then be hoisted out of the loop and deleted. In other words, this loop will run as fast as the original code without any particular optimization effort.

Using a 4-byte handle
We considered a slight modification of this scheme, which at first seemed to get round some of the problems with large > 12-byte pointers. If each pointer in the program is replaced by a handle, a 4-byte offset into a table recording each pointer, then it seems that GCC would be more amenable to change. Suppose we have the following array and pointer into that array:

	int i[10], *p = i;

Suppose that array ‘i’ is located at address 1000 in memory. We assign an index of 1 to p (so p physically contains 1). The table might look like this:

Pointer handle�Table entry�Corresponding pointer��0�(reserved for NULL pointers)���1�pointer value: 1000
base of object: 1000
extent of object: 1040�p��2�...�...��...�...�...��
If we assign one pointer to another, say ‘int *q = p;’ then we need to copy the corresponding entry in the table (there must always be one entry in the table for each active pointer in the program). Similarly, as pointers go out of scope, we must delete them.

There are, unfortunately, many problems, which was why we rejected this idea.

Firstly, checked and unchecked code can still not be mixed. We would have to ensure that unchecked code never saw a ‘pointer identifier’ but only saw a true pointer. The following code, compiled in checking mode, would fail:

	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	extern char *p;
	5	char *q;
	6	extern void unchecked_fn (char *);
	7
	8	main ()
	9	{
	10	 unchecked_fn (q);
	11	 p[0] = 0;
	12	}

Assume that ‘unchecked_fn’ is a function in an unchecked part of the program, and ‘extern char *p’ (line 4) refers to a pointer object that is also unchecked. Line 10 fails, since ‘q’ is an offset into a table, but ‘unchecked_fn’ is expecting a true pointer. Line 11 fails, since ‘p’ is a true pointer, but we are expecting an offset into the global table.

We might overcome this first problem by the following scheme, but it is tricky to implement in practice, and we did not pursue it:

Create a list of all global functions in all unchecked libraries before you start.
Create a list of all static objects in all unchecked libraries.
Before compiling a checked file, load in both these lists, so we know where all the unchecked code is.
When calling an unchecked function, replace pointer identifiers in the arguments with actual pointer values.
If a function returns a pointer, make a new entry for it in the global table, and mark it as ‘cannot be checked’.
References to unchecked objects through pointers are compiled normally, without pointer checking.
Make all global checked pointer variables private, so they cannot be seen by any unchecked code�.

A second, and more serious problem, affects all schemes that try to track all the known pointers in a C program. Clearly, every single pointer in the program's store must have a separate entry in the global table. If this were not so, then altering the value of one pointer, would affect the apparent value of another pointer, as in this fragment:

	1	int i[10];
	2	int *p = i;
	3	int *q = p;
	4	p++;

At line 2, a new global table entry is created for ‘p’, say entry no. 1. At line 3, ‘p’ is copied into ‘q’, and we do this by copying table entry no. 1 to a new entry, say entry no. 2. Now, line 4 increments table entry no. 1, but doesn’t change entry no. 2. (Otherwise ‘q’ would appear to be incremented, which is not what we want).

The problem comes about because we copied a pointer (line 3). C lets us copy pointers in many different ways. For instance, we could replace line 3 with the following:

	1	int i[10];
	2	int *p = i;
	3a	int *q;
	3b	memcpy (&q, &p, sizeof (int *));
	4	p++;

Now, at line 3b, ‘q’ has the value 1, the same as ‘p’, and line 4 fails to work as expected.

In general, these scheme would not allow us to use ‘memcpy’ on, for instance, arrays of pointers, or arrays of structures containing any pointers, which is a frequent technique that C programmers use�.

This last problem certainly affects all schemes which attempt to track pointers at run time. Since C lets us copy pointers with ‘memcpy’ or even save them onto disk and reload them (software VM schemes do this), we cannot hope to track all pointers. The benefits of such a scheme would be immense. We could, for instance, implement efficient garbage collection and memory defragmentation if we knew where all the pointers were.

We abandoned schemes to track pointers in favour of schemes to track objects.

Tracking objects at run-time
The scheme that we finally settled for tracks objects in memory, not pointers to those objects. Pointers, in fact, stay the same, but when we come to use them, we look up what object they point to.

For example, given the following declaration:

	int i[10], *p = i;

and supposing that array ‘i’ is at locations 1000-1039 in memory, ‘p’ will start off with the value 1000. When we come to use ‘p’, as in the following statement:

	p[23] = 5;

we look up ‘p’ in our table of objects, and find that it points somewhere into the object ‘i’:

				1000		1040
�i[0] i[9]���				 (
				 p

Now, we know the limits of ‘p’, so when we come to add offset 23*4 to ‘p’, we notice that ‘p’ has gone out of bounds, and we can flag the error�.

In fact, the way GCC is written makes it quite simple to alter array references and pointer arithmetic in this way. The main difficulties lay in finding out where all the objects are to start with, and efficiently looking up a pointer to find what it points to. How these were done I will describe in the main body of the report. First, however, I will quickly review some other bounds checking programs, and how they work.

At what level do we alter the compiler?
Given that we have a C compiler there are many different places at which we can alter it to add bounds checking ability. We changed GCC’s front-end, just after parsing and before intermediate code is generated. This made our changes very C specific. Perhaps if we had altered code further down the line, the changes would have applied equally to C and C++ code compiled by GCC. There are three other areas where we might consider altering an existing compiler:

Prepass
In a prepass scheme, we write a program that takes C code, adds in appropriate bounds checking, and writes out C code that we feed into GCC. A typical prepass scheme can be easily inserted between cpp and cc1 by altering the GCC executive (‘gcc’). Prepass schemes are naturally very language specific. Typically, the actual lexical analyser and parser from GCC would be used to generate the abstract syntax tree so that the prepass section and GCC would both understand the same input language.

Prepass schemes have the advantage that they have access to much high-level information contained in the program that is deleted by the compiler. For instance, scoping information is needed to detect errors like the following one:

	1	int *p;
	2	{
	3	 int i;
	4	 p = &i;
	5	}
	6	{
	7	 /* ... use *p ... */
	8	}

Notice that ‘p’ is used when it points to a stale stack object. We need to track the scope of these stack variables, and this is possible in the front end or in a prepass stage, but may not be possible after the code has been flattened into an intermediate level language.

Altering GCC's intermediate level code
Instead of fiddling with the abstract syntax tree to rewrite C expressions as other C expressions, we might just as well fiddle with GCC's intermediate representation (RTL). There are certain advantages to this approach, and some disadvantages too.

Advantages:
RTL is language independent. You would effectively be adding bounds checking to all language front-ends supported by GCC.
By delaying inserting bounds checking until late in the optimization process, unnecessary reads and writes would have disappeared, and so not be checked. Alternatively, by inserting bounds checking early, the optimizer could do a good job of reducing the work of bounds checking.
RTL is extensively documented in Info pages, unlike the rest of GCC.

Disadvantages:
Static object information is not present in the RTL. You may be able to capture this in the body of GCC (e.g. in ‘assemble_variable’ in varasm.c), or you may still need to alter the language front end to find this information.
Stack object names disappear, along with direct information about stack lifetimes.
Type information disappears: pointers become uniform 32-bit integers whatever their type, for instance.

Altering the object files (‘*.o’) containing assembler code
The third approach is a post-pass scheme. We post-process the assembler code that the C compiler generates, and the easiest way to do this to fiddle with the contents of the object files after compilation. Needless to say this scheme is not portable between processor architectures, but two programs are available now that do this, Checker (for Intel 386 architectures) and Purify (for SPARC and HP-PA architectures).

‘Checker’ (C) 1993, 1994 Tristan Gingold <gingold@amoco.saclay.cea.fr>
Checker, at version 0.6 at time of writing, also starts with a modified GCC, but works in quite a different way from any of those described above. It provides very fine-grained checking (for instance, it allows you to check that you don’t read from an uninitialized array element down to the level of individual bytes in that array). It has a very advanced malloc/free library, which, for instance, checks that you don’t free a pointer that has already been freed, and that you don’t read or write to memory that has been freed. It also works with C++.

The disadvantages are that it doesn’t provide strong separation between adjacent memory objects. You can still happily increment a pointer beyond the edge of one memory object into another. There is a 25% memory overhead for all static and dynamic data. It is also limited to 386 family systems running Linux. Why this is so will become clear.

It works like this: The compiler part of GCC (‘cc1’ and ‘cc1plus’) stay the same, but the GNU assembler has been altered. Whenever the assembler builds a memory access, it inserts a call to a checking function in front of that instruction. For instance,�

	movl -8(%ebp),%edx

is replaced by:

	pushl %eax			; Save a register
	leal -8(%ebp),%eax		; EAX := Address to check
	call chkr_1_6_1_4_chkr	; Call a function to check this access
	movl -8(%ebp),%edx		; The original instruction
	popl %eax			; Restore EAX register

The function ‘chkr_1_6_1_4_chkr’ is an assembler stub to a C function. About half of all the i386 instructions assembled are loads and stores and are rewritten like this. The processor overhead running Checker-compiled programs is quite large.

Each memory address has two bits in a bitmap associated with it. The bits are used to determine whether reading and writing may go ahead, and detect reads from uninitialized memory.

The malloc/free library replaces the equivalent functions in the C library. Freed memory has its bits changed in the bitmap so that attempts to access it fail with appropriate error messages. In addition, freed memory ages, and eventually can be recovered and reused by the system.

A simple garbage detector is also included. When you call the garbage detector, it searches through the current registers and all memory, looking for anything at all that looks like a pointer. (Integers, pointers and general rubbish are not distinguished by this search). Furthermore, pointers that might have been saved to disk, or sent over the Internet and so on will not be found, and such memory will be marked as garbage. Nevertheless, you can be pretty sure that if Checker's garbage collector spots memory that is allocated, but not referenced, then you do have a memory leak, though Checker does not guarantee to find memory leaks by any means.

Checker requires that you recompile your C and X libraries, but this is not a problem under Linux, since all software for this operating system is free.

Overall, Checker is an interesting and effective tool, but unfortunately does not fulfill two important criteria for this project, namely
portability to all GCC platforms, and
ability to work with existing C and X libraries.

Purify ® from Pure Software Inc.
Purify works to all intents and purposes like the free program Checker described in the previous section. As I mentioned, such programs are very architecture specific. Purify has been implemented for Sparc and HP-PA architectures, but no others.

The manual for Purify mentions that Purify’d programs run 2 to 5 times more slowly.

Related works
In a prominent recent paper on the subject, Flater, Yesha and Park (1993) survey the current range of attempts to add fine-grained pointer checking to C. I will summarize the different systems they mention here:

Bcc� was the first attempt to add runtime checking to C programs. It is a prepass compiler that performs lint-like static checking of the code and adds dynamic checking to the code it writes out too. Like other work in this area it suffered from being too slow for developers to include bounds checking in distributed software. It worked by replacing pointers with extended structures containing the pointer and its lower and upper bounds. Naturally C libraries needed to be recompiled.

Saber-C� is a C interpreter and related development environment that traps bounds errors.

App� is a set of extensions to C which support, but do not enforce, certain checks at run-time.

rtcc� is a bounds checking compiler derived from the Portable C Compiler that alters the abstract syntax tree in a way similar to ours. It inserts upper bounds information just before static variables in memory. I was not able to ascertain whether it uses the same method for stack variables. It requires that the whole C library be recompiled with bounds checking (one of our fundamental assumptions was that this could not be done). It relies heavily on a modified debugger, rtsdb, to provide detailed messages, file and line information, and so forth. We inserted this into our code. It is unclear how the scheme used will check pointers. It appears that only very trivial array accesses (‘a[i]’) are checked.

Robust-C� is a collection of compile-time static checks and run-time extensions to C to provide some checking. It appears to require extensive modification of the C code to include these extra facilities. Perhaps some code would need to be rewritten from the ground up. The compiler uses a prepass scheme, and reads and writes ANSI C.

Hardware checking schemes for current systems
Several programs are available that add coarse-grained checking to existing programs, but do this in hardware which makes these methods very fast. There are several DOS compilers that use protected memory so catching the coarsest of errors in the same way that Unix does ordinarily. There is one program for Linux, Suns and HPs called ElectricFence that adds very precise checking of the upper or lower bounds of individual heap objects with almost no overhead. The program is a replacement malloc library. When it allocates a heap object, it places it like so in memory:

Page n�Page n+1�Page n+2�Page n+3�Page n+4���ALLOCATED MEMORY�UNMAPPED���
The allocated memory (black) is placed so that the top edge is aligned on a page boundary and the page immediately following is unmapped (grey). The effect of this is that programs that have a fence-post error where they write to bytes immediately following the memory allocated to them will give segmentation faults - previously they would probably run successfully. In another mode, ElectricFence will align allocated memory to the lower bound of a page, and unmap the previous page, catching the opposite sort of error (which is less common).

Since pages are, say, 4K in size, this scheme is wasteful of memory, but is surprisingly portable, since most Unix systems support the ‘mmap’ / ‘munmap’ system calls.
�
Implementation

Overview
I have already described in this report the many decisions that myself and my supervisor, Paul Kelly, made as to how to proceed. By an early stage, we had decided that the project ought to accomplish the following goals:
require no change to the program’s source code,
work with mixtures of checked and unchecked code, including commercial libraries (which are impossible to recompile), and
warn of all violations in checked code, but not give ‘false positives’.

We chose to track memory objects on the stack, heap and in static areas. We store the objects in address order in a type of binary search tree. Given a pointer, we look up the corresponding object in the tree, and decide whether arithmetic on the pointer is valid. To minimize the time spent searching the tree, several techniques are used, which I will describe later.

To track pointer arithmetic, we modified pointer operations in GCC to include extra checking code. For instance, when the parser meets the following expression in a C program:

	char *p, *q;
	int i;
	q = p + i;

instead of building the bit of abstract syntax tree describing ‘pointer plus integer’, it builds a call to a function ‘__bounds_check_ptr_plus_int’ (which may later be inlined) that checks the operation first.

The second change made to GCC, which turned out to be far more difficult, was to track the creation and destruction of all sorts of memory objects. Easiest are heap objects, which are created with malloc and destroyed with free. I took code from the GNU malloc library and modified it as appropriate. Stack objects proved somewhat more difficult. Eventually, I found that using the C++ constructor/destructor mechanism (built into GCC, though not used) allowed me to gain control when a stack object enters or leaves scope. For instance, in the following diagram, I show the creation and destruction of some stack objects:

	f (int *i)
	{
	 int n;				(i, n
	 {					(
	 char *p = "hello, world!";	((p
	 puts (p);			((
	 }					(
	 for (n = 0; n < 10; ++n)		(
	 {					(
	 int m = 9 - n;			((m
	 printf ("%d\n", i[m]);		((
	 }					(
	}

The situation is complicated further by use of ‘goto’ or ‘break’ or ‘return’ which allow a scope to be entered or left arbitrarily.

Static objects are the third storage class that we track. They may occur in a number of different places, and tracking them proved to be quite difficult. They can also appear as a side-effect of initialization. For instance, the declaration in a function of:

	char *p = "hello, world!";

declares a stack object (‘p’) and a static string.

A number of other minor changes to GCC were made. For instance, I changed the executive program (‘gcc’) so that it recognized the flag ‘-fbounds-checking’ and linked with the correct library as a result.

Alterations to GCC pointer arithmetic
I altered the way the C front end parsed several pointer operations. For example, ordinarily a ‘pointer to double + integer’ encountered in the source file will generate the following abstract syntax tree:

		PLUS_EXPR
		/	\
	 POINTER	 MULT_EXPR
			 /	 \
		 INTEGER	 INT_CONST 8

In other words, at run time, the pointer in added to the integer times 8 (the size of doubles). In bounds checking mode, we instead construct the expression:

	(double *) __bounds_check_pointer_plus_int (pointer, integer, 8, 1, “filename”, line)

This function (which may be later inlined) looks up ‘pointer’ in the table of objects. Having found it, it will check that adding 8 (integer is a valid thing to do, ie. that it won't go over the end of the object too far. If all is well, it returns the new pointer. A number of possible errors may be generated:
pointer is NULL or ILLEGAL, so pointer arithmetic is undefined
the pointer points to a freed heap object
the pointer points to a stale stack object
the pointer points entirely outside the program’s address space
the pointer may end up pointing before the object or after the last byte + 1 of the object

In the last case, the function doesn't stop with an error, but returns ‘ILLEGAL’ (normally defined as �1). It is valid to generate such illegal pointers, but you may not use them later.

The parameters ‘filename’ and ‘line’ passed to ‘__bounds_check_pointer_plus_int’ reflect the current source file and source line, and let us print meaningful error messages.

The following operations are intercepted in this way:

Pointer operations�Function substituted��pointer + integer�(type *) __bounds_check_ptr_plus_int (p, i, ...)��pointer - integer�(type *) __bounds_check_ptr_plus_int (p, i, ...)���*pointer (dereference)�*(type *)__bounds_check_reference (p, ...)��array[index]�*(type *) __bounds_check_array_reference (p, i, ...)��pointer -> element�(*(type *)__bounds_check_reference (p, ...)) . element���pointer - pointer�__bounds_check_ptr_diff (p, q, ...)��pointer < pointer�__bounds_check_ptr_lt_ptr (p, q, ...)��pointer > pointer�__bounds_check_ptr_gt_ptr (p, q, ...)��pointer <= pointer�__bounds_check_ptr_le_ptr (p, q, ...)��pointer >= pointer�__bounds_check_ptr_ge_ptr (p, q, ...)��pointer == pointer�__bounds_check_ptr_eq_ptr (p, q, ...)��pointer != pointer�__bounds_check_ptr_ne_ptr (p, q, ...)��++pointer�(type *) __bounds_check_ptr_preinc (&p, ...)���--pointer�(type *) __bounds_check_ptr_predec (&p, ...)��pointer++�(type *) __bounds_check_ptr_postinc (&p, ...)��pointer--�(type *) __bounds_check_ptr_postdec (&p, ...)��truthvalue of pointer�__bounds_check_ptr_true (p, ...)��!pointer�__bounds_check_ptr_false (p, ...)��
These functions are described in greater detail below.

Substituting for &* and related identities
There is one further subtlety in this pointer arithmetic substitution. Since we chose to perform the arithmetic substitutions as we actually parse the expression, rather than waiting for the expression to be completely parsed and fixing it up afterwards, normal identities such as ‘&*p’ (‘p’ are not handled correctly. Normally as GCC parses the ‘&’ operator, it looks ahead in the operand and if it has the form ‘* expression’ will delete the ‘*’ and return ‘expression’. When we are parsing such an expression, we end up with the following code:

	(type *)__bounds_check_reference (p, ...)�

The standard unary ‘&’ operator built into GCC is not able to detect the subtleties of this expression and replace it with the simple expression ‘p’. Notice that in this instance the code generated is still correct, save that one extra check is performed that might fail even in circumstances where the code is correct. This situation was unacceptable.

We examined the different situations in which these extra operations occur and we altered the appropriate operators to be able to cope with the extra complexity and substitute identity operations correctly. The cases are summarized in the following table:

op.�possible identity�substitution�pattern to recognize��&�&*p�p�& *(type *)__bounds_check_reference (p, ..)��&�&p[i]�p + i�& *(type *)__bounds_check_array_reference (p, i, ...)��&�&p->e�p + offsetof (e)��& (*(type *)__bounds_check_reference (p, ...)) . e��
Notice that the other identity operator, ‘*&’, is not included in this table since we do not generate pointer arithmetic substitutions for the expression ‘&p’.

The following code generates a bounds error incorrectly if these identity substitutions are not done, but in fact with our program works correctly:

	1	int a[10], i;
	2
	3	for (i = 0; i <= 10; ++i)
	4	 printf (”The address of a[%d] is %p.\n”,
	5	 i, &a[i]);	/* &a[10] == a + 10 is OK */

Suppressing pointer arithmetic modifications
In one case, pointer arithmetic substitutions are suppressed or done at compile time. This case is when a static variable initializer contains pointer arithmetic; for instance:

	int p[10], *q = p + 5;

(occurring in file scope). In this case, were substitution to occur, ‘q’ would have a non-constant initializer, namely ‘__bounds_check_ptr_plus_int (p, 5, ...).’ GCC cannot, obviously, evaluate such expressions at compile time, and will not generate code at run time to initialize them, and so would generate an error. We detect these cases specially and attempt to verify them at compile time. In the case of the expression above, this can be done easily, but there are some situations where we cannot check expressions at compile time, and we then generate a warning.

Making GCC track memory objects
Heap
All heap objects are allocated with malloc or realloc and destroyed with free, and so tracking them proved no problem. I altered and enhanced the GNU malloc/realloc/free functions so that they operate in two modes. In one mode, the functions always allocate from an fresh area of memory, and never free memory up as they go along. This mode allows us to reliably check for stale pointers - that is, use of pointers to memory that has been freed. There is a danger, if we reuse memory, that a pointer to an old area of memory might be used without warning on newly allocated memory. In the second mode, we reallocate memory as per the old malloc, but we can optionally ‘age’ blocks of memory. I borrowed this idea from Checker. A block which has been freed ages until it is actually reused. This makes checking for stale pointers slightly more robust.

The following fragment which uses a stale pointer will always flag an error in the first mode (at line 15), but may or may not in the second mode:

	1	struct _list {
	2	 struct _list *next;
	3	 int datum;
	4	};
	5
	6	int *
	7	move_list_to_array (struct _list *p)
	8	{
	9	 int *a = NULL, c = 0, d;
	10
	11	 while (p) {
	12	 d = p->datum;			/* extract data item */
	13	 free (p);			/* free list element */
	13	 a = realloc (a, c++ * sizeof (int)); /* grow array */
	14	 a[c] = d;			/* add data item */
	15	 p = p->next;			/* next list element */
	16	 }
	17	 return a;
	18	}

Stack
Stack objects present the greatest potential difficulties to tracking memory in C, but in fact, GCC made this rather easy. The difficulty arises when programmers start to use ‘goto’, ‘break’ or ‘return’, all of which upset the flow of execution sufficiently to make tracking difficult. For instance, consider the lifetime of the stack object ‘t’ in the following fragment:

	1	switch (i) {
	2	 int t;
	3	case 0: case 1:
	4	 t = i; i = j; j = t;		/* swap i, j */
	5	 break;
	6	case 2:
	7	 j = i;
	8	 break;
	9	default:				/* i is invalid => error */
	10	 return -1;
	11	}

Whilest ‘t’ is live between lines 2 and 10, normal flow of execution enters and leaves this block at no fewer than six different points. We have to add ‘t’ to our tree of objects at lines 3, 6 and 9, and at lines 5 and 8 the object must be deleted. At line 10, we delete not only ‘t’, but ‘i’, ‘j’ and any other variables declared so far in the function.

Luckily, GCC takes care of most of the complexity, since the C++ constructor/destructor mechanism has similar problems. Regrettably, the stricter C++ rules concerning the use of ‘goto’ will now apply to bounds checked C programs. In Tk3.6, a 65,000 line program, two uses of ‘goto’ violated the stricter rules, and a couple of simple changes needed to be made.

For stack objects, we build a C++ constructor and destructor. The constructor is executed when the variable comes into scope. It adds the object to the tree of objects. When the variable leaves scope, the destructor is executed and it deletes our record of the object.

Destructors presented no problem. When a variable goes out of scope, we tell GCC to call ‘__bounds_delete_stack_object’, passing a pointer to the object. This function may later be inlined.

Constructors are implemented in the same manner as C initializers. Thus the ‘constructor’ of:

	int i = 5;

is the expression ‘INTEGER_CONST 5’, and the same mechanism is used for C++ constructors. We aimed to add an initializer (constructor) to uninitialized variables, and change the initializers for initialized variables so they evaluated to the same value, with the side effect of calling our own function.

For example:

Original declaration�Equivalent declaration after bounds checking��int i;�int i = (__bounds_add_stack_object (&i, ...), 0);���int i = 5;�int i = (__bounds_add_stack_object (&i, ...), 5);��int i[10];�int i[10] = {(__bounds_add_stack_object (i, ...), 0)};��int i[10] = {5, 6, 7};�int i[10] = { (__bounds_add_stack_object (i, ...), 5), 6, 7 };��struct _t i[10];�struct _t i[10] = { { (__bounds_add_stack_object (i, ...), 0) } };��etc.

As you can see from the examples, in aggregate types (arrays, structures and unions), we search iteratively down to the first non-aggregate member and we add or replace that initializer.

There are two points to note. Firstly, all uninitialized stack declarations become initialized. This has several unintended side effects:
‘-Wuninitialized’, the GCC option that warns if an uninitialized variable is used, will have no effect,
all variables will contain zero, even if they aren't initialized,
C++ rules for ‘goto’ don't allow jumps into a binding contour after an initialized variable�.

A second issue to note is that all initializers become non-constant, therefore usually non-static. For instance, the declaration:

	int i[10] = { 5, 6, 7 };

(in a function scope) is normally implemented by GCC by writing a 3 word array (5,6,7) into static data, then copying this array into ‘i’ each time the variable is initialized. This is relatively efficient. GCC may not be able to make such optimizations with bounds checking switched on, since the initializer expression becomes non-constant. GCC may resort to another, less efficient way of initializing this variable. This hardly matters in performance terms (the overhead of adding an object to the tree outweighs other considerations), but may come as a surprise if you were expecting to see arrays reproduced verbatim in the ‘a.out’ file.

Parameters to a function also need to be bounds checked if their address is ever taken, and to accommodate this we changed slightly the way GCC parses functions. The following example shows how GCC parses functions in bounds checked code:

Original function:

	1	int
	2	square (int x)
	3	{
	4	 return x * x;
	5	}

After bounds checking:

	1	int
	2	square (int x)
	3	{
	4	 __bounds_push_function (“square”, 0, 1, ...);
	5	 __bounds_add_param_object (&x, 4, 4, ...);
	6	 {
	7	 t = x * x;
	8	 }
	9	 __bounds_pop_function (“square”);
	10	 return t;
	11	}

In the next chapter I will discuss how we optimize such functions, in fact removing all these extra redundant function calls later on. Nevertheless, this function will serve to show how parameters are accommodated in GCC.

We add an extra binding contour around the function body and ask GCC to call ‘__bounds_pop_function’ when the inner contour returns using GCC’s NULL-decl-cleanup facility. Inside the outer scope, after parsing the function’s parameters, we insert a call to ‘__bounds_push_function’. The first argument is the function name, the second is ‘1’ if the function is ‘main’ and the third is the number of parameters. Immediately after this come zero or more calls to ‘__bounds_add_param_object’ which push the parameters onto the object tree.

When the function is called, ‘__bounds_push_function’ in the run-time library creates a new context for this function, and the parameters (which are really very similar to stack objects) are added one at a time to the object tree. If the function is ‘main’, then ‘__bounds_add_param_object’ conspires to add the argument strings in ‘argv[]’ to the object tree too. When the function returns, ‘__bounds_pop_function’ deletes the parameters and the function context cleanly.

Not all functions will actually be surrounded by calls to ‘__bounds_push_function’ and ‘__bounds_pop_function’. In particular, functions that never take the address of any of their parameters will have these calls optimized out. Unchecked functions will also, of course, not be surrounded by calls to these functions.

Static
Static objects proved to be the hardest objects to find. They can occur in many different contexts. The following examples all contain static data in one form or another:

(1)	1	extern int errno;		Static, in unchecked external lib.

(2)	2	f ()
	3	{
	4	 static int init = 0;	Static, in function.
	5	 ...
	6	}

(3)	7	int data[] = {0,1,2};	Single file-scope static object.

(4)	8	g ()
	9	{
	10	 char *p = "hello!";	String is static data, p is
	11	 ...				a stack object.
	12	}

(5)	13	h ()
	14	{
	15	 char s[] = "hi";		String is copied onto the stack
	16	 ...				from static space each time.
	17	}

(6)	18	char *names[] = {		Seven separate static objects
	19	 "fred",			in all.
	20	 "john",
	21	 "peter",
	22	 "jane",
	23	 "mary",
	24	 "judith",
	25	 NULL
	26	};

(7)	27	char *duplicates[] = {	Duplicates are optimized out in
	28	 "mark", "mark",		C: only two objects here.
	29	 "mark", "mark",
	30	 NULL
	31	};

(8)	32	char *p = "peter";		These two declarations contain three
	33	char *q = "peter";		objects, one (the string) shared.

etc.

We can classify these different variations into three distinct problem areas. Firstly, at load time, we need to identify all the static objects (somehow) and build them into the initial object tree. For example, in the following code:

	1	#include <stdio.h>
	2
	3	int i;
	4	char *p = "inefficient hello, world\n";
	5
	6	main ()
	7	{
	8	 for (i = 0; p[i]; ++i)
	9	 putchar (p[i]);
	10	}

before main () is called, we need to find the location of the three static objects declared at lines 3 and 4 and build them into the initial tree. When I say ‘before main ()’, I mean either at load time, or at link time, even, perhaps, during compilation.

Unfortunately, we can't know for sure the exact location of each static object until after the program has loaded, especially in the case of link-loading as done under, for example, SunOS.

The second problem is that initializers on static and dynamic objects usually imply static data, and this static data lacks an explicit pointer. For instance, a GCC declaration like:

	char *strings[] = { "tom", "dick", "harry", NULL };

will be translated into assembler code like this:

	1	.data		; strings array goes into writable data segment
	2	.globl _strings
	3	 .long LC5	; pointers to the initializers
	4	 .long LC6
	5	 .long LC7
	6	 .long 0
	7	.text		; initializers go into read-only text segment
	8	LC5:
	9	 .ascii "tom\0"
	10	LC6:
	11	 .ascii "dick\0"
	12	LC7:
	13	 .ascii "harry\0"

Not only are there four separate objects that need to be notified, but the objects fall into two segments - the static object and initializers are not even in a contiguous piece of memory (the GCC option ‘�fwritable�strings’ forces the initializers into the data segment, but this is undesirable for other reasons). Labels such as ‘LC5’ are compiler generated. Consider another case where statics end up in the text segment:

	1	main ()
	2	{
	3	 int i[5] = {0, 1, 2, 3, 4};
	4	 ...
	5	}

When assembled, this becomes (in essence, I have abbreviated it for clarity):

	1	.text
	2	LC0:		; initializer starts here in r-o text segment
	3	 .long 0
	4	 .long 1
	5	 .long 2
	6	 .long 3
	7	 .long 4
	8	.globl main
	9	_main:
	10	 ; ...
	11	 ; copy 20 bytes from LC0 into i
	12	 ; ... body of main follows ...

In this case, I would argue that we don’t know or care about the object at ‘LC0’. The programmer will never access this object directly, only a copy of it. Since we have already found the location of ‘i’, we need know nothing more.

The third and final problem that I tackled concerns arbitrary static objects that appear explicitly or implicitly in expressions, outside variable declarations. For instance the code fragment:

	1	int i;
	2	...
	3	printf (“Address of pointer: ”, &&i);

contains two implicit static objects, the string and the pointer (‘&i’). During compilation, the output stage of GCC remembers such objects, generates internal labels for them, and will actually place them in the assembler output before the function.	

Solving the static data problem, then, involves solving many disconnected problems all at once. Broadly, we must

identify named static objects in file scope and within functions, and
identify unnamed initializers,
except when the initializer doesn't matter - we'll always be using a copy.

We use the following two methods to detect and register static objects wherever they appear in code.

(1) Global constructor function. GCC maintains a list of static variable declarations. For each entry in this list, we build a call to the library function ‘__bounds_note_constructed_object’ and we place all these function calls in a single global constructor function. In essence, we build the following function and tag it to the end of the compiled code:

	1	__GLOBAL_IUniqueName ()
	2	{
	3	 /* Initialize the checking library, if it’s not initialized
	4	 * already.
	5	 */
	6	 __bounds_initialize_library ();
	7
	8	 /* Note the positions of statics with private labels (see
	9	 * section (2) below).
	10	 */
	11	 __bounds_note_constructed_private_table (table_ptr, ...);
	12
	13	 /* Note the position and size of each named global variable.
	14	 */
	15	 __bounds_note_constructed_object (ptr1, size1, align1, ...);
	16	 __bounds_note_constructed_object (ptr2, size2, align2, ...);
	17	 /* etc. */
	18	}

The code that creates this function and then adds it to a list of constructors called by GCC before main() can be found in c-bounds.c, function ‘bounds_build_static_constructors.’

(2) Global table of statics with private labels. We detect private static objects (collectively called ‘constant_defs’ by GCC) as they are created by inserting spying code in one function in ‘varasm.c’. We build a table of pointers, sizes and names of these objects and place this in the output file along with the above constructor function. The constructor function calls ‘__bounds_note_constructed_private_table’ to inform the bounds checking library of the location of these privately labeled objects.

The format of the table is described in ‘lib/bounds-lib.h’ header file. The code to achieve this may be found in varasm.c, function ‘make_decl_rtl’ and in c-bounds.c.

These modifications catch all types of static object, since GCC always either calls ‘make_decl_rtl’ or adds the global variable to its list of globals whenever a static object is created.

In hindsight, it would have been better to combine (1) and (2) into a single table containing entries for address, size, alignment, filename and line number. This would save a small amount of space and a small amount of time at initialization.

Function pointers
Function pointers are stored on the chain of global objects by GCC as it parses the source file, and so are caught by method (1) above. Function pointers are given a special alignment so that it is impossible to manipulate them in pointer arithmetic, ie. if ‘fp’ were a function pointer, then the following code fragments would both fail:

	fp++;
	fp = fp + 5;�

Adding padding between objects when they are in memory
Almost all objects that appear in code compiled with bounds checking have one or more bytes of padding placed after them. We can see why this needs to be done by considering the range of values that a pointer to an object may validly have.

If an array a is declared ‘int a[10];’ and p is a pointer to int, then:

�a[0] - - - - - - - - - - - - - - - - a[9]���
If ‘p’ points to object ‘a’, it may take only the following values: { a, a+1, a+2, ..., a+9, a+10 }.� Notice that the last value is not part of the array ‘a’ but in fact points to the first byte following the array. Clearly if the next object follows immediately, then there is no way to distinguish a pointer to the end of the object from a pointer to the immediately adjacent object. To overcome this we insert at least a byte of padding between objects (in fact, we insert exactly one byte, but the alignment of the next object usually means that the next object will follow at least one word later). So two adjacent word arrays (‘int a[10], b[10];’) appear as:

�a[0] - - - - - - - - - - - - - - - - a[9]�(Unused padding)�b[0] - - - - - - -��
Padding heap objects is simple: a trivial modification to the ‘malloc’ library achieves this. For stack and static objects, we made small modifications to the back-end of the compiler which are only activated in bounds checking mode. In ‘varasm.c’, functions ‘assemble_variable,’ and ‘output_constant_def_contents,’ which are responsible for actually outputting the assembler directives that create statics, we added simple code to insert spaces just after the statics. To pad stack objects, I changed the function ‘assign_stack_local’ in ‘function.c’ which is responsible for generating the RTX of stack variables. The change means that the stack objects appear slightly larger in the RTX, so their stack slots get increased accordingly.

Parameters (allocated on the stack) cannot be padded - this would result in incompatibilities in calling conventions between checked and unchecked code. This is in fact not a great problem, since arrays are rarely passed verbatim as parameters (rather, arrays are passed by reference). Scalar types passed as parameters are not affected by this lack of padding.

Additional GCC functions in ‘c-bounds.c’
Most of the extensions to GCC that we made are placed in a single file, ‘c-bounds.c’ that is compiled and linked into ‘cc1’ (the body of the compiler). The functions in this file are:

Function�Purpose��bounds_build_static_constructors�Build the global constructor function at the end of the file responsible for initializing static objects at run-time.��bounds_frig_decl_initial�Alter the initializer of a VAR_DECL so that it calls ‘__bounds_add_stack_object’ as a side effect when it comes into scope.��bounds_expand_decl_cleanup�Alter the destructor for a VAR_DECL so that it calls ‘__bounds_delete_stack_object’ when it goes out of scope.��bounds_build_reference�Modify the expression ‘*p’.��bounds_build_array_reference�Modify the expression ‘a[i]’.��bounds_can_test_array_reference_now�Attempt to evaluate ‘a[i]’ at compile time: if we cannot, generate a warning.��bounds_build_ptr_plus_int�Modify the expression ‘p+i’.��bounds_build_ptr_diff�Modify the expression ‘p-q’.��bounds_build_comparison�Modify the expression ‘p < q’, etc.��bounds_build_inc_or_dec�Modify the expression ‘p++’, etc.��bounds_build_invert_truthvalue�Modify the expression ‘!p’.��bounds_build_truthvalue_conversion�Modify the conversion of ‘p’ to boolean.��bounds_build_args�Called just after parsing the function arguments to add calls to ‘__bounds_push_function’ and ‘__bounds_pop_function’ around the call and to ‘__bounds_add_param_object’ for each parameter.��bounds_delete_redundant_calls�After generating the RTL for a function, we delete unnecessary calls to ‘__bounds_push_function’, ‘__bounds_add_param_object’, ‘__bounds_pop_function’, ‘__bounds_add_stack_object’ and ‘__bounds_delete_stack_object’ here. The chapter on Performance (pg. � PAGEREF _Ref327429638 �47�) describes this.��bounds_is_deletable_fn_p�Related to above.��bounds_note_call_for_deletion�Related to above.��bounds_cancel_address_expr�Spot ‘&*’ identities (pg. � PAGEREF _Ref327429967 �19�) and cancel them.��
I have omitted some small private functions that are used, for instance, to conveniently build strings and function calls.

We declare the following variables:

Variable declaration�Purpose��int bounds_checking_enabled�This flag, declared in the body of the compiler, is true when ‘�fbounds�checking’ has been specified.��int bounds_in_static_decl�This flag is true when we are processing a static variable initializer, and we may need to suppress pointer arithmetic.��int bounds_poplevel�This flag records the fact that we have added an extra binding contour around a function (for ‘__bounds_push|pop_function’) and we will need to pop from that contour at the end.��
Checking library vs. inline checking functions
Normally GCC builds external calls to functions like ‘__bounds_add_stack_object’ and ‘__bounds_check_array_reference’. These calls are resolved by linking the checked program with libcheck.a (this is done automatically). By inlining the functions instead, we avoid the costly function call and we allow the back end to make more intelligent optimizations. The cost is a considerable increase in code size and hence compile time (none of the checking functions are small).

As GCC stands, inlining the functions would take only a minimal amount of work (perhaps one day to implement, and a couple of days to test). There are two broad approaches to this. One way is to alter the executive (‘gcc’) so that when compiling a bounds checked file, cpp included a standard header file which would contain all the inline code as ‘static inline’ functions. Another way is to partially compile the functions you want inlined into RTL (use GCC’s ‘-dxxx’ options to do this) and insert code to create these strings of RTL into GCC (in the same way as other standard functions like ‘memcpy’ are done).

There are hooks in the checking library to collect statistics on call frequency, so only the most frequently used calls need to be inlined (for instance, we found that many programs call ‘p++’ thousands of times more than they call ‘p--’.) I discuss the merits of inlining code later in this report.

Implementation of the checking library
The checking library (libcheck.a) is the run-time arm of the bounds checking compiler. Its main function is to maintain a list of memory objects, to be able to search and change that list quickly and to check operations efficiently against the list. It also has other subsidiary tasks - it implements a completely new malloc/realloc/free library, it has fast checked string functions, it has a new implementation of alloca and it collects statistics on its own performance.

The library is built from several modular, interacting components which I will describe here in detail.

‘objects.c’ and ‘check.c’
The file ‘objects.c’ contains functions to maintain a single splay tree of objects. Refer to the original paper on splay trees (Sleator, Tarjan, 1985�) for more information on splay trees, or to an excellent simple introduction in Dr. Dobb’s Journal (Dec. 1992). They are a form of dynamic tree that tends to keep frequently referenced objects near the root of the tree�, and the tree otherwise mostly balanced. All operations on the tree (including look up) alter the shape of the tree and bring the node of interest to the root. Bell and Gupta (1993) evaluate the performance of splay trees, and show how this structure is better suited to skewed distributions of look-ups, rather than balanced binary trees which assume a uniform frequency of access to each element.

The basic type that is maintained in the tree is the ‘object’, defined in the header file ‘objects.h’. This structure serves as both a node in the splay tree and a description of the base address, size, name and type of an object in the program currently running. Objects can be of three types, heap, stack or static, though internally all three types are stored in the same tree and use the same structure, with a single flag distinguishing the storage class.

‘objects.c’ exports the following functions to the rest of the library�:
	__bounds_add_heap_object
	__bounds_is_heap_object
	__bounds_delete_heap_object
Add, test and delete a heap object. The malloc module calls this to maintain checked heap objects.
	__bounds_add_stack_object
	__bounds_delete_stack_object
	__bounds_internal_add_stack_object
	__bounds_internal_delete_stack_object
Add and delete stack objects. The first two of these calls are generated solely by the compiler in checked code, as described above. The last two are used when tracing function calls by the code in ‘function.c’.
	__bounds_find_object
	__bounds_find_object_by_base
Look up objects in the tree by address. These two functions are used extensively by the checking code and translate directly into simple search functions on the splay tree. The first variant returns an object structure if the address passed lies anywhere within that object. The second variant works only if there is an exact match on the base address of the object.
	__bounds_note_constructed_object�
	__bounds_note_constructed_private_table
	__bounds_note_main_args
Add static objects (static objects can’t, obviously, be deleted). The first two variants are generated by the compiler in the automatic constructor functions (see above). The last variant is called by the function tracing code in ‘functions.c’ when the call to ‘main’ has been detected. It finds the address of each string in ‘argv[]’ and adds it as a special static object. The strings in ‘environ’ are detected separately.

The actual business of checking pointer operations is done in the file ‘check.c’ which interacts closely with ‘objects.c’ through the public entry points above. This module exports a few dozen functions that are called solely by compiler generated code. The process whereby function calls are substituted for pointer operations is described above.

The functions exported by ‘check.c’ are as follows:

Pointer operation�Function substituted�Checks�Returns��pointer + integer��__bounds_check_ptr_plus_int�v1,a�i��pointer - integer�__bounds_check_ptr_plus_int��v1,a�i��*pointer (dereference)�__bounds_check_reference�v2,a���array [index]�__bounds_check_array_reference�v2,a���pointer - pointer�__bounds_check_ptr_diff�v1,a,s���pointer <, >, <= or >= pointer�__bounds_check_ptr_**_ptr where ** is lt, gt, le or ge�v1,a,s���pointer == or != pointer�__bounds_check_ptr_**_ptr where ** is eq or ne�v4���++pointer, ��pointer, pointer++, pointer���__bounds_check_ptr_** where ** is preinc, predec, postinc or postdec�v1,a�i��pointer truthvalue and !pointer�__bounds_check_ptr_true and __bounds_check_ptr_false�v3���
Key:
v1 - Pointer(s) must be valid, that is not NULL or ILLEGAL, and pointing either to an active memory object or to the byte immediately following a valid memory object.
v2 - Pointer(s) must be valid, that is not NULL or ILLEGAL, and pointing strictly inside an active memory object.
v3 - As for v1, except that NULL pointers are permitted.
v4 - Pointer(s) must not be ILLEGAL, but invalid pointers are allowed.
a - Checks alignment of the pointer to the basic type of the object.
s - The two pointers must point to the same object.
i - If the operation would take the value of the pointer outside the permitted range, this returns ILLEGAL which will be detected if the result is reused later.

Notice that ‘pointer == pointer’ and ‘pointer != pointer’ are exceptions - you are allowed to use invalid (eg. stale) pointers in these expressions. We allowed these relaxed rules because strict checks on validity of pointers caused Tk 3.6 to crash unnecessarily. The following useful, and arguably correct code shows a stale pointer being used in ‘!=’.

	1	old_pointer = pointer;
	2	pointer = realloc (old_pointer, new_size);
	3	if (pointer != old_pointer)
	4	{
	5	 /* ‘realloc’ moved this memory. We need to fix up pointers
	6	 * to the new memory here.
	7	 */
	8	}

‘init.c’
The code in the module ‘init.c’ is responsible for initializing all other modules in the library and for reading the arguments supplied in ‘GCC_BOUNDS_OPTS’ (see the user manual). Since each checked file in a bounds checked program contains a single constructor function which calls ‘__bounds_initialize_library’ and a checked program contains at least one such checked file, ‘__bounds_initialize_library’ is called at least once after the program has loaded, but before ‘main’ runs. This function sets the flag ‘__bounds_checking_on’ to 1, and bounds checked programs may examine this flag to see and change their behaviour if necessary (since the flag is actually located in libgcc.a, not in libcheck.a, it exists even when programs are compiled without bounds checking, and it is set to 0). The first time ‘__bounds_initialize_library’ is called, it will read the arguments in ‘GCC_BOUNDS_OPTS’ and also locate the environment strings from ‘environ’ and add them to the object tree.

‘functions.c’
This module handles calls to ‘__bounds_push_function,’ ‘__bounds_pop_function’ and ‘__bounds_add_param_object’. The module maintains private linked list of function contexts and records the local parameters for each function. When a function returns, ‘__bounds_pop_function’ deletes all the local parameters for that function. The function ‘main’ is recognized here. Once the first two parameters of ‘main’ have been read, the argv[] strings are also added to the object tree from here.

Notice that we push into and pop out of functions as a convenience, so that we can clean up parameters objects quickly and easily when the function returns. Not all checked functions will have calls to push and pop built - in particular functions with no arguments, and functions with arguments that are never addressed. We cannot look at the current function context to find out what function is actually executing at the moment.

‘malloc/’ subdirectory
A customized version of the GNU LIBC malloc library can be found in the ‘malloc/’ subdirectory.� The GNU library itself implements the following dynamic memory functions:

	__bounds_calloc
	__bounds_cfree
	__bounds_free
	__bounds_malloc
	__bounds_memalign
	__bounds_realloc
	__bounds_valloc
	mcheck
	mstats
	+ various trace and warning functions

These functions have not been altered in any way, save that where they used to call ‘memset’, ‘memcpy’ and so on, they now call the unchecked equivalents, ie. ‘__bounds_memset’, ‘__bounds_memcpy’, etc. On top of this library I implemented standard library functions that manipulate fully checked memory objects. The following functions have been implemented:

	calloc
	cfree
	free
	malloc
	memalign
	realloc
	valloc

For instance, ‘malloc’, in addition to calling ‘__bounds_malloc’ to allocate the requested amount of memory, also calls ‘__bounds_add_heap_object’ so that that memory is fully checked. Recall that there is no such thing as an unchecked heap object in an application program - although the checking library itself uses unchecked heap objects through the ‘__bounds_*’ entry points to the malloc library. The source for this meta-library can be found in ‘malloc/bounds.c’.

Two variables control the reuse policy of the memory library at run time:

	__bounds_never_free_heap
If this variable is true (default is false) then VM is never reused. That is to say that calling ‘free’ will never actually call ‘__bounds_free’ so that the GNU malloc library might reuse freed memory. This memory policy is guaranteed to catch stale pointers, but is quite wasteful of memory�.
	__bounds_age_limit
If ‘__bounds_never_free_heap’ is false, then this variable controls a simple aging policy, whereby freed blocks are queued for a certain length of time before they are actually allowed to be reused. The contents of this variable (default: 0) denote the number of subsequent calls to ‘free’ that must be made before the memory is actually freed and hence reused.

This aging policy is a reasonable compromise when finding many stale pointers. In particular, if the age limit is set to >= 0, the following common bug will be caught:

	1	void
	2	free_list (struct list *head)
	3	{
	4	 while (head)
	5	 {
	6	 free (head);
	7	 head = head->tail;
	8	 }
	9	}

‘alloca.c’
The alloca module implements a checked alloca function. It saves a list of allocated memory objects in the current function context, and frees them when ‘__bounds_pop_function’ is called for the associated context. To use checked alloca, programs should be compiled with the ‘�fno�builtin’ flag, and the macro ‘alloca’ which is defined by ‘alloca.h’ should be undefined. If these are not done, then the builtin alloca will be used instead, which allocated unchecked stack objects (these will still work correctly, provided, of course, that the program is correct).

‘string.c’
The string module exports standard string functions (like ‘strcmp’, ‘strcpy’ and so on). The standard C library functions are, of course, unchecked, and were we to compile them with bounds checking, they would doubtless run very slowly, since every function would be checked byte-by-byte, rather than just checking once before we start. These functions rectify that. GCC inlines certain string functions, and to check these you will need to compile programs with the ‘�fno�builtin’ flag.

Some of the string functions have variants called, for instance, ‘__bounds_strcmp’ and so on. These variants don’t perform checking and are used internally (to avoid reentrancy).

To get round some features of the GNU C library, functions like ‘memchr’ which allow a limit to be set on the length of the search will succeed even if the limit is much longer than the object being searched, provided the search terminates before overrunning the object. For instance, the following code will succeed:

	1	char a[10];
	2	...
	3	a[5] = 5;
	4	... memchr (a, 5, 1000) ...

and the following code will fail with a bounds error:

	1	char a[10] = {0};		/* initialize all to 0 */
	2	... memchr (a, 5, 1000) ...

‘error.c’ and ‘print.c’
‘error.c’ and ‘print.c’ export some helper functions to the rest of the library:
	__bounds_error
	__bounds_error2
	__bounds_errorf
Several standard ways to print error messages. These functions don’t return (they call abort directly) thus simplifying calling code.
	__bounds_internal_error
If one of the many internal consistency checks in the library fails, then this function prints a diagnostic error and the program stops. This function is also called if one of the compiler generated functions in the checked code is bad.
	__bounds_warning
Print a standard warning message, and return.
	__bounds_breakpoint
This is not an exported function as such, but it is a hook where debuggers may place a breakpoint to trap execution just after an error message is printed, but before the program quits.
	__bounds_printf
	__bounds_vprintf
Internal functions that emulate the standard ‘printf’ and ‘vprintf’ library functions. The problem is that the standard library calls may call ‘malloc’ etc., which could cause reentrancy problems.

Dealing with unchecked objects in the checking library
The checking functions are complicated by the fact that they may well have to deal with pointers to unchecked stack variables and static variables passed around between unchecked code and checked code. For instance, the C library function ‘ctime’ returns the time of day as a string: the string, however, is a static object in ‘libc.a’ and so functions in our checked program that manipulate this string will be manipulating an object that is not present in the splay tree. Static objects, stack objects and function pointers may all be unchecked. Heap objects cannot be unchecked, since they should all be allocated through ‘malloc’ and friends.

In the checking functions (in ‘check.c’) when we come across a pointer that cannot be found in the tree we can deduce almost immediately that it must point to an unchecked object. In fact, the process is a little smarter than this, in that we check that the pointer is:

	0 (pointer < &end	for unchecked static pointers, or
	sp (pointer (memtop	for unchecked stack pointers,

where ‘end’ is the linker-generated symbol marking the last + 1 byte of the bss, ‘sp’ is the stack pointer and ‘memtop’ is the last address in VM�.

Pointers that are classified as unchecked by the above criteria may generate warnings if the ‘-warn-unchecked-stack’ and/or ‘-warn-unchecked-statics’ flags are given to the library at run time. Pointers outside these regions automatically generate bounds errors - they probably signify stale stack pointers or stale heap pointers, or the results of wild pointer arithmetic.

Apart from giving warnings, these unchecked pointer operations go ahead essentially unchecked. I believe that there is some room for improvement in the way unchecked pointers are handled, and in the final chapter on Future Enhancements, I give some ideas as to how to improve these semantics.

At present, to be completely sure that the program lacks bounds errors, I recommend compiling as much of the program as possible with bounds checking, and switching all warnings on; then investigate all ‘unchecked’ warnings until you are sure that they are all down to real unchecked objects. Since few programs use global variables allocated in the C library frequently, and well written programs pass pointers only to heap objects, most programs running correctly should give very few ‘unchecked’ warnings. You can make even these warnings disappear by adding unchecked objects to the splay tree by hand (see pg. � PAGEREF _Ref327768539 �63�).

Correctness
In this section, I would like to systematically evaluate the correctness of bounds checking by reducing the overall problem to a series of simple logical checks that can be made on the checking library and associated machinery.

Terms
A pointer takes on one of the following three distinct values: nil, illegal or the address of any memory location in VM, valid or not.

By correct I mean that none of the following things ever occur:
The program attempts to read or write memory that is not allocated. (#1: Pointer reference).
The program attempts to execute a function using a pointer that is not a pointer to a function. (#2: Pointer to function reference).
The program attempts to use a pointer that is illegal or does not point to valid memory to generate a boolean value. (#3: Invalid pointer use to generate boolean).
The program attempts to use a pointer that is illegal or does not point to valid memory to generate a pointer value. (#4: Invalid pointer use to generate pointer).
The program attempts to use a pointer that is nil or illegal or does not point to valid memory to generate an integer value. (#5: Invalid pointer use to generate integer).
The program attempts to use a valid pointer to generate an invalid or nil pointer through pointer manipulations. (#6: Valid pointer use to generate invalid pointer).
The program attempts to create an invalid pointer. (#7: Create invalid pointer).�

By allocated I mean memory that has been declared in one of the following ways:
By a static variable declaration occurring anywhere in the program. The allocated memory stretches from the start address of this variable declaration to the start address + size - 1, where size is the size of the variable declaration.
By a stack variable declaration that is either in scope in the current function, or is in scope in the calling function where the calling function calls the current function, or is in scope in the caller’s calling function, etc. The allocated memory stretches from the start address of this variable declaration to the start address + size - 1.
By a call of the form ‘pointer = malloc (size)’ where size > 0, and the pointer returned is not nil, and the functions ‘realloc’ and ‘free’ have not been called since with this pointer. The allocated memory goes from pointer to pointer + size - 1.� Such memory is called heap memory.
By a call of the form ‘new_pointer = realloc (old_pointer, size)’ where size > 0, and old_pointer is nil or points to the base address of some heap memory, and new_pointer returned is not nil, and the functions ‘realloc’ and ‘free’ have not been called since with new_pointer. The allocated memory goes from pointer to pointer + size - 1. Such memory is called heap memory.
By a call of the form ‘pointer = alloca (size)’ where size > 0, and the pointer returned is not nil, and the function in which this call was made has not returned. The allocated memory goes from pointer to pointer + size - 1.
A block of memory that is allocated in one of the five ways above is refereed to as an allocated memory object (or just as an object).

By valid I mean a pointer that points either to allocated memory, or to the byte immediately following an allocated memory object. Other pointers are invalid.

By checked object I mean an object that is known to the checking library. By checked code I mean code in which all the pointer arithmetic has been converted to calls to the checking library. Other objects and code are refereed to as unchecked.

I will also refer to the following operators and groups of operators:

Term�Operator(s)��points-at�pointer -> member��array indexing�array [index] or pointer [index]��incrementing�pointer ++, ++ pointer, pointer --, -- pointer��truthvalue�pointer in boolean context or ! pointer��dereference�*pointer��pointer-plus-integer�pointer + integer, pointer - integer, pointer += integer, pointer -= integer��pointer-difference�pointer - pointer��pointer-equality�pointer == pointer or pointer != pointer��pointer-inequality�pointer < pointer, pointer <= pointer, pointer >= pointer, pointer > pointer��pointer-assignment�pointer = expression��address-of�& lvalue��
Notice that these operations are all possible ways in C of creating and manipulating pointers.

Assumptions
All checked allocated memory objects are physically separated by at least one byte of padding.
All unchecked code is correct.
All checked code that must work with unchecked objects is correct.

Verification
We need to verify the following facts (by studying the code in libcheck.a) in order to complete this argument:

Concerning�Need to verify��points-at�Allows operation to go ahead iff pointer is not nil, not illegal, not invalid and points to a sufficiently large piece of allocated memory.��array indexing�Allows operation iff pointer is not nil, not illegal, not invalid and points to a sufficiently large piece of allocated memory.��incrementing�Allows operation iff pointer is not nil, not illegal, not invalid and points to allocated memory. If the pointer could become invalid, should set the pointer to illegal.��truthvalue�Allows truthvalue to be taken iff pointer is not illegal and not invalid.��dereference�Allows operation iff pointer is not nil, not illegal, not invalid and points to a sufficiently large piece of allocated memory.��pointer-plus-integer�Allows operation iff pointer is not nil, not illegal, not invalid and points to a sufficiently large piece of allocated memory. If the pointer could become invalid, should return illegal pointer.��pointer-difference�Allows operation iff pointer arguments are not nil, not illegal, not invalid and both point to the same object.��pointer-equality�Allows operation iff pointer arguments are not illegal and not invalid.��pointer-inequality�Allows operation iff pointer arguments are not nil, not illegal, not invalid and both point to the same object.��
Argument
Since all code is either checked or unchecked and all objects are either checked or unchecked, there are four cases to consider.

1. Checked code manipulating checked objects. Since each checked pointer operation has been verified as being correct above, we can verify that the following aspects of correctness of the checked code as a whole are true:

#1 Pointer reference. Program may only read or write memory using one of the following pointer operations: points-at, array indexing and dereference. Since these only go ahead if the pointer involved points to allocated memory, these operations are performed correctly.

#2 Pointer to function reference. (See Future Enhancements).

#3 Pointer to boolean conversions. We can convert a pointer to a boolean using the following operations: truthvalue, pointer-equality, pointer-inequality. These operations will not operate on illegal or invalid pointers.

#4 Pointer to pointer conversions. We can generate one pointer from another using the following operations: incrementing, pointer-plus-integer. These operations will not operate on illegal or invalid pointers.

#5 Pointer to integer conversions. We can generate an integer from a pointer using pointer-difference operation. This operation will not operate on illegal or invalid pointers.

#6 Convert valid pointer to invalid pointer. As for #4, except that the same operations are verified not to generate invalid pointers from valid pointer operands.

#7 Create invalid pointer. We can generate pointers using pointer-assignment or the address-of operator. The pointer-assignment operation may only copy the exact contents of an existing pointer. Since the existing pointer is a pointer to a checked object (by assumption), this does not constitute creating a pointer. The C address-of operator syntactically only allows valid pointers to be generated.�

2. Checked code manipulating unchecked objects. All checked code manipulating unchecked objects is correct by assumption.

3. Unchecked code manipulating checked objects. All unchecked code is correct by assumption.

4. Unchecked code manipulating unchecked objects. All unchecked code is correct by assumption.

�
Performance

Inevitably, performing bounds checking in hardware or software has a performance penalty. In hardware, checking that a process doesn’t write beyond its allocated memory has to be done once for each memory access, lengthening the processor cycle. Checking individual arbitrarily-sized objects in hardware makes processor design harder. The processors become more complex, less orthogonal and slower.

While many programs that we tested performed acceptably with bounds checking switched on, certain types of programs showed very grave worst case performance. In particular, programs that use linked lists and some types of for loops over arrays have very poor performance.

In this chapter, I will present the results of our investigations into optimization. I will look at the particular problems suffered by the method we use. I will investigate the behaviour of the splay tree structure. I will discuss different ways to optimize bounds checked code, for certain common cases, such as for loops, procedure calls and traversing linked lists. I will not try to give a bottom-line, or average slow-down. This depends crucially on the type of data structure that the application normally manipulates.

The performance of the splay tree
We analyzed the performance of the splay tree extensively, and concluded that while it is a useful structure, the cost of failed look-ups is high because the splay tree does not stay well-balanced.

We analyzed a session running Tk 3.6 / Tcl 7.3, both bounds checked. The program ran the widget demo (/usr/local/lib/tk/demos/widget in the standard Tk distribution) for about five minutes, during which time someone used several of the demo widgets. We modified the standard splay tree code in ‘objects.c’ so that it dumped the splay tree and other statistics into a file every 50,000 look-ups�. The average depth of look-ups and splays (that is, the average number of iterations of the main loops in ‘tree_lookup,’ ‘tree_lookup_base’ and ‘tree_splay’ functions) was computed. The results appear in the following graph:

� EMBED MSGraph ���

(Average look-up depth over lifetime of program is 2.11).

The result is encouraging. Each iteration of the look-up loop requires that you compare the current address with one object. So on average, we have to compare the incoming pointer with just over 3 objects - a total of (1 + 2.11)(3 = 9.33 comparison operations. Better performance would be obtained by unrolling the inner loop of ‘tree_lookup’ and ‘tree_lookup_base’ three times.

In order to better understand the weight of computation needed to perform look-ups, adds and deletes individually, we also obtained separate results for the average depth of splay when performing one of these three operations. Notice that look-up and add each require a single splay to bring the node found/added up to the top. Delete requires two splay operations.

Over time in the same session, the results were:

� EMBED MSGraph ���

Average splay depth (after adds)�1.87��Average splay depth (after look-ups)�0.697��Average splay depth (after deletes)�0.291��
Notice that although the average look-up depth is 2.11, meaning that on average ‘tree_lookup’ and ‘tree_lookup_base’ take 2.11 steps to reach the goal of their search, the average depth of the splay operation performed after the look-up is only 0.697. This is partly to do with the fact that two of the three rotations that splay can perform to bring a node to the top of the tree (zig-zig and zig-zag) actually pull the node up two levels at once. The third rotations, zig, pulls the node from level 1 to the root. There is still some discrepancy, since 0.697(2 = 1.394 < 2.11. We attribute this to the enormous penalty of look-ups that fail We found that over the lifetime of the same program, look-ups which failed would search, on average, to a depth of 22.0 levels in the tree. In the next section, I will look at the cause: although the splay tree optimizes successful look-ups well, the splay tree remains remarkably unbalanced, so look-ups that fail do so very badly.

Much of the add/delete activity is taken up with objects with a short lifetime - stack objects in particular, and in this application, Tcl’s long strings that are stored briefly on the heap. Objects that are added start life at the root of the tree, and if they are deleted soon afterwards will still be near the top. This would explain why deletes require fewer steps in the splay than adds.

The relative frequency of each type of operation is given in the graph below:

� EMBED MSGraph ���

Over the lifetime of the program�Per look-up operation��Average number of lookups�(100%)��Average number of lookups (successful)�98.1%��Average number of lookups (failed)�1.9%��Average number of splays�1.10%��Average number of adds�4.3%��Average number of deletes�3.9%��
The rate of look-ups is, of course, constant since our measure of time is based on counting look-up operations on the tree. Some of the look-ups fail, and these are marked in black at the top end of the fixed line of look-ups. Notice that adds and deletes, which are expensive operations, are relatively rare. Failing look-ups, as I have already pointed out, are also very expensive, requiring about 22 iterations of the look-up loop, and these are also quite rare.

We profiled the program to evaluate the proportion of running time spent actually performing each type of operation. The results were as follows:

% Time�Function�Purpose��11.27�tree_splay�Splay operation��6.47�tree_lookup, tree_lookup_base�Look-up operation��1.99�tree_add�Add operation��1.14�tree_del�Delete operation��46.52��Overhead of profiling��
Although the splay operation is more common than the look-up operation, we found earlier that fewer iterations of the inner splay loop are performed. Nevertheless, iterations of the splay loop are considerably more complex than iterations of the look-up loop, and so splay takes a greater proportion of the total running time.

Effectiveness keeping the splay tree balanced
Of course, the splay tree structure is not just useful for minimizing the average case, as we have shown. It also claims to maintain the tree balanced, so that worst case performance does not suffer. To study the shape of the splay tree we invented a measure that claims to describe how balanced the tree is. We also drew pictures of the splay trees - see Appendix 1.

We invented a measure of the balance of the tree, hoping to discount the odd deep branch by considering only the top percent of nodes. Depthn% is the maximum depth of the shallowest n% of the nodes in the tree. We measure this by searching the tree breadthfirst until we have found n% of the total nodes. Depthn% is the depth that we have reached.

We measured Depth5%, Depth10% and Depth50%. Over the lifetime of the same Tk session shown above, there were about 12,000 objects in the splay tree. The maximum depth varied as follows:

� EMBED MSGraph ���

Average depth for 5% of objects over life of program�13.6��Average depth for 10% of objects�16.5��Average depth for 50% of objects�29.3��Average number of objects in the tree�11,974��
Notice that 5% of the objects (about 600 objects) lie in, on average, the first 14 levels of the splay tree. The first 14 levels have enough capacity for 16,383 objects, so this tree is very poorly balanced. By making simple assumptions, we can compare the splay tree to the best possible balanced tree:

Depth�Capacity of best possible tree
(2depth - 1)�Number of objects actually present�% filled slots��13.6�12,416�599�4.8 %��16.5�92,681�1,197�1.3 %��29.3�660,965,623�5,987�~ 0 %��
As expected, the poor balance has a large impact on the worst-case performance. Searching for an object in the tree that doesn’t exist is one example where we see this very poor performance (22.0 iterations of the look-up loop on average). We might expect that programs that access a large working set of objects uniformly would also show this same sudden deterioration in performance, but this is in fact not the case (see the next section).

There are only three occasions where we search for an object that does not exist and suffer the degradation in performance:
Once before we get a bounds error and the program exits, and
when adding some kinds of objects, we search the tree to make sure that they do not exist already as a standard consistency check, and
when searching the tree for an object that turns out to be unchecked.

The second case may be having a disproportionate impact on the performance of the run-time library, and will be removed (or made optional) when the library has been widely used and tested. The third case should be rare if programmers check most of their code and add unchecked objects by hand to the tree (see User Manual, pg. � PAGEREF _Ref327768539 �63�, and see also Future Enhancements, pg. � PAGEREF _Ref327768585 �55�).

The splay tree and the size of the working set
We found empirically that, given programs with a large proportion of look-up activity compared to add/delete activity, the splay tree showed near linear increase in access time as the size of the working set and the size of the splay tree were each doubled.

To test this, we constructed a program to allocate a large number of objects and use a certain smaller working set from those objects (in fact, copying a single byte from one object to another). The results are shown below:

� EMBED MSGraph ���

Each group of columns represents a working set of 2, 4, 8, etc. objects. Each individual column, from left to right in the group, represents 200, 400, ..., 51200 objects in the whole splay tree. The height of each column is the time taken to copy a single word from one object to another at random in the working set (this represents 4 look-ups in the splay tree). Notice that columns towards the right-hand end of the graph are omitted: this is simply because the size of the working set cannot exceed the total number of objects in the tree.

Apart from small errors in measurement, doubling the number of objects in the tree whilst keeping the working set fixed appears to make only a small difference to the access time, and the increase is nearly linear. Surprisingly, doubling the working set size has a similarly small effect on the access time to the tree. I suggest that this is because we do 4 look-ups in each iteration, so the additional effect of having a larger working set is diluted slightly by the way the data was collected. Nevertheless, the splay tree still appears to be able to cope with large working sets well. (In practice it appears that the working set rarely exceeds 4 objects over tens of calls to ‘tree_lookup’).

Behaviour of the splay tree when traversing linked lists
Linked lists, and for similar reasons trees, are difficult structures to compile well. In bounds checking mode in particular, an n-element linked list may mean that n or more objects are used with equal frequency and need to be kept near the top of the splay tree.� The order in which these elements appear in memory may affect the efficiency with which the splay tree is able to keep these objects near the root. Since only three operations are available to bring nodes to the top of the splay tree, it is possible that the tree certain arrangements of objects in memory and accesses would be very pessimistic - a look-up of one object pushing another down a long way, and then looking up the second pushing the first back down.

We tested the time/iteration when traversing linked lists of various lengths. We compared lists arranged from low to high memory addresses (‘forwards’) and from high to low memory addresses (‘backwards’). We also compared linked list performance in checked and unchecked modes.

The results appear in the graph below:

� EMBED MSGraph ���

Notice that bounds checked code (right hand scale) ran some 100 times more slowly than the equivalent unchecked code (left hand scale), although we would expect that this factor would be considerably mitigated when straight-line code appeared in the loop dealing only with the current element in the list. Unlike for loops (of which more later), the control overheads of traversing a linked list will prove almost impossible to optimize automatically.

Access time to the splay tree rose almost linearly again as the size of the working set (ie. the size of the list) doubled. This is to be expected from previous work.

As expected, the order of the list in memory had some effect on the efficiency of the splay tree, though we were not able to try more orderings to try and find a very pessimistic ordering that the splay tree could not handle well.

There is a cache effect evident in the unchecked times. The size of the linked list object in the test program was 8 bytes, and the machine used had a 16K first-level cache (not split between I+D) and 256K second-level cache. So 1024 objects fit comfortably in the first-level cache, but 2048 and 4096 and more objects do not.

The large overhead of procedure calls
The large degradation in performance suffered by at least one program led us to reconsider the way that objects are indiscriminately placed in the tree. For example the following procedure:

	1	int
	2	square (int x)
	3	{
	4	 return x * x;
	5	}

is converted into the following:

	1	int
	2	square (int x)
	3	{
	4	 __bounds_push_function (“square”, 0, 1, ...);
	5	 __bounds_add_param_object (&x, 4, 4, ...);
	6	 {
	7	 t = x * x;
	8	 }
	9	 __bounds_pop_function (“square”);
	10	 return t;
	11	}

Clearly the overhead of all this unused code is huge: one function call becomes four, and we have to add and delete an object from the splay tree, which is very costly. In addition, we can no longer inline this function completely, so the optimizer will not be able to do much with an expression like “square (x) + square (x)”. In fact, when we first measured the performance penalty of a similar function� we found that such functions run some 50 times more slowly!

In this section, I will present the results of our investigations into the problem and how we eventually solved it.

We used the following four standard platforms to conduct tests:

T1:	GCC 2.5.8, no optimization
T2:	GCC 2.5.8 -O2
T3:	GCC 2.6.3, bounds checking, no optimization
T4:	GCC 2.6.3, bounds checking, -O2

Machine used: 486DX4/100, Linux 1.2.0

We timed procedure calls with 0, 1, 2 and 3 local variables (local variables have the same overhead as parameters shown in the above example).

Procedure call time in (s�T1�T2�T3�T4��no local vars.�0.23�0.20�6.8�6.6��1 local var.�0.24�0.20�42�40��2 local vars.�0.24�0.20�61�64��3 local vars.�0.24�0.20�67�68��
There are several interesting features of this data. Firstly, overall performance is terrible compared to non-checked code: we shall see how to rectify this shortly. Secondly, the optimizer appears to make T4 slower than T3 - some margin of error in the times may explain this. Thirdly, extra variables add less overhead - we attribute this to spatial locality of the variables making the second and subsequent splay operations on the tree more simple. We can estimate:

overhead of function call: about 200-250ns,
overhead of push/pop from function: about 6(s, and
overhead of add/delete of a local parameter or stack variable: about 35(s for the first variable, about 20(s for the second, about 6(s for the third and declining for further variables,

on the standard machine used.

There is an obvious way to optimize many of these functions: if we don’t take the address of the variable at some point in the function, then there is no need to add it to the object tree. Since a pointer cannot be generated to such an object unless the address of it is taken, no pointer can every be translated into that object by the tree. Furthermore, if a function has no parameters that are added to the object tree, there is no need to generate the ‘push/pop’ function code at the beginning and end of the function.

The ‘square’ function given above (and many other simple functions) would be unchanged by bounds checking if these rules could be applied.

The design of GCC made it difficult to do this optimization in the time available for this project. GCC does flag variable declarations that are addressed when it meets an expression later in the function that takes the address of that variable. The problem comes about because of the way GCC parses functions and generates intermediate code (RTL). GCC parses each expression and expands it as RTL as it comes along, and then overwrites that part of the abstract syntax tree with the next expression. We expand variable declarations into bounds checked function calls an expression at a time in a similar manner, and so we are not able to wait and see if the address of a variable will be taken later in the function. For instance:

	1	int
	2	f (int y)
	3	{
	4	 int x;
	5
	6	 x = 2 * y;
	7	 g (&x);
	8	 return x;
	9	}

Parsing the outer block at line 3 we must decide whether or not to generate push/pop code and whether to generate a call to ‘__bounds_add_param_object’ for y. At line 4, we must make a similar decision for x. It is only at line 7 that we learn that x is in fact addressed, and not until line 8 that we know that y is definitely not addressed. So the call for y turns out to be unnecessary.

The eventual solution we came up with involves fixing up the RTL after the function has been completely parsed, and deleting unnecessary calls to ‘__bounds_add_param_object’ and friends afterwards. Certain difficulties still arise, in particular:

By generating the call to, say, ‘__bounds_add_param_object’ we had to take the address of the variable, so the VAR_DECLs are always marked addressable, even if they were only addressed by ourselves artificially, and not in the actual code.
Since the structure of the function disappears in the RTL, there may be multiple exit points from a binding contour or from the function itself, so many calls to ‘__bounds_delete_stack_object’ may exist for each call to ‘__bounds_add_stack_object’.
VAR_DECLs are not present explicitly in the RTL.
One function call translates to many RTX, instructions to push each argument in turn, call the function, then clean up the stack.

We added code to ‘expand_call’ in ‘calls.c’ which is only activated when bounds checking with the C front end. The code detects calls to ‘__bounds_add_param_object’ and friends and marks the first and last RTL insns generated, along with the corresponding VAR_DECL which is known at this point. After the function has been generated we go over the marked insns in two passes. In the first pass, we consider calls to ‘__bounds_add_param_object’, ‘__bounds_add_stack_object’ and ‘__bounds_delete_stack_object’. If the appropriate VAR_DECL is not marked addressable, we delete these calls.

Unnecessary calls to ‘__bounds_push_function’ and ‘__bounds_pop_function’ are deleted in a second pass if after the first pass there were no calls to ‘__bounds_add_param_object’ left undeleted.

The function ‘main’ is not optimized in this way, since we must always know the position of argv[] strings which are found through the parameters.

The RTL passed to the optimizer is nearly identical to that generated for unchecked code when the function is sufficiently simple not to use pointers. There is a slight difference in that although we do not mark variables as addressable, we have to put variables onto the stack (using ‘put_var_into_stack’) so that we can take their address for ‘__bounds_add_param_object’ and ‘__bounds_add_stack_object’ even if those calls are later deleted. We would like to spot that the calls had been deleted and un-put the variables onto the stack, but this is not easily possible in GCC. The difference in performance is slight anyhow.

With this optimization, we obtained the following times for simple procedure calls (compare these with the previous table):

Procedure call time in (s�T3�T4��no local vars.�0.3��0.3��1 local var.�0.5�0.3��2 local vars.�0.5�0.3��3 local vars.�0.6�0.4��
We tested the effectiveness of such an optimization on real programs by profiling the raytracer Povray and examining all the functions that contributed to more than 2% of the running time by hand to determine how many unnecessary calls to the bounds checking library would be made. We classed each local variable and parameter in the function as either ‘Addressable’ (meaning the address of that variable was taken in the function) or ‘Non-addressable’. We grouped structures as a single variable for simplicity. The results were surprising:

% time�Function (file)�Addressable�Non-addressable��7.38�Intersect_Plane (planes.c)�0�5��6.09�Inside_Plane (planes.c)�0�3��4.87�All_Plane_Intersections (planes.c)�1�4��4.19�Intersect_Quadric (quadrics.c)�0�12��3.87�All_CSG_Intersect_Intersections (csg.c)�0�9��3.04�Inside_Object (objects.c)�0�3��2.98�Intersect_Sphere (spheres.c)�0�10��2.89�Ray_In_Bounds (objects.c)�0�4��2.83�Intersect_Cone (cones.c)�2�12��2.49�MInvTransPoint (matrices.c)�0�5��2.12�Diffuse (lighting.c)�3�11��2.11�MInvTransDirection (matrices.c)�0�5��2.00�All_Ellipsoid_Intersections (spheres.c)�2�8��
Of the 13 functions considered, all but four have no procedure call overhead when this optimization is done. In the other four cases, procedure call overhead would be cut by a factor of 4.

This optimization is now done as standard (even at level ‘-O0’) because it is so useful and does not change the correctness of bounds checking. The functions ‘bounds_delete_redundant_calls’, ‘bounds_is_deletable_fn_p’ and ‘bounds_note_call_for_deletion’ perform the optimization in ‘c-bounds.c’.

Optimization of for loops
Another area of concern with the current project, and an area where there is considerable room for improvement, is in a general class of problems exemplified by for loops over arrays. The following loop for instance:

	1	int i, p[1000];
	2
	3	for (i = 0; i < 1000; ++i)
	4	 p[i] = 0;

Clearly bounds checking as implemented at the moment must check each individual p[i] operation, but with efficient optimization, one would hope to be able to do only a single check before the loop started. If the programmer had put ‘memset’ instead of the loop above, then the version of ‘memset’ in the checking library would have done just this. However, the class of loops is too wide to deal with just by using standard functions or by forcing the programmer to rewrite code.

We demonstrated the large overhead involved with such loops by testing several standard loops on our standard four test platforms. To recap:

T1:	GCC 2.5.8, no optimization
T2:	GCC 2.5.8, -O2
T3:	GCC 2.6.3, bounds checking, no optimization
T4:	GCC 2.6.3, bounds checking, -O2

Machine used: 486DX4/100, Linux 1.2.0.

We used the following standard loops:

Loop 0:
	1	int a[1000], *p;
	2	int i, j;
	3
	4	for (i = 0; i < N_LOOPS; ++i) {
	5	 p = a;
	6	 for (j = 0; j < 1000; ++j)
	7	 *p++ = 0;
	8	}

Loop 1:
	1	int i;
	2
	3	for (i = 0; i < N_LOOPS; ++i) {
	4	 int a[1000], *p;
	5	 int j;
	6
	7	 p = a;
	8	 for (j = 0; j < 1000; ++j)
	9	 *p++ = 0;
	10	}

Loop 2: As for loop 0, but inner loop runs 30 times instead of 1000.
Loop 3: As for loop 1, but inner loop runs 30 times instead of 1000.
Loop 4: As for loop 2, but using ‘memset’� instead of the inner loop.
Loop 5: As for loop 3, but using ‘memset’ instead of the inner loop.
Loop 6: As for loop 0, but inner loop is deleted.
Loop 7: As for loop 1, but inner loop is deleted.

Notice
Loops 4 and 5 represent best-possible control loops - ie. they would result from perfect optimization of loops 2 and 3.
Loops 6 and 7 measure the control overhead of the outer loop.
Odd numbered loops have variables ‘a’, ‘p’ and ‘j’ inside the outer loop. In effect these variables are added and deleted from the object tree every iteration.

We obtained the following times:

Time / iteration in (s�T1�T2�T3�T4��Loop 0 (1000 element write)�250�110�10,900�11,000��Loop 1 (1000 element write, variables inside loop)�250�110�11,600�11,600��Loop 2 (30 element write)�7.0�2.7�320�320��Loop 3 (30 element write, variables inside loop)�7.0�2.7�390�380��Loop 4 (30 element memset)�3.4�3.6�10�10��Loop 5 (30 element memset, variables inside loop)�3.3�3.4�90�87.5��Loop 6 (loop overhead)�0.2�0.0�0.0�0.0��Loop 7 (loop overhead, variables inside loop)�0.1�0.1�75�80��
There are several apparently strange data in this table:
On T2 (standard GCC, -O2), an explicit loop appears to be faster than a call to ‘memset’(Loops 2 & 3 vs. Loops 4 & 5). This appears to be caused by GCC not inlining ‘memset’, but instead generating a procedure call: ‘memset’ then is either doing byte operations (!) or has some overhead deciding to do word operations.

We can deduce (for the bounds checked case T3):

Times in (s�Variables outside loop�Variables inside loop��Loop overhead�0�75��Cost of ‘memset’�10�15��Approx. cost of iterations of the inner loop�11�11.5��
There are two problems revealed by this analysis. Firstly, any for loop with more than one iteration should have bounds checking code moved outside the loop if at all possible. Secondly, a way to reduce the cost of adding and deleting variables inside the loop should be found.

To see how the compiler might perform code motion to take unwanted checks out of a loop, we consider the case when part of the bounds checks have been inlined after parsing.

Original loop�:
	1	for (i = 0; i < 1000; ++i)
	2	 p[i] = 0;

Loop after bounds checks have been partially inlined�:
	1	for (i = 0; i < 1000; ++i)
	2	{
	3	 object *obj = __bounds_find_object (p);
	4	 if (i >= 0 && i < obj->size)
	6	 p[i] = 0;
	7	 else
	8	 __bounds_error (...);
	9	}

Clearly the call to ‘__bounds_find_object’ may be subject to common subexpression elimination provided that no calls to ‘__bounds_add_stack_object’, etc. occur. (Although the splay tree is a dynamic data structure (it changes even on calls to look-up), we can safely eliminate duplicate calls to ‘tree_lookup’ as long as nothing has been added or deleted in the meantime.)

The loop becomes:
	1	object *obj = __bounds_find_object (p);
	2	for (i = 0; i < 1000; ++i)
	3	{
	4	 if (i >= 0 && i < obj->size)
	5	 p[i] = 0;
	6	 else
	7	 __bounds_error (...);
	8	}

Data flow analysis will delete the condition ‘i >= 0’ at line 4. Since ‘obj->size’ is loop invariant, we can expect that data flow analysis will be able to remove the condition ‘i < obj->size’ and transform the loop into:
	1	object *obj = __bounds_find_object (p);
	2	if (999 < obj->size)
	3	 for (i = 0; i < 1000; ++i)
	4	 p[i] = 0;
	5	else
	6	 __bounds_error (...);

Although bounds checking code is actually somewhat more complex than this example shows, we expect that similar transformations could be applied successfully by the optimizing back-end of GCC. There are problems with this approach that we were not able to solve in the time available, but I will suggest solutions for future implementations.

In GCC you are not able to specify that a function is ‘constant, but only if other functions are not called in the meantime.’ Certain functions may be declared:

	int square (int x) __attribute__ ((const));

in GCC, but the meaning of this extension is that the function depends solely on its arguments; ie. the function has no side effects and depends on no global variables (the function is ‘pure-functional’ as in functional languages). GCC can reduce several calls to a function like ‘square’ down to a single call, and can replace many calls to such a function in a loop into a single call outside the loop (provided the arguments to the function are the same, of course). Ideally, then, we would like to be able to declare ‘__bounds_find_object’ as being pure-functional in this way, but this is not possible, since the value of the function may change if ‘__bounds_add_stack_object’, etc. are called. There appears to be no way to tell GCC that a function is pure functional unless a particular set of other functions is called; nor the second best option which would be to allow GCC to remove these calls provided that no other function was called in the meantime. It seems that considerable changes to the back-end of GCC would be needed to support these new semantics.

In the next chapter, I suggest that, short of rewriting the whole project in a different way, altering the back-end of GCC to support these new semantics is probably the only effective way to optimize such code automatically.

�
Conclusions and Future Enhancements

This project has succeeded in one area and failed in another. We have succeeded in adding full, fine-grained pointer checking into C in a way that preserves compatibility with other code and requires no changes by the programmer. On the other hand, pointer checking is very expensive - far too expensive for it to be included in production binaries. It is not clear how to optimize this code, given that we are restricted to just altering GCC.

In this chapter, I’d like to look at where the project fits in with current C programming methodology, what could be done to improve this project, but also reevaluate the assumptions we made at the beginning with the benefit of hindsight, to ask how we might have done the project better.

Bounds checking and C
Debugging C programs with bounds checking
Although bounds checked programs may run more slowly, the extra time spent running the program may be well worth a large reduction in time finding elusive bugs. There is evidence to suggest that bounds checking may significantly reduce development time for C programs. Experience shows that coming afresh to a significant sized C program it is impossible for a programmer to understand the complexity of pointer arithmetic. There are certain sorts of subtle error that happen that are very difficult to see. For instance, what is wrong with the following function?

	1	int
	2	strlen (char *s)
	3	{
	4	 int i = 0;
	5
	6	 for (;s;++s,++i);
	7	 return i;
	8	}

There are two problems. Firstly, at line 6, the first ‘s’ should read ‘*s’. Bounds checking will pick this up at run time (because whatever string is passed, ‘s’ will run over the end of the string and give an error when the truthvalue of ILLEGAL is tested). Secondly, ‘strlen’ happens to be called from a hundred different places in a particular program, and these hundred places could pass almost anything that pretends to be a string pointer - ie. null pointers, pointers to doubles, stale pointers and so on. Bounds checking the program and thoroughly running it will find precisely these problems.

We cannot add bounds checking to productions programs routinely yet, so we need to be sure that the program is not shipped until it has been extensively tested with bounds checking on. Using ordinary software engineering techniques (for instance profiling the program during testing to make sure we cover as many execution paths through the code as possible) should ensure that we can do this.

Suitability of C to bounds checking
It is clear that C is certainly not suited to bounds checking, but equally by enforcing certain commonsense rules of style, C could be made amenable to checking quite easily. The following rules could be enforced in new C code without much effort and would make C amenable to bounds checking by a prepass scheme with pointers replaced by 12-byte pointers containing upper and lower bounds:

Do not use bitwise memory copies (such as ‘memcpy’). Use explicit loops and explicit assignments instead. The compiler ought to be able to optimize explicit loops back to bitwise copies anyway. C++ has this restriction.
Only access a data structure with the structure’s correct type. Do not, for instance, use casts to read an array of double as chars.
Use a C++-like ‘new’ operator to specify the type of heap memory as it is allocated. Do not use the typeless ‘malloc’.
Treat pointers as pointers. Do not cast them to integers or store them in untyped memory or offline (eg. on disk).

Notice that correctly written C++ has many of these restrictions. Programs written with these restrictions will allow pointer tracking, bounds checking, memory leak detection and garbage collection.

Improvements to the current project
Optimization
More thought needs to be given to optimizing bounds checked code. While linked lists will probably turn out to be impossible to optimize automatically, there is some hope that for loops can be effectively optimized. In the previous chapter I outlined a way of doing this. Briefly, we need to partially inline the checking code and change the back-end slightly so that calls to ‘__bounds_find_object’ can be moved out of loops and be subject to common subexpression elimination.

Improving unchecked pointers
We need to improve our handling of unchecked pointers in several ways. Firstly, we could be cleverer about what operations can be performed on unchecked pointers. Suppose for example that checked and unchecked objects are mixed as follows (grey areas are checked, white areas are unchecked):

1�2��3�4�5��6���			((
			p				q

At present once the library notices that a pointer is unchecked (like p and q in the example) it allows you to do almost anything to them - for instance, you could decide to compute the pointer difference ‘q - p’, an operation which is certainly wrong because there are intervening objects, 3, 4 and 5, and so the pointers can’t point to the same object. Similarly, we can happily increment p past object 3 or q past object 6.

The behaviour of checked stack objects could be improved too. As well as the last problem, we also know that unchecked stack objects must exist entirely inside the stack frame of a procedure, and using the frame pointer we can find the bounds of each stack frame of each calling procedure.

It is reasonably easy to correct the first problem. At the moment we detect unchecked objects too late - in ‘check.c’ not in ‘objects.c’. This not only complicates the checking code, but loses vital information about the surrounding checked objects so we can detect problems like the one above. I suggest that the function ‘__bounds_find_object’ (in objects.c) is fixed so that it can detect unchecked statics and stack objects and returns a pseudo-object. This pseudo-object describes an array of char from the previous checked object up to the next checked object (or up to the end of the static data). For instance, in the example above, ‘__bounds_find_object (p)’ would return a pointer to the following pseudo-object (outlined in bold):

1�2��3�4�5��6���			((
			p				q

The checking code (‘check.c’) doesn’t know that a pseudo-object isn’t in fact a checked object. The checking code would then be far more intelligent even with these unchecked pointers.

Notice that we need to allocate exactly one pseudo-object for each unchecked area, and we need to return a pointer to the exact same pseudo-object for each call to ‘__bounds_find_object’. We can do this by modifying the splay tree so that it covers all of memory. The pseudo-objects fit into the gaps between real checked objects, and get split up or reduced in size or deleted as real objects are added, and created as real objects are deleted. We also reduce the large look-up failed penalty this way (see pgs. � PAGEREF _Ref327431182 �39�ff.)

Checking C++
Support for checking C++ could be added in the same way that we support checked C code. There are some more operators that need to be checked, such as ->*, .*; the new and delete operators can be checked by installing handlers in the normal way. C++ has a richer type system, and we might want to somehow support a distinction between private, protected and public data. Nevertheless the principles are the same as for this project, and we could use most of the existing checking library, so G++ could probably be modified in a few months. If this was unacceptable, a partial solution would be to turn C++ into C using a prepass compiler like cfront and compile the C code with bounds checking.

Recursive type system
At present we use the simple concept of alignments to check, for instance, that we don’t try to access a double array on any byte boundary. This works well for arrays of non-aggregate types, but for arrays of structures is quite inadequate. We need to extend the type system to support full recursive types, and extend the checking functions to check against these types properly.

Minor improvements
The following minor improvements need to be made to the project:
Write a texinfo manual.
Fulfill GNU coding standards (the code almost does this anyway).
Implement GCC’s MIN_EXPR and MAX_EXPR for pointers (ie. the GCC extended operators <? and >?).
Thoroughly test the strings functions in ‘string.c’. Suitable code to do this is in the GNU library, in the file ‘glibc-x.x.x/string/tester.c’.
Remove certain consistency checks so that the library never searches for an object that is known not to be in the tree (see pg. � PAGEREF _Ref327549494 �43�).

Different approaches to the bounds checking problem
We took the decision early in the project to make bounds checking directly compatible with existing libraries. I now believe that there are considerable performance benefits to be gained by dropping this requirement and instead either recompiling existing libraries or supporting gateways between checked and unchecked code. A gateway is a limited call/return mechanism that translates data formats between the checked and unchecked halves of the program. We first generate a list of all functions and static variables in the unchecked object files and libraries from the nametables in those files. The checking compiler (probably using a prepass strategy) translates function calls to the unchecked half into calls to compiler-generated stubs. (For instance a call to ‘printf’ would be translated into a call to ‘__translate_printf’). For accesses to variables, arrays and so on in the unchecked part of the code, the compiler would have to generate similar calls to translating functions.� At the end of the code, the compiler would write these translation functions automatically. The mechanism would be necessarily limited: you could not allow the following, for instance:

Passing function pointers between checked and unchecked code. Why? Parameter formats would be different, and result in disaster if there was a direct call from the unchecked part to the checked part.
Some complex data structures could not be translated, especially if part of the structure was hidden, or structures were linked to other structures through pointers.

Notice that we are some way from being able to just point the compiler at a program and let it take care of any mix of checked and unchecked code. Unlike this project, this prepass compiler would need considerable intervention from the programmer, though if the whole program, libraries and all, were to be recompiled it could be made fairly automatic.

The benefit of dropping the need for strict compatibility between checked and unchecked code is in performance. I showed previously that we could expect a prepass scheme to be able to be optimized well by GCC’s back-end optimizer, using standard techniques. A pointer tracking scheme need not continually convert pointers into objects using a search tree: such information travels along with the pointer. The end result is much better performance.

A future project might consider a prepass scheme, extracting the lexical analyser and parser from GCC, and outputting C to be fed back into GCC. The programmer would have to take into account the problems of handling a mix of checked and unchecked pointers from the start, perhaps by inventing a special ‘_pointer_t�’ encoding for unchecked pointers. They would then need to write an automatic gateway generator for simple cases (passing only non-aggregates and pointers to non-aggregates are simple cases), and perhaps write the harder gateways to common C library functions by hand. The idea would be to get common programs running with the existing C library before starting on the major task of recompiling the C library itself.
�
Bibliography

D.M. Andrews, J.P. Benson, “An automated program testing methodology and its implementation”, Proceedings of 5th International Conference on Software Engineering (1981)
A. Asthana, M. Cravatts, P. Krzyzanowski, “SWIM active memory: architecture and applications”, IFIP Transactions A: Computer Science and Technology, Technology and Foundations 94 NA-1951, 183-188 (1994)
J. Bell, G. Gupta, “An evaluation of self-adjusting binary search tree techniques”, Software - Practice and Experience, 22(4), 305-316 (1992)
D. Clark, “Splay trees”, Dr. Dobb’s Journal, Dec. 1992, 56ff. (Dec. 1992)
D. Detlefs, A. Dosser, B. Zorn, “Memory allocation costs in large C and C++ programs”, Software - Practice and Experience, 24(6), 527ff. (June 1994)
D.W. Flater, Y. Yesha, E.K. Park, “Extensions to the C programming language for enhanced fault detection”, Software - Practice and Experience, 23(6), 617-628 (June 1993)
S. Kaufer, R. Lopez, S. Pratap, “Saber-C: an interpreter-based programming environment for the C language”, USENIX San Francisco 1988 Summer Conference Proceedings, USENIX Association, El. Cerrito, C.A. (1988)
S.C. Kendall, “Bcc: run-time checking for C programs”, USENIX Toronto 1983 Summer Conference Proceedings, USENIX Assoc., El Cerrito, C.A. (1983)
A. Narayanan, “Design of a safe string library for C”, Software - Practice and Experience, 24(6), 565ff. (June 1994)
D.D. Sleator, R.E. Tarjan, “Self-adjusting binary search trees”, JACM, 32, 652-686 (1985)
J.L. Steffen, “Adding run-time checking to the Portable C Compiler”, Software - Practice and Experience, 22(4), 305-316 (1992)
C.M. Thompson, “Error checking, tracing and dumping in an ALGOL 68 checkout compiler”, ACM SIGPLAN Notices, 12, 106-111 (1987)
J. Voas, L. Morrel, K. Miller, “Predicting where faults can hide from testing”, IEEE Software, 8(2), 41-48 (1991)
J. Welsh, “Economics range checks in Pascal”, Software - Practice and Experience, 8, 85-97 (1978).
M.V. Zelhowitz, P.R. McMullin, K.R. Merkel, H.J. Larsen, “Error checking with pointer variables”, Proceedings of the 1976 ACM National Conference, ACM, N.Y. (1976)
American National Standard for Information Systems, “Programming Language C”, ANSI X3.159-1989, ANSI Inc., N.Y. (1990)
Pure Software Inc., “Purify User’s Guide” (1992-3)

�
User Manual

Installation
GCC-CK comes as a set of patches to the current version of GCC. You may find that your copy of GCC has already been patched and compiled for bounds checking, in which case, you can skip this section about installation.

You will need to obtain a clean copy of the latest version of GCC and the latest GCC-CK patches. Make sure that the GCC and patch versions agree. You can download the latest GCC source from:

	ftp://src.doc.ic.ac.uk/pub/gnu/gcc-2.x.x.tar.Z

Uncompress the GCC source and create the source tree using the following command:

	zcat gcc-2.x.x.tar.Z | tar xvf -

Now apply the GCC-CK patches to the source tree, as follows:

	zcat gcc-ck-2.x.x.tar.Z | tar xvf -
	cd gcc-2.x.x
	patch <gcc-ck.cdiff

You will now need to read the file ‘INSTALL’ which comes with GCC to find out how to compile GCC for your machine.

Compiling a program with bounds checking
GCC works as normal when the bounds checking patches have been applied, unless you supply the flag ‘����fbounds�checking’ on the command line. For example, to compile C source files into object files with bounds checking, you might do:

	gcc -fbounds-checking -O -c file1.c -o file1.o

When you link a program consisting either of all checked object files, or a mixture of checked and unchecked object files, you must also give the ‘�fbounds�checking’ flag:

	gcc -fbounds-checking -O file1.o file2.o file3.o -o program

If you have a Makefile, then all you may need to do to add bounds checking to your program is to add ‘�fbounds�checking’ to the line which starts ‘CFLAGS=’.

The bounds checking extensions to GCC record information separately from the normal debugging information. Thus, you will not get any more or any less bounds checking information by specifying ‘�g’ on the GCC command line.

If your program uses signal handlers, the va_arg macro (from <stdarg.h> or <varargs.h>) or threads, you may need to read the relevant sections on the next pages.

Fixing <stdarg.h> and <varargs.h> header files
The ‘va_arg’ macro supplied in the GNU library performs pointer operations that are incompatible with bounds checking. You may get a bounds error when using this macro. To fix this, include the following file after including either <stdarg.h> or <varargs.h> (it fixes both):

	bounds/run-includes/fix-args.h

Using bounds checking with signal handlers and threads
The bounds checking library provides mutual exclusion between threads and between the main program and signal handlers. However this feature is switched off by default, because it has a relatively high impact on performance. If you use multiple threads in your program, you will certainly need to use mutual exclusion. Examine the file ‘bounds/lib/mutex.h’ which describes how to add this for your particular thread package.

If your program uses signal handlers, then you may need to switch on mutual exclusion by examining ‘bounds/lib/mutex.h’ but there are several steps you can take to avoid having this extra overhead. Either:

Move all the signal handlers into a separate source file, and compile this source file with bounds checking off, or,
If all your signal handlers contain no local variables or parameters that you take the address of (with the ‘&’ operator), and perform no pointer arithmetic at all, then you do not need mutual exclusion�. For instance, the following signal handler would not need any mutual exclusion:

	1	int quit = 0, unexpected = 0;
	2
	3	void
	4	signal_handler (int sig)
	5	{
	6	 if (sig == SIGINT)
	7	 quit = 1;
	8	 else
	9	 unexpected ++;
	10	}

When you cannot use bounds checking
Bounds checking GCC should compile all programs that GCC itself will compile. There is only one known situation where bounds checking may not be used - the case when calls to setjmp or longjmp appear in checked code. The push/pop mechanism that bounds checking GCC uses at run time to keep track of the current function context is not compatible with functions that may arbitrarily unwind their calling stack in this way (although it could be made so with only a little effort!)

Customizing bounds checking
By setting the environment variable ‘GCC_BOUNDS_OPTS’ before running a bounds checked program, you can change how strictly the program checks itself when it runs.

To get a list of the arguments you can add to this variable, type:

	sh, ksh, bash% GCC_BOUNDS_OPTS=’-?’ program
	csh% setenv GCC_BOUNDS_OPTS ’-?’; program

where ‘program’ is the name of a program you have compiled with bounds checking.

You may give a list of zero or more of the following arguments. (Separate arguments by spaces):

Argument�Default�Purpose��-reuse-heap�(�Allow freed heap memory to be reused in later calls to malloc.��-no-reuse-heap��Never reuse virtual memory addresses.��-reuse-age=<age>�age = 0�Wait for <age> calls to free before memory may be reused.��-warn-unchecked-stack��Warn if an unchecked stack variable is used.��-no-warn-unchecked-stack�(�No warning.��-warn-unchecked-statics��Warn if an unchecked static variable is used.��-no-warn-unchecked-statics�(�No warning.��-warn-free-null��Warn if the program calls ‘free (NULL)’.��-no-warn-free-null�(�No warning.��-warn-all��Turn on all the above warnings.��-print-calls��Print all calls to the checking library.��-no-print-calls�(�Don’t print calls.��-banner�(�Print copying conditions when program starts.��-no-banner��Suppress introductory message.��
For instance, to suppress the start-up banner and increase the time before memory is reused:

	sh, ksh, bash% GCC_BOUNDS_OPTS=’-no-banner -reuse-age=50’ program
	csh% setenv GCC_BOUNDS_OPTS ’-no-banner -reuse-age=50’; program

Mixing checked and unchecked code at the level of the object file or library
GCC will allow you to freely mix checked and unchecked object files and libraries. Pointers and boundaries will only be checked when the following two conditions are fulfilled:
the currently executing code was compiled with ‘-fbounds-checking’, and
the object that is being referred to was declared in a file compiled with ‘-fbounds-checking’.

For example, if we have the following two input files:

	-------- file1.c (checked) ---
	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	int array[10];
	5	extern void f (int *);
	6
	7	main ()
	8	{
	9	 int i;
	10
	11	 for (i = 0; i < 10; ++i)
	12	 array[i] = i;
	13	 f (array);
	14	}

	-------- file2.c (unchecked) ---------------------------------------
	15	#include <stdio.h>
	16	#include <stdlib.h>
	17
	18	void f (int *p)
	19	{
	20	 int i;
	21
	22	 for (i = 0; i < 10; ++i)
	23	 p[i] ++;
	24	}

and we compile and link these input files as follows:

	gcc -fbounds-checking -c file1.c -o file1.o
	gcc -c file2.c -o file2.o
	gcc -fbounds-checking file1.o file2.o -o program

then:

the assignment to ‘array[i]’ at line 12 will be checked (satisfies both conditions above), and
the increment of ‘p[i]’ at line 23 will not be checked (doesn't satisfy the first condition above).

In general, you will wish to compile your whole application with bounds checking, but then assume that the libraries you are linking against are correct. If you want to check your C libraries, you will need to find the source code and compile it with ‘-fbounds-checking’ too.

Calls to malloc and free are checked too
Bounds checked GCC has a complete dynamic memory library built in, derived from the GNU malloc library. This supports the usual calls: malloc, free, calloc, cfree, realloc, valloc and memalign. Calls are checked more thoroughly than usual. In particular, you cannot free a pointer twice, or free a pointer not allocated by malloc. You may get a warning if you try to call free (NULL), although such warnings can be disabled by putting ‘-no-warn-free-null’ in GCC_BOUNDS_OPTS. You will get bounds errors if you try to read or write beyond the end or before the beginning of an allotment of memory, or if you read or write memory after it has been freed.

The library runs in two modes. In the default mode, memory that is given up with free may be reused later in a malloc or realloc. In this mode, stale pointers - ie. pointers to memory that has been freed - may not be caught if that memory happens to be reused later. The pointers will appear to point to the newly allocated memory. In reuse mode, stale pointers may be caught by specifying the ‘�reuse�age=<age>’ option in GCC_BOUNDS_OPTS. For instance, specifying ‘�reuse�age=20’ means that memory released by free will not actually be reused until free has been called 20 more times. Many stale pointers can be caught this way.

In the second mode, free never frees up memory, so any stale pointer can be caught, no matter how long the stale pointer hangs around before being used. To get the mode, use ‘-no-reuse-heap’ in GCC_BOUNDS_OPTS.

Adding unchecked objects by hand
If your program has bits which are unchecked, but global variables in these unchecked parts are used by checked code, then the checked code will not be able to check pointer operations on these unchecked globals. You may need to add these unchecked objects by hand to get the most effective checking possible. To do this, you will need to place calls to the checking library explicitly somewhere in the initialization part of the program. You will need to insert calls to the following function:

	__bounds_note_constructed_object (address, size, alignment, filename, line, name);
	void *address;		/* address of the variable */
	size_t size;		/* total size in bytes */
	size_t alignment;		/* alignment, eg. 1 for char and 8 for doubles */
	char *filename;		/* where it occurs (or NULL if it doesn’t matter) */
	int line;			/* where it occurs (or 0) */
	char *name;		/* name of the object (or NULL) */

For instance, the following declaration in an unchecked file:

	double vector [20];

would be matched by the following initialization:

	extern double *vector;
	__bounds_note_constructed_object (vector, 20 * sizeof (double), sizeof (double),
					NULL, 0, “vector”);

Arrays of strings, and related structures, contain many objects that need to be initialized separately. For instance:

	char *names[] = {“bill”, “ann”, “fred”, NULL};

would be initialized by:

	extern char **names;
	int i;
	for (i = 0; names[i] != NULL; ++i)
		__bounds_note_constructed_object (names[i], strlen (names[i])+1, 1,
						 NULL, 0, “names”);
	__bounds_note_constructed_object (names, (i+1) * sizeof (char *), sizeof (char *),
					NULL, 0, “names”);

GCC will normally do this automatically for checked objects, so an alternative is to extract the global variables into a separate source file that you compile with checking on.

Tuning bounds checking programs to run quickly
In general, bounds checked programs run much more slowly than ordinary programs, because the overhead of checking pointers is very great. In general, programs ought to be profiled, and parts of the program that take most of the time should be tested individually and then moved out into unchecked sections. When this is not possible or desirable, certain steps can be taken to speed up bounds checking code by rewriting some common C constructions.

Move local variable declarations out of inner loops to the top of the function. Where a local variable appears inside, say, a for loop, the variable may have to be created and deleted every time round the loop - since the variable itself goes into and out of scope each time round. Moving the local variable declarations outwards avoids much of this work.
Use standard functions, like ‘memcpy’ instead of explicit loops. The standard versions of the ‘mem*’ and ‘str*’ functions only perform checking once before they run. If you expand these functions implicitly, then the loops may have to check each pointer operation on every iteration.

Using GDB to debug bounds checked programs
Bounds checked GCC programs can be easily and efficiently debugged with GDB. I suggest placing a breakpoint at the symbol ‘__bounds_breakpoint’ which will cause GDB to stop when a bounds error happens. Then use ‘where’ to print a stack trace, which will locate the error, where it happened, and what operation was being done. For instance:

GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.12 (i486-unknown-linux), Copyright 1994 Free Software Foundation, Inc...
(gdb) break __bounds_breakpoint
Breakpoint 1 at 0x128a4f: file error.c, line 74.
(gdb) run
Starting program: /home/rich/c/bc-tests/tk3.6/./wish
Program compiled with bounds checking features by Richard W.M. Jones.
 Bounds warning: free called with a NULL pointer.
 Bounds warning: free called with a NULL pointer.
In file tkConfig.c, line 138,
 Bounds error: attempt to reference memory overrunning the end of an object.
 Pointer value: 0x12f340
 Object commands:
 Address in memory: 0x12f238 .. 0x12f33f
 Size: 264 bytes
 Element size: 1 bytes
 Number of elements: 264
 Created at: tkWindow.c, line 122
 Storage class: static

Breakpoint 3, __bounds_breakpoint () at error.c:74
74 }
(gdb) where
#0 __bounds_breakpoint () at error.c:74
#1 0x128ae6 in __bounds_error (
 message=0x1286b3 "attempt to reference memory overrunning the end of an object", filename=0xee305 "tkConfig.c", line=138, pointer=0x12f340, obj=0x50b8e8)
 at error.c:90
#2 0x12887e in __bounds_check_reference (pointer=0x12f340, size=4,
 filename=0xee305 "tkConfig.c", line=138) at check.c:360
#3 0xee66d in Tk_ConfigureWidget (interp=0x50c168, tkwin=0x514958,
 specs=0x12fdfc, argc=4, argv=0x12f340, widgRec=0x531698 "XIQ", flags=0)
 at tkConfig.c:138
#4 0x2e8be in ConfigureFrame (interp=0x50c168, framePtr=0x531698, argc=4,
 argv=0x12f340, flags=0) at tkFrame.c:391
#5 0x2e29c in TkInitFrame (interp=0x50c168, tkwin=0x514958, toplevel=1,
 argc=4, argv=0x12f340) at tkFrame.c:264
#6 0x3d8c in Tk_CreateMainWindow (interp=0x50c168, screenName=0x0,
 baseName=0xbffffaba "wish", className=0x263 "Tk") at tkWindow.c:712
#7 0x535 in main (argc=1, argv=0xbffffa38) at tkMain.c:187
(gdb)

To print a list of all the objects known to the bounds checking library, use the GDB command ‘print __bounds_debug_memory(0,0)’.

To single step a function, displaying calls to the library as you go, first use the GDB command ‘print __bounds_debug_print_calls=1’ then single step through the code of interest using GDB's ‘next’ command.

Common problems when running GCC with bounds checking
Symptom:
	GCC declares a pointer to be illegal during pointer arithmetic that appears to be correct.
Example code:
	1	#include <stdio.h>
	2	#include <stdlib.h>
	3
	4	int i[10], *p, *q;
	5
	6	main ()
	7	{
	8	 p = i;
	9	 q = p+15-10;		/* fails here */
	10	}
Reason:
The ANSI C standard declares that a pointer may become undefined if it incremented more that 1 element beyond the end of an object, or before the beginning of an object. In the example above, 'p+15' (line 9) points far beyond the end of the object 'i', and so is undefined. When you subsequently try to subtract 10 from this undefined pointer, GCC will fail and report a bounds checking error at run time. Such expressions cannot be accomodated because of the way the bounds checking works, and are not part of the ANSI C standard anyway.
Solution:
Rewrite the code to avoid such expressions. They are illegal in ANSI C anyway.

Symptom:
GCC complains that ‘goto’ crosses an initialized variable, but the variable in question doesn’t appear to be initialized.
Example code:
	1	/* ... */
	2	goto inside_loop;
	3	/* ... */
	4	for (i = 0; i < 10; ++i)
	5	{
	6	 int j;
	7	 inside_loop:
	8	 j = a[i];
	9	 a[i] = b[i];
	10	 b[i] = j;
	11	}
Reason:
All variables in GCC may become initialized when bounds checking is switched on. GCC does not allow ‘goto’ to cross initialized variables.
Solution:
Rewrite the code in one of two ways: either avoid using ‘goto’ in this way, or move all these local variables to the top of the function.
�See Voas et al. (1991) for a definition of “sensitivity”.
�Here, and elsewhere, I assume that we are using a 32 bit machine.
�Inline assembler in the library must still be altered by hand.
�This is not quite as restrictive as it may sound. In a well structured program, libraries ought not to alter the value of global variables in the application.
�C++ programmers will be well aware of this restriction: C++ objects should not normally be copied with ‘memcpy’ for much the same reasons. However, this restriction is not compatible with the vast body of extant C code, and it also prevents common library calls (eg. ‘realloc’) from working.
�In fact, the error is signaled some time later, but I will discuss this in more detail in the main chapter of this report.
�This example is taken from the Checker manual.
�See Kendall, 1983.
�See Kaufer, Lopez, Pratap, 1988.
�See Andrews, Benson, 1981.
�See Steffen, 1992.
�See Flater, Yesha and Park, 1993.
�The fourth argument is 0 when the operator is ‘-’.
�Recall that ‘p->e’ is syntactic sugar for ‘(*p).e’.
�The related functions ‘__bounds_check_ptr_preinc/predec/postinc/postdec’ actually alter the pointer in-place and return either the old or new value of that pointer. This is why we pass the address of the pointer, rather than the pointer itself.
� ‘*p’ is replaced by the expression ‘*(type *)__bounds_check_reference (p, ...)’. The ‘&’ cancels out the ‘*’ at the beginning of this expression, but not the whole expression.
�Since &p->e is syntactic sugar for &((*p).e).
�See previous footnote.
�Mostly this restriction has no effect. However, there is one case which is fairly common and which is now disallowed:

	1	switch (c) {
	2	 int t;	/* local variable here, becomes initialized */
	3	case 0:	/* jump into scope after initialized variable */
	4	 ...
	5	}

Such cases may be rewritten as follows:

	1	switch (c) {
	2	case 0: {	/* OK: jump doesn't violate any rules */
	3	 int t;	/* temporary variable used only in this case */
	4	 ...
	5	}
	6	/* other cases here ... */
	7	}

�Such constructions are, of course, banned by the compiler’s type system. Bounds checking prevents them even if the pointers are cast to, say, ‘void *’.
�ANSI X3.159-1989 (see bibliography) forbids a pointer to an array to be decremented below the first element of the array or beyond the byte after the last element.
�We use the bottom-up splaying technique described in this article.
�Splay trees act as a cross between a cache and a most-recently-used list. We discuss the merits of splay trees in the chapter on Performance (pg. � PAGEREF _Ref327431182 �39�).
�Precise prototypes of these functions may be found in the file ‘lib/bounds-lib.h’ in the distribution.
�This function may well be called ‘__bounds_add_static_object’ in future versions of this library.
�This includes constructs like ‘ptr += 2;’ but not ‘ptr++’ which is handled separately.
�The fourth argument is 0 to indicate that the integer offset should be subtracted rather than added to the pointer.
�The performance of the GNU malloc library is extensively documented in Detlefs, 1994 (see bibliography).
�A former incarnation of the malloc library can be found in the subdirectory ‘malloc-old/’. This implements no-reuse mode, but in addition unmaps old VM, so that physical memory can, to some extent, be reused.
�On Linux, we also allow static pointers between 0x60000000 and 0x80000000 which is where dynamic link libraries are mounted. Other operating systems (eg. SunOS) are cleverer than this, and link these libraries at run time so that they appear in low memory, as if they had been statically linked.
�Notice how these 7 conditions were arrived at. The first two are obvious criteria for memory reference that could be checked in hardware. Conditions #3-5 describe the three manipulations on pointers that can be done in C, namely pointer to boolean (eg. ‘pointer < pointer’), pointer to pointer (eg. ‘pointer += integer’) and pointer to integer (eg. ‘pointer - pointer’). Condition #6 ensures you can’t take a pointer and create an invalid pointer from it. Condition #7 ensures you can’t create an invalid pointer in the first place.
�Similarly for ‘calloc’, ‘cfree’, ‘memalign’, ‘valloc’.
�Notice I exclude the case where we create a pointer by a grotesque cast operation.
�The modifications can be tried out by setting ‘SPLAY_TREE_OPERATIONS’ flag in ‘objects.c’ and using the analysis programs in ‘bounds/treestats/’ subdirectory.
�Unlike arrays that are treated as a single object.
�See notebook, 4/4/95: 25.3 (s per procedure call as compared to 0.472 (s in non-checked code.
�The slight difference between this value and pure unchecked code is down to variables being pushed onto the stack, rather than merely being present as local registers.
�In bounds checking mode, ‘memset’ calls are checked in the checking library. Normally GCC inlines calls to ‘memset’.
�Assume that ‘p’ points to a sufficiently large array.
�I have considerably simplified this example: in reality we also have to check that ‘p’ is not NULL or ILLEGAL and also that ‘p’ does not point to an unchecked object. The bounds checking library does considerably more work than this simple example would suggest.
�This is slow, but recall that global variables in libraries are rarely used in well structured programs, and simple globals (eg. ‘extern int errno’) would not need such translation - the compiler would hopefully spot these simple cases.
�See page � PAGEREF _Ref326915083 �8�.
�All functions that you call from the signal handler and all macros that you use must also obey these rules.

�PAGE �

�PAGE �61�

