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Abstract

This paper describes a technique for tracing anonymous attacks in the Internet back to their source. This
work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in
tracing packets with incorrect, or “spoofed”, source addresses. In this paper we describe a general purpose trace-
back mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify
the network path(s) traversed by an attacker without requiring interactive operational support from Internet Service
Providers (ISPs). Moreover, this traceback can be performed “post-mortem” – after an attack has completed. We
present an implementation of this technology that is incrementally deployable, (mostly) backwards compatible and
can be efficiently implemented using conventional technology.

This paper represents work-in-progress and should be reviewed as such. We believe there are further improvements to
our algorithms, alternative approaches for backwards-compatible data encoding, and other disciplines for use. How-
ever, given the attention focused by current events, we believe now is an ideal time to introduce our ideas and start
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This paper describes a technique for tracing anonymous attacks in
the Internet back to their source. This work is motivated by the
increased frequency and sophistication of denial-of-service attacks
and by the difficulty in tracing packets with incorrect, or “spoofed”,
source addresses. In this paper we describe a general purpose trace-
back mechanism based on probabilistic packet marking in the net-
work. Our approach allows a victim to identify the network path(s)
traversed by an attacker without requiring interactive operational
support from Internet Service Providers (ISPs). Moreover, this
traceback can be performed “post-mortem” – after an attack has
completed. We present an implementation of this technology that
is incrementally deployable, (mostly) backwards compatible and
can be efficiently implemented using conventional technology.

1 Introduction

Denial-of-service attacks consume the resources of a remote host
or network, thereby denying or degrading service to legitimate
users. Such attacks are among the hardest security problems to
address because they are simple to implement, difficult to pre-
vent, and very difficult to trace. In the last several years, Inter-
net denial-of-service attacks have increased in frequency, sever-
ity and sophistication. Howard reports that between the years of
1989 and 1995, the number of such attacks reported to the Com-
puter Emergency Response Team (CERT) increased by 50 percent
per year [How98]. More recently, a 1999 CSI/FBI survey reports
that 32 percent of respondents detected denial-of-service attacks di-
rected against them [CF99]. Even more worrying, recent reports in-
dicate that attackers have developed tools to coordinate distributed
attacks from many separate sites [CERT00].

Unfortunately, mechanisms for dealing with denial-of-service
have not advanced at the same pace. Most work in this area has
focused on tolerating attacks by mitigating their effects on the vic-
tim [SP99, BDM99, KS99, Mea99, Cis97]. This approach can pro-
vide an effective stop-gap measure, but does not eliminate the prob-
lem nor does it discourage attackers. The other option, and the fo-
cus of this paper, is to trace attacks back to their origin so they can
be eliminated at the source.

Determining the source of an attack, which we call the trace-
back problem, is surprisingly difficult due to the stateless nature of
Internet routing. Attackers routinely disguise their location using
incorrect, or “spoofed”, IP source addresses. As these packets tra-
verse the Internet their true origin is lost and a victim is left with
little useful information. While there are several ad hoc traceback
techniques in use, they all have significant drawbacks that limit
their practical utility in the current Internet.

In this paper we present a new approach to the traceback prob-
lem that addresses the needs of both victims and network operators.
Our solution is to probabilistically mark packets with partial path
information as they arrive at routers. This approach exploits the ob-
servation that attacks generally comprise large numbers of packets.
While each marked packet represents only a “sample” of the path
it has traversed, a victim can reconstruct the complete path after
receiving a modest number of such packets. This approach allows
victims to identify the approximate source of an attack without re-
quiring the assistance of outside network operators. Moreover, this
determination can be made even after an attack has completed.

A key practical deployment issue with any modification of In-
ternet routers is to ensure that the mechanisms are efficiently im-
plementable, may be incrementally deployed, and are backwards
compatible with the existing infrastructure. We describe a trace-
back algorithm that adds little or no overhead to the router's critical
forwarding path and may be incrementally deployed to allow trace-
back within the subset of routers supporting our scheme. Further,
we demonstrate that we can encode the necessary path information
in a way the peacefully co-exists with existing routers, host systems
and more than 99% of today's traffic.

The rest of this paper is organized as follows: In Section 2,
we describe related work concerning IP spoofing and solutions to
the traceback problem. Section 3 outlines our basic approach and
section 4 characterizes several abstract algorithms for implement-
ing it. In Section 5 we detail a concrete encoding strategy for our
algorithm that can be implemented within the current Internet en-
vironment. We also present experimental results demonstrating the
effectiveness of our solution. In section 6 we discuss limitations of
our proposal and extensions to address some of them. Finally, we
summarize our findings in Section 7.

2 Related work

It has been long understood that the IP protocol permits anonymous
attacks. In his 1985 paper on TCP/IP weaknesses, Morris writes:

“The weakness in this scheme [the Internet Protocol] is
that the source host itself fills in the IP source host id,
and there is no provision in ... TCP/IP to discover the
true origin of a packet.” [Mor85]

In addition to denial-of-service attacks, IP spoofing can be used
in conjunction with other vulnerabilities to implement anonymous
one-way TCP channels and covert port scanning [Mor85, Bel89,
HB96, VCIV99].

There have been several efforts to reduce the anonymity af-
forded by IP spoofing. Table 1 provides a subjective characteri-
zation of each of these approaches in terms of management cost,



Management Network Router Distributed Post-mortem
overhead overhead overhead capability capability

Ingress filtering Moderate Low Moderate N/A N/A
Link testing

Input debugging High Low High Good Poor
Controlled flooding Low High Low Poor Poor

Logging High Low High Excellent Excellent
Marking Low Low Low Excellent Excellent

Table 1: Qualitative comparison of existing schemes for combating anonymous attacks and the probabilistic marking approach we propose.

additional network load, overhead on the router, the ability to trace
multiple simultaneous attacks, and the ability trace attacks after
they have completed. We also characterize our proposed traceback
scheme according to the same criteria. In the remainder of this
section we describe each previous approach in more detail.

2.1 Ingress filtering

Obviously, the best way to address the problem of anonymous at-
tacks is to eliminate the ability to forge source addresses. One
such approach, frequently called ingress filtering, is to configure
routers to block packets that arrive with illegitimate source ad-
dresses [FS98]. This requires a router with sufficient power to ex-
amine the source address of every packet and sufficient knowledge
to distinguish between legitimate and illegitimate addresses. Con-
sequently, ingress filtering is most feasible in customer networks
or at the border of Internet Service Providers (ISP) where address
ownership is relatively unambiguous and traffic load is low. As
traffic is aggregated from multiple ISPs into transit networks, there
is no longer enough information to unambiguously determine if a
packet arriving on a particular interface has a “legal” source ad-
dress. Moreover, on such high speed links the overhead of compar-
ing every packet to a filter list becomes prohibitive.

The principal problem with ingress filtering is that its effec-
tiveness depends on widespread, if not universal, deployment. Un-
fortunately, a significant fraction of ISPs, perhaps the majority, do
not implement this service – either because they are uninformed
or have been discouraged by the administrative burden1, poten-
tial router overhead and complications with services like Mobile
IP [Per96]. A secondary problem is that even if ingress filtering
were universally deployed at the customer-to-ISP level, attackers
could still forge addresses from the hundreds or thousands of hosts
within a valid customer network [CERT00]. Unless these problems
are resolved, there is still a significant need for traceback technolo-
gies.

2.2 Link testing

Most existing traceback techniques start from the router closest to
the victim and interactively test its upstream links until they deter-
mine which one is used to carry the attacker's traffic. Ideally, this
procedure is repeated recursively on the upstream router until the
source is reached. This technique assumes that an attack remains
active until the completion of a trace and is therefore inappropriate
for attacks that are detected after the fact, attacks that occur inter-
mittently, or attacks that modulate their behavior in response to a
traceback. Below we describe two varieties of link testing schemes,
input debugging and controlled flooding.

1Some modern routers ease the administrative burden of ingress filtering by pro-
viding functionality to automatically check source addresses against the destination-
based routing tables (e.g. ip verify unicast reverse-path on Cisco's
IOS). This approach is only valid if the route to and from the customer is symmet-
ric – generally at the border of single-homed stub networks.

2.2.1 Input debugging

Many routers include a feature called input debugging, that al-
lows an operator to filter particular packets on some egress port
and determine which ingress port they arrived on. This capabil-
ity is used to implement a trace as follows: First, the victim must
recognize that it is being attacked and develop an attack signature
that describes a common feature contained in all the attack pack-
ets. The victim communicates this signature to a network operator,
frequently via telephone, who then installs a corresponding input
debugging filter on the victim's upstream egress port. This filter
reveals the associated input port, and hence which upstream router
originated the traffic. The process is then repeated recursively on
the upstream router, until the originating site is reached or the trace
leaves the ISP's border (and hence its administrative control over
the routers). In the later case, the upstream ISP must be contacted
and the procedure repeats itself. While such tracing is frequently
performed manually, several ISPs have developed tools to automat-
ically trace attacks across their own networks [Sto99].

The most obvious problem with the input debugging approach,
even with automated tools, is its considerable management over-
head. Communicating and coordinating with network operators at
multiple ISPs requires the time, attention and commitment of both
the victim and the remote personnel – many of whom have no di-
rect economic incentive to provide aid. If the appropriate network
operators are not available, if they are unwilling to assist, or if they
do not have the appropriate technical skills and capabilities, then a
traceback may be slow or impossible to complete [Gla98].

2.2.2 Controlled flooding

Burch and Cheswick have developed a link testing traceback tech-
nique that does not require any support from network opera-
tors [BC99]. We call this technique controlled flooding because
it tests links by flooding them with large bursts of traffic and ob-
serving how this perturbs traffic from the attacker. Using a pre-
generated “map” of Internet topology, the victim coerces selected
hosts along the upstream route into iteratively flooding each incom-
ing link on the router closest to the victim. Since router buffers are
shared, packets traveling across the loaded link – including any sent
by the attacker – have an increased probability of being dropped.
By observing changes in the rate of packets received from the at-
tacker, the victim can therefore infer which link they arrived from.
As with other link testing schemes, the basic procedure is then ap-
plied recursively on the next upstream router until the source is
reached.

While the scheme is both ingenuous and pragmatic, in has sev-
eral drawbacks and limitations. Most problematic among these is
that controlled flooding is itself a denial-of-service attack – exploit-
ing vulnerabilities in unsuspecting hosts to achieve its ends. This
drawback alone makes it unsuitable for routine use. Also, con-
trolled flooding requires the victim to have a good topological map
of large sections of the Internet in addition to an associated list



R1

V

R2

R3 R4

R5 R6

A1 A2

R7

A3

Figure 1: Network as seen from the victim of an attack, V . Routers
are represented by Ri, and potential attackers by Ai. The dotted
line represents a particular attack path between an attacker and the
victim.

of “willing” flooding hosts. As Burch and Cheswick note, con-
trolled flooding is also poorly suited for tracing distributed denial-
of-service attacks because the link-testing mechanism is inherently
noisy and it can be difficult to discern the set of paths being ex-
ploited when multiple upstream links are contributing to the attack.
Finally, like all link-testing schemes, controlled flooding is only
effective at tracing an on-going attack and cannot be used “post-
mortem”.

2.3 Logging

An approach suggested in [Sag98] and [Sto99] is to log packets at
key routers and then use data mining techniques to determine the
path that the packets traversed. This scheme has the useful property
that it can trace an attack long after the attack has completed. How-
ever, it also has obvious drawbacks, including enormous resource
requirements and a large scale inter-provider database integration
problem. We are unaware of any commercial organizations that
have developed a fully operational traceback approach based on
logging.

3 Overview

Burch and Cheswick mention the possibility of tracing attacks
by “marking” packets, either probabilistically or deterministically,
with the addresses of the routers they traverse [BC99]. The victim
uses the information in the marked packets to trace an attack back
to its source. This approach has not been previously explored in any
depth, but has many potential advantages. It does not require inter-
active cooperation with ISPs and therefore avoids the high manage-
ment overhead of input debugging. Unlike controlled flooding, it
does not require significant additional network traffic and can po-
tentially be used to track multiple attacks. Moreover, like logging,
packet marking can be used to trace attacks “post-mortem” – long
after the attack has stopped. Finally, we have found that marking
algorithms can be implemented without incurring any significant
overhead on network routers. The remainder of this paper focuses
on fully exploring and characterizing this approach.

3.1 Definitions

Figure 1 depicts the network as seen from a victim V . For the
purposes of this paper, V may be a single host under attack, or a
network border device such as a firewall or intrusion detection sys-
tem that represents many such hosts. Every potential attack origin
Ai is a leaf in a tree rooted at V and every router Ri is an internal
node along a path between some Ai and V . The attack path from
Ai is the unique ordered list of routers between Ai and V . For in-
stance, if an attack originates from A2 then to reach V it must first
traverse the path R6, R3, R2, and R1 – as shown by the dotted line
in Figure 1.

The exact traceback problem is to determine the attack path and
the associated attack origin for each attacker. However, solving this
problem is complicated by several practical limitations. The exact
attack origin may never be revealed (even MAC source addresses
may be spoofed) and a wily attacker may send false signals to “in-
vent” additional routers in the traceback path. We address these
issues in section 6, but for now we restrict our discussion to solv-
ing a more limited problem. We define the approximate traceback
problem as finding a candidate attack path for each attacker that
contains the true attack path as a suffix. We call this the valid suf-
fix of the candidate path. For example, (R5, R6, R3, R2, R1) is a
valid approximate solution to Figure 1 because it contains the true
attack path as a suffix. We say a solution to this problem is robust
if an attacker cannot prevent the victim from discovering candidate
paths containing the valid suffix.

All marking algorithms have two components: a marking pro-
cedure executed by routers in the network and a path reconstruc-
tion procedure implemented by the victim. A router “marks” one
or more packets by augmenting them with additional information
about the path they are traveling. The victim attempts to reconstruct
the attack path using only the information in these marked packets.
The convergence time of an algorithm is the number of packets that
the victim must observe to reconstruct the attack path.

3.2 Basic assumptions

The design space of possible marking algorithms is large, and to
place our work in context we identify the assumptions that motivate
and constrain our design:

� an attacker may generate any packet,

� multiple attackers may conspire,

� attackers may be aware they are being traced,

� packets may be lost or reordered,

� attackers send numerous packets,

� the route between attacker and victim is fairly stable,

� routers are both CPU and memory limited, and

� routers are not widely compromised.

The first four assumptions represent conservative assessments of
the abilities of the modern attackers and limitations of the network.
Designing a traceback system for the Internet environment is ex-
tremely challenging because there is very little that can be trusted.
In particular, the attacker's ability to create arbitrary packets sig-
nificantly constrains potential solutions. When a router receives a
packet, it has no way to tell whether that packet has been marked
by an upstream router or if the attacker simply has forged this in-
formation. In fact, the only invariant that we can depend on is that



a packet from the attacker must traverse all of the routers between
it and the victim.

The remaining assumptions reflect the basis for our design and
deserve additional discussion. First, denial-of-service attacks are
only effective so long as they occupy the resources of the victim.
Consequently, most attacks are comprised of thousands or millions
of packets. Our approach relies on this property because we mark
each packet with only a small piece of path state and the victim
must observe many such packets to reconstruct the complete path
back the the attacker. If many attacks emerge that require only a
single packet to disable a host (e.g. ping-of-death [CERT96]), then
this assumption may not hold (although we note that even these
attacks require multiple packets to keep a machine down).

Second, measurement evidence suggests that while Internet
routes do change, it is extremely rare for packets to follow many
different paths over the short time-scales of a traceback operation
(seconds in our system) [Pax97]. This assumption greatly simpli-
fies the role of the victim, since it can therefore limit its consid-
eration to a single primary path for each attacker. If the Internet
evolves to allow significant degrees of multi-path routing then this
assumption may not hold.

Third, while there have been considerable improvements in
router implementation technology, link speeds have also increased
dramatically. Consequently, we assert that any viable implementa-
tion must have low per-packet overhead and must not require per-
flow state. Significantly simpler schemes than ours can be imple-
mented if we assume that routers are not resource constrained.

Finally, since a compromised router can effectively eliminate
any information provided by upstream routers, it is effectively in-
distinguishable from an attacker. In such circumstances, the secu-
rity violation at the router must be addressed first, before any fur-
ther traceback is attempted. In normal circumstances, we believe
this is an acceptable design point. However, if non-malicious, but
information hiding, routing infrastructures become popular, such
as described in [GS99, RSG98], then this issue may need to be re-
visited.

4 Basic marking algorithms

In this section we describe a series of marking algorithms – starting
from the most simple and advancing in complexity. Each algorithm
attempts to solve the approximate traceback problem in a manner
consistent with our assumptions.

4.1 Node append

The simplest marking algorithm – conceptually similar to the IP
Record Route option [Pos81] – is to append each node's address to
the end of the packet as it travels through the network from attacker
to victim (see Figure 2). Consequently, every packet received by
the victim arrives with a complete ordered list of the routers it tra-
versed – a built-in attack path.

The node append algorithm is both robust and extremely quick
to converge (a single packet), however it has several serious limita-
tions. Principal among these is the infeasibly high router overhead
incurred by appending data to packets in flight. Moreover, since the
length of the path is not known a priori, it is impossible to ensure
that there is sufficient unused space in the packet for the complete
list. This can lead to unnecessary fragmentation and bad interac-
tions with services such as MTU discovery [MD90]. This problem
cannot be solved by reserving “enough” space, as the attacker can
completely fill any such space with false, or misleading, path infor-
mation.

Marking procedure at router R:
for each packet w, append R to w

Path reconstruction procedure at victim v:
for any packet w from attacker

extract path (Ri..Rj) from the suffix of w

Figure 2: Node append algorithm.

Marking procedure at router R:
for each packet w

let x be a random number from [0..1)
if x < p then,

write R into w.node

Path reconstruction procedure at victim v:
let NodeTbl be a table of tuples (node,count)
for each packet w from attacker

z := lookup w.node in NodeTbl
if z != NIL then

increment z.count
else

insert tuple (w.node,1) in NodeTbl
sort NodeTbl by count
extract path (Ri..Rj) from ordered node fields in NodeTbl

Figure 3: Node sampling algorithm.

4.2 Node sampling

To reduce both the router overhead and the per-packet space re-
quirement, we can sample the path one node at a time instead of
recording the entire path. A single static “node” field is reserved
in the packet header – large enough to hold a single router address
(i.e. 32 bits for IPv4). Upon receiving a packet, each router chooses
to write its address in the node field with some probability p. Af-
ter enough packets have been sent, the victim will have received at
least one sample for every router in the attack path. As stated in
section 3, we assume that the attacker sends enough packets and
the route is stable enough that this sampling can converge.

Although it might seem impossible to reconstruct an ordered
path given only an unordered collection of node samples, it turns
out that with a sufficient number of trials, the order can be deduced
from the relative number of samples per node. Since routers are
arranged serially, the probability that a packet will be marked by
a router and then left unmolested by all downstream routers is a
strictly decreasing function of the distance to the victim. If we
constrain p to be identical at each router, then the probability of re-
ceiving a marked packet from a router d hops away is p(1�p)d�1.
Since this function is monotonic in the distance from the victim,
ranking each router by the number of samples it contributes will
tend to produce the accurate attack path. The full algorithm is
shown in Figure 3.

Putting aside for the moment the difficulty in changing the IP
header to add a 32-bit node field, this algorithm is efficient to imple-
ment because it only requires the addition of a write and checksum
update to the forwarding path. Current high-speed routers already
must perform these operations efficiently to update the time-to-live
field on each hop. Moreover, if p > 0:5 then this algorithm is ro-
bust against a single attacker because there is no way for an attacker



to insert a “false” router into the path's valid suffix by contributing
more samples than a downstream router, nor to reorder valid routers
in the path by contributing more samples than the difference be-
tween any two downstream routers.

However, there are also two serious limitations. First, inferring
the total router order from the distribution of samples is a slow pro-
cess. Routers far away from the victim contribute relatively few
samples (especially since p must be large) and random variability
can easily lead to misordering unless a very large number of sam-
ples are observed. For instance, if d = 15 and p = 0:51, the re-
ceiver must receive more than 42,000 packets on average before it
receives a single sample from the furthest router. To guarantee that
the order is correct with 95% certainty requires more than seven
times that number.

Second, if there are multiple attackers then multiple routers
may exist at the same distance – and hence be sampled with the
sample probability. Therefore, this technique is not robust against
multiple attackers.

4.3 Edge sampling

A straightforward solution to these problems is to explicitly encode
edges in the attack path rather than simply individual nodes. To do
this, we would need to reserve two static address-sized fields, start
and end, in each packet to represent the routers at each end of a
link, as well as an additional small field to represent the distance of
an edge sample from the victim.

When a router decides to mark a packet, it writes its own ad-
dress into the start field and writes a zero into the distance field.
Otherwise, if the distance field is already zero this indicates that
the packet was marked by the previous router. In this case, the
router writes its own address into the end field – thereby repre-
senting the edge between itself and the previous router. Finally, if
the router doesn't mark the packet then it always increments the
distance field. This somewhat baroque signaling mechanism al-
lows edge sampling to be incrementally deployed – edges are con-
structed only between participating routers.

The mandatory increment is necessary to avoid spoofing by an
attacker. When the packet arrives at the victim its distance field
represents the number of hops traversed since the edge it contains
was sampled.2 Any packets written by the attacker will necessarily
have a distance greater or equal to the length of the true attack path.
Consequently, since we no longer use the sampling rank approach
to distinguish “false” samples, we are free to use arbitrary values
for the marking probability p.

The victim uses the edges sampled in these packets to create a
graph (much as in Figure 1) leading back to the source, or sources,
of attack. The full algorithm is described in Figure 4. Because
the probability of receiving a sample is geometrically smaller the
further away it is from the victim, the time for this algorithm to
converge is dominated by the the time to receive a sample from the
furthest router, 1

p(1�p)d�1
in expectation, for a router d hops away.

However, there is a small probability that we will receive a sample
from the furthest router, but not from some nearer router. We can
bound this effect to a factor of ln(d) by the following argument:
We conservatively assume that samples from all of the d routers
appear with the same likelihood as the furthest router. Since these
probabilities are disjoint, the probability that a given packet will
deliver a sample from some router is at least dp(1 � p)d�1. Fi-
nally, as per the well-known coupon collector problem, the number
of trials required to select one of each of d equi-probable items is

2It is important that distance field is updated using a saturating addition. If the
distance field were allowed to wrap, then the attacker could spoof edges close to the
victim by sending packets with a distance value close to the maximum.

Marking procedure at router R:
for each packet w

let x be a random number from [0..1)
if x < p then

write R into w.start and 0 into w.distance
else

if w.distance = 0 then
write R into w.end

increment w.distance

Path reconstruction procedure at victim v:
let G be a tree with root v
let edges in G be tuples (start,end,distance)
for each packet w from attacker

if w.distance = 0 then
insert edge (w.start,v,0) into G

else
insert edge (w.start,w.end,w.distance) into G

remove any edge (x,y,d) with d 6= distance from x to v in G
extract path (Ri..Rj) by enumerating acyclic paths in G

Figure 4: Edge sampling algorithm.

d(ln(d) + O(1)) [Fel66]. Therefore, the number of packets, X ,
required for the victim to reconstruct a path of length d has the
following bounded expectation:

E(X) <
ln(d)

p(1� p)d�1

For example, if p = 1
10

, and the attack path has a length of 10,
then a victim can typically reconstruct this path after receiving 75
packets from the attacker. While this choice of p = 1

d
is optimal,

the convergence time is not overly sensitive to this parameter for
the path lengths that occur in the Internet. So long as p � 1

d
,

the results are generally within a small constant of optimal. In the
rest of this paper we will use p = 1

25
since few paths exceed this

length [CC97, TR00, CAIDA00]. For comparison, the previous
example converges with only 108 packets using p = 1

25
.

This same algorithm can efficiently discern multiple attacks be-
cause attackers from different sources produce disjoint edges in the
tree structure used during reconstruction. The number of packets
needed to reconstruct each path is independent, so the number of
packets needed to reconstruct all paths is a linear function of the
number of attackers. Finally, edge sampling is also robust (it is im-
possible for any edge closer than the closest attacker to be spoofed,
due to the robust distance determination).

Of course, a significant practical limitation of this approach is
that it requires additional space in the IP packet header and there-
fore is not backwards compatible. In the next section we discuss
a modified version of edge-sampling that addresses this problem,
albeit at some cost in performance and robustness.

5 Encoding issues

The edge sampling algorithm requires 72 bits of space in every IP
packet (two 32-bit IP addresses and 8 bits for distance to repre-
sent the theoretical maximum number of hops allowed using IP).
It would be possible to directly encode these values into an MPLS
label stack [RRT+98], to enable traceback within a single homoge-
neous ISP network. However, our focus is on a heterogeneous en-
vironment based purely on IP datagrams. One universal approach
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Figure 6: Each router calculates a uniform hash of its IP address
once, at startup, using a well-known function. This hash is inter-
leaved with the original IP address (the original address on odd bits,
the hash on even bits). The resulting quantity is then broken into
k fragments, which the router selects among randomly when mark-
ing a packet. Although it is not shown, each of these fragments is
further labeled with its offset. The next downstream router users
this offset to select the appropriate fragment to XOR – thereby en-
coding part of an edge.

is to store the edge sample data in an IP option, but this is a poor
choice for the same reasons that the node append algorithm is infea-
sible – appending additional data to a packet in flight is expensive
and may lead to fragmentation. We could also send this data out-
of-band – in a separate packet – but this would add both router and
network overhead plus the complexity of a new and incompatible
protocol.

Instead, we have developed a modified version of edge sam-
pling that dramatically reduces the space requirement in return for
a modest increase in convergence time. Following an analysis of
our algorithm we explore the practical implementation issues and
discuss one concrete encoding of this scheme based on overloading
the 16-bit IP identification field used for fragmentation. We stress
that our solution reflects only one design point among many poten-
tial implementation tradeoffs for this class of algorithm and does
not necessarily reflect an optimal balance among them.

5.1 Compressed edge fragment sampling

We use three techniques to reduce per-packet storage requirements
while preserving robustness. First, we encode each edge in half
the space by representing it as the exclusive-or (XOR) of the two
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Figure 7: When reconstructing a candidate edge, the victim com-
bines k fragments to produce a bit string. By de-interleaving this
string, the address portion and the hash portion are extracted. We
recalculate the hash over this address portion using the same hash
function used by the router. If the resulting hash is the same as
the hash portion extracted, then the address is accepted as valid.
This procedure protects against accidentally combining fragments
of different edges.

IP addresses making up the edge, as depicted in Figure 5. When
some router decides to mark a packet it writes its address, a, into
the packet. The following router, b, notices that the distance field
is 0 and (assuming it does not mark the packet itself) reads a from
the packet, XORs this value with its own address and writes the
resulting value, a�b, into the packet. We call the resulting value the
edge-id for the edge between a and b. The edge-ids in the packets
received by the victim always contain the XOR of two adjacent
routers, except for samples from routers one hop away from the
victim, which arrive unmodified. Since b � a � b = a, marked
packets from the final router can be used to decode the previous
edge id, and so on, hop-by-hop until we reach the first router.

Our second modification further reduces our per-packet space
requirements by subdividing each edge-id into k smaller non-
overlapping fragments. When a router decides to mark a packet, it
selects one of these fragments at random and stores it in the packet.
We use a few additional bits (log2k) to store the offset of this frag-
ment within the original address – this is necessary to ensure that
both fragments making up an edge-id are taken from the same off-
set. If enough packets are sent by the attacker, the victim will even-
tually receive all fragments from all edge-ids.

Finally, unlike full IP addresses, edge-id fragments are not
unique and multiple fragments from different edge-ids may have
the same value. If there are multiple attackers, a victim may receive
multiple edge fragments with the same offset and distance. To re-
duce the probability that we accidentally reconstruct a “false” edge-
id by combining fragments from different paths, we add a simple
error detection code to our algorithm. We increase the size of each
router address, and hence each edge-id, by bit-interleaving its IP
address with a random hash of itself (depicted in Figure 6). As
described earlier, this value is split into fragments, each fragment
is selected randomly and stored with an offset, and downstream
routers use XOR to combine fragments at the same offset to make
up edge-id fragments. The victim constructs candidate edge-ids by
combining all combinations of fragments at each distance with dis-
joint offset values. As shown in Figure 7, a candidate edge-id is
only accepted if the hash portion matches the data portion for each
of its two nodes. By making the hash sufficiently large the prob-



Marking procedure at router R:
let R0 = BitIntereave(R, Hash(R))
let k be the number of non-overlapping fragments in R0

for each packet w
let x be a random number from [0..1)
if x < p then

let o be a random integer from [0..k � 1]
let f be the fragment of R0 at offset o
write f into w.frag
write 0 into w.distance
write o into w.offset

else
if w.distance = 0 then

let f be the fragment of R0 at offset w.offset
write f � w.frag into w.frag

increment w.distance

Path reconstruction procedure at victim v:
let FragTbl be a table of tuples (frag,offset,distance)
let G be a tree with root v
let edges in G be tuples (start,end,distance)
let maxd := 0
let last := v
for each packet w from attacker

FragTbl.Insert(w.frag,w.offset,w.distance)
if w.distance > maxd then
maxd := w.distance

for d := 0 to maxd
for all ordered combinations of fragments at distance d

construct edge z
if d 6= 0 then
z := z � last

if Hash(EvenBits(z)) = OddBits(z) then
insert edge (z,EvenBits(z),d) into G
last := EvenBits(z);

remove any edge (x,y,d) with d 6= distance from x to v in G
extract path (Ri..Rj) by enumerating acyclic paths in G

Figure 8: Compressed edge fragment sampling algorithm.

ability of a collision can be made extremely small. We provide a
describe the full procedure in Figure 8.

The expected number of packets for this algorithm to converge
is similar to the edge sampling approach, except now we need
k fragments for each edge-id, rather than just one, a total of kd
fragments. If we again assume conservatively that each of these
fragments is delivered equi-probably with probability p(1�p)d�1,
the expected number of packets required for path reconstruction is
bounded by:

E(X) <
k � ln(kd)

p(1� p)d�1

For example, if there are 8 fragments per edge-id, an attacker is 10
hops away, and p = 1

25
, then a victim can reconstruct the full path

after receiving slightly less than 1,300 packets on average. For a
stronger guarantee we can conservatively approximate the number
of packets required to ensure that a path can be reconstructed with
probability 1� 1

c
as:

k � ln(kdc)

p(1� p)d�1

packets. To completely reconstruct the previous path with 95%
certainty should require no more than 2150 packets. Many denial-
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Figure 9: Encoding edge fragments into the IP identification field.

of-service attacks send this many packets in a few seconds.
Finally, we explore the robustness of this algorithm with respect

to multiple attackers. For a random hash of length h, the probability
of accepting an arbitrarily constructed candidate edge-id is 1

2h
. In

the event that there are m attackers, then at any particular distance
d, in the worst case there may be up to m distinct routers.3 Con-
sequently the probability that any edge-id at distance d is accepted
incorrectly is at most:

1 � (1�
1

2h
)m

k

since there are mk possible combinations of fragments in the worst
case. For h = 32 and k = 4 this means that 100 distinct routers at
the same distance (i.e. disjoint attack paths) will be resolved with
no errors with a probability of better than 97%. For h = 32 and
k = 8, (the values we use for our implementation) the same cer-
tainty can only be provided for 10 distinct routers. However, even
in the unlikely event of a corruption at distance d, the probability of
propagating this error further is extremely small because the result-
ing edge-id, when XORed with the previous edge-id, must again
produce a correct hash.

The most significant drawback to this scheme is the large num-
ber of combinations that must be considered as the multiple attack
paths diverge. While these combinations can be computed off-line,
for large values of k and m even this can become intractable. Con-
sequently, there is a design tension in the size of k – per-packet
space overhead is reduced by a larger k, while computational over-
head and robustness benefits from a smaller k.

5.2 IP header encoding

To allow for practical deployment requires that we “overload” ex-
isting header fields in a manner that will have minimal impact on
existing users. This is a difficult task, especially given that even
after prodigious effort we require 16 bits of space. Nonetheless, we
believe it possible to obtain this space by overloading the 16-bit IP
identification field. This field is currently used to differentiate IP
fragments that belong to different packets. We describe our pro-
posed encoding below, and then discuss the issues of backwards-

3In practice, the number of distinct routers is likely to be smaller for the portion of
the path closest to the receiver, since many attackers will still share significant portions
of their attack path with one another.



compatibility that it raises. However, we note that because the is-
sue of backwards-compatible encoding is largely separate from our
traceback algorithms, we could adopt any reasonable encoding that
comes to light.

Figure 9 depicts our choice for partitioning the identification
field: 3 offset bits to represent 8 possible fragments, 5 bits to repre-
sent the distance, and 8 bits for the edge fragment. We use a 32-bit
hash, which doubles the size of each router address to 64 bits. This
implies that 8 separate fragments are needed to represent each edge
– each fragment indicated by a unique offset value. Finally, 5 bits
is sufficient to represent 32 hops, which is more than almost all
Internet paths [CC97, TR00, CAIDA00].4

The observant reader will note that this layout is chosen to allow
the highest performance implementation of our algorithm, which
already had a low per-packet router overhead. In the common case,
the only modification to the packet is to increment its distance field.
Because of its alignment within the packet, this increment precisely
offsets the required decrement of the time-to-live field implemented
by each router [Bak95]. Consequently, the header checksum does
not need to be altered at all and the header manipulation overhead
could be even lower than in conventional routers – simply an addi-
tion to the distance field, a decrement to the ttl field, and a compar-
ison to check if either has overflowed. In the worst case, our algo-
rithm must read the IP identification field, lookup an edge fragment
and XOR it, and fold the write-back into the existing checksum up-
date procedure (a few ALU operations). This overhead is minimal
in a software implementation, and easily parallelizable in dedicated
hardware.

Reuse of the IP identification field must address issues of
backwards-compatibility for IP fragment traffic. Fortunately, re-
cent measurements suggest that that less than 0.25% of packets are
fragmented [SZ99, Cla00]. Moreover, it has long been understood
that network-layer fragmentation is detrimental to end-to-end per-
formance [KM87] so modern network stacks implement automatic
MTU discovery to prevent fragmentation regardless of the under-
lying media [MD90]. Consequently, we believe that our encoding
will inter-operate seamlessly with existing protocol implementa-
tions in the vast majority of cases.

However, there is a small but real fraction of legitimate traffic
that is fragmented, and we wish to ensure that it is not affected by
our modifications to the extent that this is possible. Normally if a
packet is fragmented, its identification field is copied to each frag-
ment so the receiver can faithfully reassemble the fragments into
the original packet. Our marking procedure can violate this prop-
erty in one of two ways: by writing different values into the iden-
tification fields of fragments from the same datagram or by writing
the same values into the identification fields of fragments from dif-
ferent datagrams. These two problems present different challenges
and have different solutions.

First, a datagram may be fragmented upstream from a marking
router. If the fragment is subsequently marked and future frag-
ments from the same datagram are not marked consistently then
reassembly may fail or data may be corrupted. While the sim-
plest solution to this problem is to simply not mark fragments,
an adversary would quickly learn to evade traceback by exploit-
ing this limitation. In fact, some current denial-of-service attacks
already use IP fragments to exploit errors in host IP reassembly
functions [CERT97]. Instead, we propose an alternative marking
mechanism for fragments. We use a separate marking probability,
q, for fragments. When we decide to mark a fragment, we prepend
an ICMP “echo reply” header, along with the full edge data – trun-

4It is also reasonable to turn off marking on any routers that cannot be directly
connected to an attacking host (e.g. core routers). This both reduces the convergence
time, and increases the “reach” of the distance field.
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Figure 10: Experimental results for number of packets needed to
reconstruct paths of varying lengths. The marking probability, p,
is set to 1

25
. Each path length result represents the results of 1,000

independent simulation runs.

cating the tail of the packet. The packet is consequently “lost” from
the standpoint of the receiver, but the edge information is delivered
in a way that does not impact legacy hosts. Because we can use the
full edge sampling algorithm, q can be more than an order of mag-
nitude smaller than p and yet achieve the same convergence time.
This solution increases the loss rate of fragmented flows somewhat
(more substantially for longer paths) but preserves the integrity of
the data in these flows.

A more insidious problem is presented by fragmentation that
occurs downstream from a marking router. If a marked packet is
fragmented, but one of the fragments is lost, then the remaining
fragments may linger in the victim's reassembly buffer for an ex-
tended period [Bra89]. Future packets marked by the same router
can have the same IP identification value and consequently may be
incorrectly reassembled with the previous fragments. One possibil-
ity is to leave this problem to be dealt with by higher layer check-
sums. However, not all higher layer protocols employ checksums,
and in any case it is dangerous to rely on such checksums because
they are typically designed only for low residual error rates. The
safest solution we are currently aware of is to set the Don't Frag-
ment flag on every marked packet. This will degrade communica-
tion between hosts not using MTU path discovery in the rare case
that fragmentation is needed, but it will never lead to data corrup-
tion.

5.3 Experience

We have implemented the marking and reconstruction portions of
our algorithm and have tested it using a simulator that creates ran-
dom paths and originates attacks. In Figure 10 we graph the mean,
median and 95th percentile for the number of packets required to
reconstruct paths of varying lengths over 1,000 random test runs for
each length value. We assume a marking probability of 1

25
. Note

that while the convergence time is theoretically exponential in the
path length, all three lines appear linear due to the finite path length
and appropriate choice of marking probability.

We see that most paths can be resolved with between one and
two thousand packets, and even the longest paths can be resolved
with a very high likelihood within four thousand packets. To put
these numbers in context, most flooding-style denial of service at-
tacks send many hundreds or thousands of packets each second.
The analytic bounds we described earlier are conservative, but in
our experience they are no more than 30% higher than our experi-



mental results.

6 Limitations and future work

There are still a number of limitations and loose ends in our ap-
proach. We discuss the most important of these here:

� finding the valid suffix in a path,

� approaches for determining the attack origin,

� general limitations of traceback.

6.1 Suffix validation

Some number of the packets sent by the attacker are unmarked
by intervening routers. The victim cannot differentiate between
these packets and genuine marked packets. Therefore an attacker
could insert “fake” edges by carefully manipulating the identifica-
tion fields in the packets it sends. While the distance field prevents
an attacker from spoofing edges between it and the victim – what
we call the valid suffix – nothing prevents the attacker from spoof-
ing extra edges past the end of the true attack path.

There are several ways to identify the valid suffix within a path
generated by the reconstruction procedure. With minimal knowl-
edge of Internet topology one can differentiate between routers
that belong to transit networks (e.g. ISPs) and those which be-
long to stub networks (e.g. enterprise networks). Generally speak-
ing, a valid path will never enter a stub network and then con-
tinue into a transit network. Moreover, simple testing tools such as
traceroute should enable a victim to determine if two networks
do, in fact, connect. More advanced network maps [CB00, GT00]
can resolve this issue in an increasing number of cases.

A more general mechanism is to provide each router with a
“secret” that is sent along with each marked packet (perhaps in the
single unallocated bit in the IP flags field). When the victim wants
to validate a router in the path, it contacts the associated network
(possibly out of band, via telephone or e-mail) and obtains the se-
cret used by the router at the time of the attack. To guard against
replay, the secret can be time-varying and hashed with the packet
contents. Since the attacker will not know the router's secret, it will
not be able to include the proper bit in its forged edge-id fragments.
By eliminating edge-ids for which the secret in their constituent
fragments can not be validated, we can prune a candidate attack
path to only include the valid suffix.

6.2 Attack origin detection

Our algorithm determines the approximate origin of an attacker –
in particular, the traceback-capable router closest to the attacker.
However, this does not reveal the actual host originating the attack.
Since hosts can forge both their IP source address and MAC ad-
dress the origin of a packet may never be explicitly visible. On
shared media such as FDDI rings, this problem can only be solved
by explicit testing. However, on point-to-point media, the input
port a packet arrives on is frequently enough to determine its true
origin. On other media, there may be a MAC address, cell number,
channel, or other hint that would help to locate the attack origin. In
principle, our algorithm could be modified to report this informa-
tion by occasionally marking packets with a special edge-id repre-
senting a link between the router and the input port on which the
packet arrived (or other “hint” information). We have not explored
the design of such a feature in any depth.

6.3 Finding attackers

While IP-level traceback is an important part of the solution for
stopping denial-of-service attacks, it is by no means a complete so-
lution. In particular, traceback is only effective at finding the source
of an attack, not necessarily the source of an attacker. Stopping an
attack may be sufficient to eliminate an immediate problem, but
long term disincentives may require a legal remedy and therefore
the means to determine an attacker's identity. However, attack-
ers can hide their true identities by “laundering” attacks through
third parties, either indirectly (e.g. the smurf attack [CERT98])
or directly via compromised “stepping stone” machines. While
there is on-going work on following attackers through intermediate
hosts [ZP99, SCH95], there are still significant challenges in devel-
oping a generally applicable and universally deployable solution
to this problem. Finally, determining an attacker's origin machine
may not provide sufficient forensic evidence, by itself, to determine
their identity. Even with perfect traceback support, unambiguously
identifying a sufficiently skilled and paranoid attacker is likely to
require cooperation from law enforcement and telecommunications
organizations.

7 Conclusion

In this paper we have argued that denial-of-service attacks moti-
vate the development of improved traceback capabilities and we
have explored traceback algorithms based on packet marking in the
network. We have shown that this class of algorithm, best embod-
ied in edge sampling, can enable efficient and robust multi-party
traceback that can be incrementally deployed and efficiently imple-
mented. As well, we have developed variant algorithms that sacri-
fice convergence time and robustness for reduced per-packet space
requirements. Finally, we have suggested one potential deployment
strategy using such an algorithm based on overloading existing IP
header fields. We have demonstrated that this implementation is
capable of fully tracing most attacks after they have sent only a few
thousand packets.
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