
for Information Technology
Common Criteria

Security Evaluation

Part 3: Security assurance requirements

August 1999

Version 2.1

CCIMB-99-033

Part 3: Security assurance requirements

Page ii of vi Version 2.1 August 1999

Foreword

This version of the Common Criteria for Information Technology Security
Evaluation (CC 2.1) is a revision that aligns it with International Standard ISO/IEC
15408:1999. In addition, the document has been formatted to facilitate its use.
Security specifications written using this document, and IT products/systems
shown to be compliant with such specifications, are considered to be ISO/IEC
15408:1999 compliant.

CC 2.0 was issued in May, 1998. Subsequently, a Mutual Recognition Arrangement
was established to use the CC as the basis of mutual recognition of evaluation
results performed by the signatory organisations. ISO/IEC JTC 1 adopted CC 2.0
with minor, mostly editorial modifications in June, 1999.

 CC version 2.1 consists of the following parts:

- Part 1: Introduction and general model

- Part 2: Security functional requirements

- Part 3: Security assurance requirements

This Legal NOTICE has been placed in all Parts of the CC by request:

The seven governmental organisations (collectively called “the Common Criteria
Project Sponsoring Organisations”) listed just below and identified fully in Part 1
Annex A, as the joint holders of the copyright in the Common Criteria for
Information Technology Security Evaluations, version 2.1 Parts 1 through 3
(called “CC 2.1”), hereby grant non-exclusive license to ISO/IEC to use CC 2.1 in
the continued development/maintenance of the ISO/IEC 15408 international
standard. However, the Common Criteria Project Sponsoring Organisations
retain the right to use, copy, distribute, translate or modify CC 2.1 as they see fit.

Canada: Communications Security Establishment
France: Service Central de la Sécurité des Systèmes d’Information
Germany: Bundesamt für Sicherheit in der Informationstechnik
Netherlands: Netherlands National Communications Security Agency
United Kingdom: Communications-Electronics Security Group
United States: National Institute of Standards and Technology
United States: National Security Agency

vPart 3: Security assurance requirements

August 1999 Version 2.1 Page iii of viii

Contents

1 Scope . 1
1.1 Organisation of CC Part 3 . 1
1.2 CC assurance paradigm . 1
1.2.1 CC philosophy . 1
1.2.2 Assurance approach . 2
1.2.3 The CC evaluation assurance scale . 4

2 Security assurance requirements . 5
2.1 Structures . 5
2.1.1 Class structure . 5
2.1.2 Assurance family structure . 6
2.1.3 Assurance component structure . 8
2.1.4 Assurance elements . 10
2.1.5 EAL structure . 10
2.1.6 Relationship between assurances and assurance levels 13
2.2 Component taxonomy . 13
2.3 Protection Profile and Security Target evaluation criteria class structure . 13
2.4 Usage of terms in Part 3 . 14
2.5 Assurance categorisation . 16
2.6 Assurance class and family overview . 16
2.6.1 Class ACM: Configuration management . 17
2.6.2 Class ADO: Delivery and operation . 17
2.6.3 Class ADV: Development . 18
2.6.4 Class AGD: Guidance documents . 19
2.6.5 Class ALC: Life cycle support . 19
2.6.6 Class ATE: Tests . 20
2.6.7 Class AVA: Vulnerability assessment . 21
2.7 Maintenance categorisation . 21
2.8 Maintenance of assurance class and family overview 22
2.8.1 Class AMA: Maintenance of assurance . 22

3 Protection Profile and Security Target evaluation criteria 24
3.1 Overview . 24
3.2 Protection Profile criteria overview . 24
3.2.1 Protection Profile evaluation . 24
3.2.2 Relation to the Security Target evaluation criteria 24
3.2.3 Evaluator tasks . 25
3.3 Security Target criteria overview . 25
3.3.1 Security Target evaluation . 25
3.3.2 Relation to the other evaluation criteria in this Part 3 25
3.3.3 Evaluator tasks . 26

4 Class APE: Protection Profile evaluation . 27
4.1 TOE description (APE_DES) . 28
4.2 Security environment (APE_ENV) . 29

Contents Part 3: Security assurance requirements

Page iv of viii Version 2.1 August 1999

4.3 PP introduction (APE_INT) . 30
4.4 Security objectives (APE_OBJ) . 31
4.5 IT security requirements (APE_REQ) . 33
4.6 Explicitly stated IT security requirements (APE_SRE) 36

5 Class ASE: Security Target evaluation . 38
5.1 TOE description (ASE_DES) . 39
5.2 Security environment (ASE_ENV) . 40
5.3 ST introduction (ASE_INT) . 41
5.4 Security objectives (ASE_OBJ) . 43
5.5 PP claims (ASE_PPC) . 45
5.6 IT security requirements (ASE_REQ) . 47
5.7 Explicitly stated IT security requirements (ASE_SRE) 49
5.8 TOE summary specification (ASE_TSS) . 51

6 Evaluation assurance levels . 53
6.1 Evaluation assurance level (EAL) overview . 53
6.2 Evaluation assurance level details . 54
6.2.1 EAL1 - functionally tested . 55
6.2.2 EAL2 - structurally tested . 56
6.2.3 EAL3 - methodically tested and checked . 58
6.2.4 EAL4 - methodically designed, tested, and reviewed 60
6.2.5 EAL5 - semiformally designed and tested . 62
6.2.6 EAL6 - semiformally verified design and tested 64
6.2.7 EAL7 - formally verified design and tested . 66

7 Assurance classes, families, and components . 68

8 Class ACM: Configuration management . 69
8.1 CM automation (ACM_AUT) . 70
8.2 CM capabilities (ACM_CAP) . 73
8.3 CM scope (ACM_SCP) . 81

9 Class ADO: Delivery and operation . 85
9.1 Delivery (ADO_DEL) . 86
9.2 Installation, generation and start-up (ADO_IGS) . 88

10 Class ADV: Development . 90
10.1 Functional specification (ADV_FSP) . 95
10.2 High-level design (ADV_HLD) . 99
10.3 Implementation representation (ADV_IMP) . 106
10.4 TSF internals (ADV_INT) . 110
10.5 Low-level design (ADV_LLD) . 115
10.6 Representation correspondence (ADV_RCR) . 119
10.7 Security policy modeling (ADV_SPM) . 122

11 Class AGD: Guidance documents . 127
11.1 Administrator guidance (AGD_ADM) . 128
11.2 User guidance (AGD_USR) . 130

Part 3: Security assurance requirements Contents

August 1999 Version 2.1 Page v of viii

12 Class ALC: Life cycle support . 133
12.1 Development security (ALC_DVS) . 134
12.2 Flaw remediation (ALC_FLR) . 136
12.3 Life cycle definition(ALC_LCD) . 140
12.4 Tools and techniques (ALC_TAT) . 144

13 Class ATE: Tests . 147
13.1 Coverage (ATE_COV) . 149
13.2 Depth (ATE_DPT) . 152
13.3 Functional tests (ATE_FUN) . 156
13.4 Independent testing (ATE_IND) . 159

14 Class AVA: Vulnerability assessment . 164
14.1 Covert channel analysis (AVA_CCA) . 165
14.2 Misuse (AVA_MSU) . 170
14.3 Strength of TOE security functions (AVA_SOF) . 175
14.4 Vulnerability analysis (AVA_VLA) . 177

15 Assurance maintenance paradigm . 183
15.1 Introduction . 183
15.2 Assurance maintenance cycle . 184
15.2.1 TOE acceptance . 186
15.2.2 TOE monitoring . 187
15.2.3 Re-evaluation . 187
15.3 Assurance maintenance class and families . 188
15.3.1 Assurance maintenance plan . 188
15.3.2 TOE component categorisation report . 190
15.3.3 Evidence of assurance maintenance . 190
15.3.4 Security impact analysis . 191

16 Class AMA: Maintenance of assurance . 193
16.1 Assurance maintenance plan (AMA_AMP) . 194
16.2 TOE component categorisation report (AMA_CAT) 197
16.3 Evidence of assurance maintenance (AMA_EVD) 199
16.4 Security impact analysis (AMA_SIA) . 201

Annex A Cross reference of assurance component dependencies 204

Annex B Cross reference of EALs and assurance components 207

viPart 3: Security assurance requirements

August 1999 Version 2.1 Page vi of viii

List of Figures

Figure 2.1 - Assurance class/family/component/element hierarchy 6
Figure 2.2 - Assurance component structure . 8
Figure 2.3 - EAL structure . 11
Figure 2.4 - Assurance and assurance level association . 12
Figure 2.5 - Sample class decomposition diagram . 13
Figure 4.1 - Protection Profile evaluation class decomposition . 27
Figure 5.1 - Security Target evaluation class decomposition . 38
Figure 8.1 - Configuration management class decomposition . 69
Figure 9.1 - Delivery and operation class decomposition . 85
Figure 10.1 - Development class decomposition . 90
Figure 10.2 - Relationships between TOE representations and requirements 91
Figure 11.1 - Guidance documents class decomposition . 127
Figure 12.1 - Life-cycle support class decomposition . 133
Figure 13.1 - Tests class decomposition . 148
Figure 14.1 - Vulnerability assessment class decomposition . 164
Figure 15.1 - Example assurance maintenance cycle . 185
Figure 15.2 - Example TOE acceptance approach . 186
Figure 15.3 - Example TOE monitoring approach . 187
Figure 16.1 - Maintenance of assurance class decomposition . 193

Part 3: Security assurance requirements

August 1999 Version 2.1 Page vii of viii

List of Tables

Table 2.1 - Assurance family breakdown and mapping . 16
Table 2.2 - Maintenance of assurance class decomposition . 22
Table 3.1 - Protection Profile families - only CC requirements . 25
Table 3.2 - Protection Profile families - CC extended requirements 25
Table 3.3 - Security Target families - only CC requirements . 26
Table 3.4 - Security Target families - CC extended requirements 26
Table 6.1 - Evaluation assurance level summary . 54
Table 6.2 - EAL1 . 55
Table 6.3 - EAL2 . 57
Table 6.4 - EAL3 . 59
Table 6.5 - EAL4 . 61
Table 6.6 - EAL5 . 63
Table 6.7 - EAL6 . 65
Table 6.8 - EAL7 . 67
Table 15.1 - Maintenance of assurance family breakdown and mapping 188
Table A.1 - Assurance component dependencies . 204
Table A.2 - AMA Internal Dependencies . 206
Table B.1 - Evaluation assurance level summary . 207

List of Tables Part 3: Security assurance requirements

Page viii of viii Version 2.1 August 1999

4Part 3: Security assurance requirements Organisation of CC Part 3

August 1999 Version 2.1 Page 1 of 208

1 Scope

1 This Part 3 defines the assurance requirements of the CC. It includes the evaluation
assurance levels (EALs) that define a scale for measuring assurance, the individual
assurance components from which the assurance levels are composed, and the
criteria for evaluation of PPs and STs.

1.1 Organisation of CC Part 3

2 Clause 1 is the introduction and paradigm for this CC Part 3.

3 Clause 2 describes the presentation structure of the assurance classes, families,
components, and evaluation assurance levels along with their relationships. It also
characterises the assurance classes and families found in clauses 8 through 14.

4 Clauses 3, 4 and 5 provide a brief introduction to the evaluation criteria for PPs and
STs, followed by detailed explanations of the families and components that are used
for those evaluations.

5 Clause 6 provides detailed definitions of the EALs.

6 Clause 7 provides a brief introduction to the assurance classes and is followed by
clauses 8 through 14 that provide detailed definitions of those classes.

7 Clauses 15 and 16 provide a brief introduction to the evaluation criteria for
maintenance of assurance, followed by detailed definitions of those families and
components.

8 Annex A provides a summary of the dependencies between the assurance
components.

9 Annex B provides a cross reference between the EALs and the assurance
components.

1.2 CC assurance paradigm

10 The purpose of this subclause is to document the philosophy that underpins the CC
approach to assurance. An understanding of this subclause will permit the reader to
understand the rationale behind the CC Part 3 assurance requirements.

1.2.1 CC philosophy

11 The CC philosophy is that the threats to security and organisational security policy
commitments should be clearly articulated and the proposed security measures be
demonstrably sufficient for their intended purpose.

1 - Scope CC assurance paradigm

Page 2 of 208 Version 2.1 August 1999

12 Furthermore, measures should be adopted that reduce the likelihood of
vulnerabilities, the ability to exercise (i.e. intentionally exploit or unintentionally
trigger) a vulnerability, and the extent of the damage that could occur from a
vulnerability being exercised. Additionally, measures should be adopted that
facilitate the subsequent identification of vulnerabilities and the elimination,
mitigation, and/or notification that a vulnerability has been exploited or triggered.

1.2.2 Assurance approach

13 The CC philosophy is to provide assurance based upon an evaluation (active
investigation) of the IT product or system that is to be trusted. Evaluation has been
the traditional means of providing assurance and is the basis for prior evaluation
criteria documents. In aligning the existing approaches, the CC adopts the same
philosophy. The CC proposes measuring the validity of the documentation and of
the resulting IT product or system by expert evaluators with increasing emphasis on
scope, depth, and rigour.

14 The CC does not exclude, nor does it comment upon, the relative merits of other
means of gaining assurance. Research continues with respect to alternative ways of
gaining assurance. As mature alternative approaches emerge from these research
activities, they will be considered for inclusion in the CC, which is so structured as
to allow their future introduction.

1.2.2.1 Significance of vulnerabilities

15 It is assumed that there are threat agents that will actively seek to exploit
opportunities to violate security policies both for illicit gains and for well-
intentioned, but nonetheless insecure actions. Threat agents may also accidentally
trigger security vulnerabilities, causing harm to the organisation. Due to the need to
process sensitive information and the lack of availability of sufficiently trusted
products or systems, there is significant risk due to failures of IT. It is, therefore,
likely that IT security breaches could lead to significant loss.

16 IT security breaches arise through the intentional exploitation or the unintentional
triggering of vulnerabilities in the application of IT within business concerns.

17 Steps should be taken to prevent vulnerabilities arising in IT products and systems.
To the extent feasible, vulnerabilities should be:

a) eliminated — that is, active steps should be taken to expose, and remove or
neutralise, all exercisable vulnerabilities;

b) minimised — that is, active steps should be taken to reduce, to an acceptable
residual level, the potential impact of any exercise of a vulnerability;

c) monitored — that is, active steps should be taken to ensure that any attempt
to exercise a residual vulnerability will be detected so that steps can be taken
to limit the damage.

CC assurance paradigm 1 - Scope

August 1999 Version 2.1 Page 3 of 208

1.2.2.2 Cause of vulnerabilities

18 Vulnerabilities can arise through failures in:

a) requirements — that is, an IT product or system may possess all the
functions and features required of it and still contain vulnerabilities that
render it unsuitable or ineffective with respect to security;

b) construction — that is, an IT product or system does not meet its
specifications and/or vulnerabilities have been introduced as a result of poor
constructional standards or incorrect design choices;

c) operation — that is, an IT product or system has been constructed correctly
to a correct specification but vulnerabilities have been introduced as a result
of inadequate controls upon the operation.

1.2.2.3 CC assurance

19 Assurance is grounds for confidence that an IT product or system meets its security
objectives. Assurance can be derived from reference to sources such as
unsubstantiated assertions, prior relevant experience, or specific experience.
However, the CC provides assurance through active investigation. Active
investigation is an evaluation of the IT product or system in order to determine its
security properties.

1.2.2.4 Assurance through evaluation

20 Evaluation has been the traditional means of gaining assurance, and is the basis of
the CC approach. Evaluation techniques can include, but are not limited to:

a) analysis and checking of process(es) and procedure(s);

b) checking that process(es) and procedure(s) are being applied;

c) analysis of the correspondence between TOE design representations;

d) analysis of the TOE design representation against the requirements;

e) verification of proofs;

f) analysis of guidance documents;

g) analysis of functional tests developed and the results provided;

h) independent functional testing;

i) analysis for vulnerabilities (including flaw hypothesis);

j) penetration testing.

1 - Scope CC assurance paradigm

Page 4 of 208 Version 2.1 August 1999

1.2.3 The CC evaluation assurance scale

21 The CC philosophy asserts that greater assurance results from the application of
greater evaluation effort, and that the goal is to apply the minimum effort required
to provide the necessary level of assurance. The increasing level of effort is based
upon:

a) scope — that is, the effort is greater because a larger portion of the IT
product or system is included;

b) depth — that is, the effort is greater because it is deployed to a finer level of
design and implementation detail;

c) rigour — that is, the effort is greater because it is applied in a more
structured, formal manner.

23Part 3: Security assurance requirements Structures

August 1999 Version 2.1 Page 5 of 208

2 Security assurance requirements

2.1 Structures

22 The following subclauses describe the constructs used in representing the assurance
classes, families, components, and EALs along with the relationships among them.

23 Figure 2.1 illustrates the assurance requirements defined in this CC Part 3. Note that
the most abstract collection of assurance requirements is referred to as a class. Each
class contains assurance families, which then contain assurance components, which
in turn contain assurance elements. Classes and families are used to provide a
taxonomy for classifying assurance requirements, while components are used to
specify assurance requirements in a PP/ST.

2.1.1 Class structure

24 Figure 2.1 illustrates the assurance class structure.

2.1.1.1 Class name

25 Each assurance class is assigned a unique name. The name indicates the topics
covered by the assurance class.

26 A unique short form of the assurance class name is also provided. This is the
primary means for referencing the assurance class. The convention adopted is an
“A” followed by two letters related to the class name.

2.1.1.2 Class introduction

27 Each assurance class has an introductory subclause that describes the composition
of the class and contains supportive text covering the intent of the class.

2.1.1.3 Assurance families

28 Each assurance class contains at least one assurance family. The structure of the
assurance families is described in the following subclause.

2 - Security assurance requirements Structures

Page 6 of 208 Version 2.1 August 1999

Figure 2.1 - Assurance class/family/component/element hierarchy

2.1.2 Assurance family structure

29 Figure 2.1 illustrates the assurance family structure.

Common criteria assurance requirements
Assurance class

Class name

Class introduction

Assurance family

Family name

Objectives

Component levelling

Application notes

Component identification

Objectives

Application notes

Dependencies

Assurance component

Assurance elements
Assurance elements
Assurance element

Structures 2 - Security assurance requirements

August 1999 Version 2.1 Page 7 of 208

2.1.2.1 Family name

30 Every assurance family is assigned a unique name. The name provides descriptive
information about the topics covered by the assurance family. Each assurance
family is placed within the assurance class that contains other families with the
same intent.

31 A unique short form of the assurance family name is also provided. This is the
primary means used to reference the assurance family. The convention adopted is
that the short form of the class name is used, followed by an underscore, and then
three letters related to the family name.

2.1.2.2 Objectives

32 The objectives subclause of the assurance family presents the intent of the
assurance family.

33 This subclause describes the objectives, particularly those related to the CC
assurance paradigm, that the family is intended to address. The description for the
assurance family is kept at a general level. Any specific details required for
objectives are incorporated in the particular assurance component.

2.1.2.3 Component levelling

34 Each assurance family contains one or more assurance components. This subclause
of the assurance family describes the components available and explains the
distinctions between them. Its main purpose is to differentiate between the
assurance components once it has been determined that the assurance family is a
necessary or useful part of the assurance requirements for a PP/ST.

35 Assurance families containing more than one component are levelled and rationale
is provided as to how the components are levelled. This rationale is in terms of
scope, depth, and/or rigour.

2.1.2.4 Application notes

36 The application notes subclause of the assurance family, if present, contains
additional information for the assurance family. This information should be of
particular interest to users of the assurance family (e.g. PP and ST authors,
designers of TOEs, evaluators). The presentation is informal and covers, for
example, warnings about limitations of use and areas where specific attention may
be required.

2.1.2.5 Assurance components

37 Each assurance family has at least one assurance component. The structure of the
assurance components is provided in the following subclause.

2 - Security assurance requirements Structures

Page 8 of 208 Version 2.1 August 1999

2.1.3 Assurance component structure

38 Figure 2.2 illustrates the assurance component structure.

Figure 2.2 - Assurance component structure

39 The relationship between components within a family is highlighted using a bolding
convention. Those parts of the requirements that are new, enhanced or modified
beyond the requirements of the previous component within a hierarchy are bolded.
The same bolding convention is also used for dependencies.

2.1.3.1 Component identification

40 The component identification subclause provides descriptive information necessary
to identify, categorise, register, and reference a component.

41 Every assurance component is assigned a unique name. The name provides
descriptive information about the topics covered by the assurance component. Each
assurance component is placed within the assurance family that shares its security
objective.

42 A unique short form of the assurance component name is also provided. This is the
primary means used to reference the assurance component. The convention used is
that the short form of the family name is used, followed by a period, and then a
numeric character. The numeric characters for the components within each family
are assigned sequentially, starting from 1.

2.1.3.2 Objectives

43 The objectives subclause of the assurance component, if present, contains specific
objectives for the particular assurance component. For those assurance components

Assurance
component

Application
notes

Objectives

Assurance
elements

Component

Dependencies

identification

Structures 2 - Security assurance requirements

August 1999 Version 2.1 Page 9 of 208

that have this subclause, it presents the specific intent of the component and a more
detailed explanation of the objectives.

2.1.3.3 Application notes

44 The application notes subclause of an assurance component, if present, contains
additional information to facilitate the use of the component.

2.1.3.4 Dependencies

45 Dependencies among assurance components arise when a component is not self-
sufficient, and relies upon the presence of another component.

46 Each assurance component provides a complete list of dependencies to other
assurance components. Some components may list “No dependencies”, to indicate
that no dependencies have been identified. The components depended upon may
have dependencies on other components.

47 The dependency list identifies the minimum set of assurance components which are
relied upon. Components which are hierarchical to a component in the dependency
list may also be used to satisfy the dependency.

48 In specific situations the indicated dependencies might not be applicable. The PP/
ST author, by providing rationale for why a given dependency is not applicable,
may elect not to satisfy that dependency.

2.1.3.5 Assurance elements

49 A set of assurance elements is provided for each assurance component. An
assurance element is a security requirement which, if further divided, would not
yield a meaningful evaluation result. It is the smallest security requirement
recognised in the CC.

50 Each assurance element is identified as belonging to one of the three sets of
assurance elements:

a) Developer action elements: the activities that shall be performed by the
developer. This set of actions is further qualified by evidential material
referenced in the following set of elements. Requirements for developer
actions are identified by appending the letter “D” to the element number.

b) Content and presentation of evidence elements: the evidence required, what
the evidence shall demonstrate, and what information the evidence shall
convey. Requirements for content and presentation of evidence are
identified by appending the letter “C” to the element number.

c) Evaluator action elements: the activities that shall be performed by the
evaluator. This set of actions explicitly includes confirmation that the
requirements prescribed in the content and presentation of evidence
elements have been met. It also includes explicit actions and analysis that

2 - Security assurance requirements Structures

Page 10 of 208 Version 2.1 August 1999

shall be performed in addition to that already performed by the developer.
Implicit evaluator actions are also to be performed as a result of developer
action elements which are not covered by content and presentation of
evidence requirements. Requirements for evaluator actions are identified by
appending the letter “E” to the element number.

51 The developer actions and content and presentation of evidence define the
assurance requirements that are used to represent a developer’s responsibilities in
demonstrating assurance in the TOE security functions. By meeting these
requirements, the developer can increase confidence that the TOE satisfies the
functional and assurance requirements of a PP or ST.

52 The evaluator actions define the evaluator's responsibilities in the two aspects of
evaluation. The first aspect is validation of the PP/ST, in accordance with the
classes APE and ASE in clauses 4 and 5. The second aspect is verification of the
TOE's conformance with its functional and assurance requirements. By
demonstrating that the PP/ST is valid and that the requirements are met by the TOE,
the evaluator can provide a basis for confidence that the TOE will meet its security
objectives.

53 The developer action elements, content and presentation of evidence elements, and
explicit evaluator action elements, identify the evaluator effort that shall be
expended in verifying the security claims made in the ST of the TOE.

2.1.4 Assurance elements

54 Each element represents a requirement to be met. These statements of requirements
are intended to be clear, concise, and unambiguous. Therefore, there are no
compound sentences: each separable requirement is stated as an individual element.

55 The elements have been written using the normal dictionary meaning for the terms
used, rather than using a number of predefined terms as shorthand which results in
implicit requirements. Therefore, elements are written as explicit requirements,
with no reserved terms.

56 In contrast to CC Part 2, neither assignment nor selection operations are relevant for
elements in CC Part 3; however, refinements may be made to Part 3 elements as
required.

2.1.5 EAL structure

57 Figure 2.3 illustrates the EALs and associated structure defined in this Part 3. Note
that while the figure shows the contents of the assurance components, it is intended
that this information would be included in an EAL by reference to the actual
components defined in the CC.

2.1.5.1 EAL name

58 Each EAL is assigned a unique name. The name provides descriptive information
about the intent of the EAL.

Structures 2 - Security assurance requirements

August 1999 Version 2.1 Page 11 of 208

59 A unique short form of the EAL name is also provided. This is the primary means
used to reference the EAL.

2.1.5.2 Objectives

60 The objectives subclause of the EAL presents the intent of the EAL.

2.1.5.3 Application notes

61 The application notes subclause of the EAL, if present, contains information of
particular interest to users of the EAL (e.g. PP and ST authors, designers of TOEs
targeting this EAL, evaluators). The presentation is informal and covers, for
example, warnings about limitations of use and areas where specific attention may
be required.

Figure 2.3 - EAL structure

Part 3 Assurance levels

Evaluation assurance level

EAL name

Objectives

Application notes

Component identification

Objectives

Application notes

Dependencies

Assurance component

Assurance elements
Assurance elements
Assurance element

2 - Security assurance requirements Structures

Page 12 of 208 Version 2.1 August 1999

Figure 2.4 - Assurance and assurance level association

2.1.5.4 Assurance components

62 A set of assurance components have been chosen for each EAL.

Part 3 Assurance requirements

Assurance class

Class name

Class introduction

Assurance family

Family name

Objectives

Component levelling

Application notes

Component identification

Objectives

Application notes

Dependencies

Assurance component

Assurance elements
Assurance elements
Assurance element

Part 3 Assurance levels

Evaluation assurance level

EAL name

Objectives

Application notes

Component identification

Objectives

Application notes

Dependencies

Assurance component

Assurance elements
Assurance elements
Assurance element

Component taxonomy 2 - Security assurance requirements

August 1999 Version 2.1 Page 13 of 208

63 A higher level of assurance than that provided by a given EAL can be achieved by:

a) including additional assurance components from other assurance families;
or

b) replacing an assurance component with a higher level assurance component
from the same assurance family.

2.1.6 Relationship between assurances and assurance levels

64 Figure 2.4 illustrates the relationship between the assurance requirements and the
assurance levels defined in the CC. While assurance components further
decompose into assurance elements, assurance elements cannot be individually
referenced by assurance levels. Note that the arrow in the figure represents a
reference from an EAL to an assurance component within the class where it is
defined.

2.2 Component taxonomy

65 This Part 3 contains classes of families and components that are grouped on the
basis of related assurance. At the start of each class is a diagram that indicates the
families in the class and the components in each family.

66 In Figure 2.5, above, the class as shown contains a single family. The family
contains three components that are linearly hierarchical (i.e. component 2 requires
more than component 1, in terms of specific actions, specific evidence, or rigour of
the actions or evidence). The assurance families in this Part 3 are all linearly
hierarchical, although linearity is not a mandatory criterion for assurance families
that may be added in the future.

2.3 Protection Profile and Security Target evaluation criteria
class structure

67 The requirements for protection profile and security target evaluation are treated as
assurance classes and are presented using the similar structure as that used for the
other assurance classes, described below. One notable difference is the absence of
a component levelling subclause in the associated family descriptions. The reason
is that each family has only a single component and therefore no levelling has
occurred.

Class name

Family 1 1 2 3

Figure 2.5 - Sample class decomposition diagram

2 - Security assurance requirements Usage of terms in Part 3

Page 14 of 208 Version 2.1 August 1999

68 Tables 3.1, 3.2, 3.3 and 3.2 in clause 3 of this Part 3 summarise, for both the APE
and ASE classes, their constituent families and abbreviations for each. Narrative
summaries for the APE families can be found in CC Part 1, annex B, subclauses
B.2.2 through B.2.8, whereas narrative summaries for the ASE families can be
found in CC Part 1, annex C, subclauses C.2.2 through C.2.9.

2.4 Usage of terms in Part 3

69 The following is a list of terms which are used in a precise way in this Part 3. They
do not merit inclusion in the glossary because they are general English terms and
their usage, though restricted to the explanations given below, is in conformance
with dictionary definitions. However, those explanations of the terms were used as
guidance in the development of this Part 3 and should be helpful for general
understanding.

70 Check — This term is similar to, but less rigourous than “confirm” or “verify”. This
term requires a quick determination to be made by the evaluator, perhaps requiring
only a cursory analysis, or perhaps no analysis at all.

71 Coherent — An entity is logically ordered and has a discernible meaning. For
documentation, this addresses both the actual text and the structure of the
document, in terms of whether it is understandable by its target audience.

72 Complete — All necessary parts of an entity have been provided. In terms of
documentation, this means that all relevant information is covered in the
documentation, at such a level of detail that no further explanation is required at that
level of abstraction.

73 Confirm — This term is used to indicate that something needs to be reviewed in
detail, and that an independent determination of sufficiency needs to be made. The
level of rigour required depends on the nature of the subject matter. This term is
only applied to evaluator actions.

74 Consistent — This term describes a relationship between two or more entities,
indicating that there are no apparent contradictions between these entities.

75 Counter (verb) — This term is typically used in the context that a security objective
counters a particular threat, but does not necessarily indicate that the threat is
completely eradicated as a result.

76 Demonstrate — This term refers to an analysis leading to a conclusion, which is
less rigourous than a “proof”.

77 Describe — This term requires that certain, specific details of an entity be provided.

78 Determine — This term requires an independent analysis to be made, with the
objective of reaching a particular conclusion. The usage of this term differs from
“confirm” or “verify”, since these other terms imply that an analysis has already
been performed which needs to be reviewed, whereas the usage of “determine”

Usage of terms in Part 3 2 - Security assurance requirements

August 1999 Version 2.1 Page 15 of 208

implies a truly independent analysis, usually in the absence of any previous analysis
having been performed.

79 Ensure — This term, used by itself, implies a strong causal relationship between
an action and its consequences. This term is typically preceded by the word “helps”,
which indicates that the consequence is not fully certain, on the basis of that action
alone.

80 Exhaustive — This term is used in the CC with respect to conducting an analysis
or other activity. It is related to “systematic” but is considerably stronger, in that it
indicates not only that a methodical approach has been taken to perform the analysis
or activity according to an unambiguous plan, but that the plan that was followed is
sufficient to ensure that all possible avenues have been exercised.

81 Explain — This term differs from both “describe” and “demonstrate”. It is intended
to answer the question “Why?” without actually attempting to argue that the course
of action that was taken was necessarily optimal.

82 Internally consistent — There are no apparent contradictions between any aspects
of an entity. In terms of documentation, this means that there can be no statements
within the documentation that can be taken to contradict each other.

83 Justification — This term refers to an analysis leading to a conclusion, but is more
rigorous than a demonstration. This term requires significant rigour in terms of very
carefully and thoroughly explaining every step of a logical argument.

84 Mutually supportive — This term describes a relationship between a group of
entities, indicating that the entities possess properties which do not conflict with,
and may assist the other entities in performing their tasks. It is not necessary to
determine that every individual entity in question directly supports other entities in
that grouping; rather, it is a more general determination that is made.

85 Prove — This refers to a formal analysis in its mathematical sense. It is completely
rigourous in all ways. Typically, “prove” is used when there is a desire to show
correspondence between two TSF representations at a high level of rigour.

86 Specify — This term is used in the same context as “describe”, but is intended to
be more rigourous and precise. It is very similar to “define”.

87 Trace (verb) — This term is used to indicate that an informal correspondence is
required between two entities with only a minimal level of rigour.

88 Verify — This term is similar in context to “confirm”, but has more rigourous
connotations. This term when used in the context of evaluator actions indicates that
an independent effort is required of the evaluator.

2 - Security assurance requirements Assurance categorisation

Page 16 of 208 Version 2.1 August 1999

2.5 Assurance categorisation

89 The assurance classes, families, and the abbreviation for each family are shown in
Table 2.1.

2.6 Assurance class and family overview

90 The following summarises the assurance classes and families of clauses 8-14. These
classes and family summaries are presented in the same order as they appear in
clauses 8-14.

Table 2.1 - Assurance family breakdown and mapping

Assurance Class Assurance Family Abbreviated Name

Class ACM:
Configuration
management

CM automation ACM_AUT
CM capabilities ACM_CAP
CM scope ACM_SCP

Class ADO: Delivery
and operation

Delivery ADO_DEL
Installation, generation and start-up ADO_IGS

Class ADV:
Development

Functional specification ADV_FSP
High-level design ADV_HLD
Implementation representation ADV_IMP
TSF internals ADV_INT
Low-level design ADV_LLD
Representation correspondence ADV_RCR
Security policy modeling ADV_SPM

Class AGD: Guidance
documents

Administrator guidance AGD_ADM
User guidance AGD_USR

Class ALC: Life cycle
support

Development security ALC_DVS
Flaw remediation ALC_FLR
Life cycle definition ALC_LCD
Tools and techniques ALC_TAT

Class ATE: Tests

Coverage ATE_COV
Depth ATE_DPT
Functional tests ATE_FUN
Independent testing ATE_IND

Class AVA:
Vulnerability
assessment

Covert channel analysis AVA_CCA
Misuse AVA_MSU
Strength of TOE security functions AVA_SOF
Vulnerability analysis AVA_VLA

Assurance class and family overview 2 - Security assurance requirements

August 1999 Version 2.1 Page 17 of 208

2.6.1 Class ACM: Configuration management

91 Configuration management (CM) helps to ensure that the integrity of the TOE is
preserved, by requiring discipline and control in the processes of refinement and
modification of the TOE and other related information. CM prevents unauthorised
modifications, additions, or deletions to the TOE, thus providing assurance that the
TOE and documentation used for evaluation are the ones prepared for distribution.

2.6.1.1 CM automation (ACM_AUT)

92 Configuration management automation establishes the level of automation used to
control the configuration items.

2.6.1.2 CM capabilities (ACM_CAP)

93 Configuration management capabilities define the characteristics of the
configuration management system.

2.6.1.3 CM scope (ACM_SCP)

94 Configuration management scope indicates the TOE items that need to be
controlled by the configuration management system.

2.6.2 Class ADO: Delivery and operation

95 Assurance class ADO defines requirements for the measures, procedures, and
standards concerned with secure delivery, installation, and operational use of the
TOE, ensuring that the security protection offered by the TOE is not compromised
during transfer, installation, start-up, and operation.

2.6.2.1 Delivery (ADO_DEL)

96 Delivery covers the procedures used to maintain security during transfer of the TOE
to the user, both on initial delivery and as part of subsequent modification. It
includes special procedures or operations required to demonstrate the authenticity
of the delivered TOE. Such procedures and measures are the basis for ensuring that
the security protection offered by the TOE is not compromised during transfer.
While compliance with the delivery requirements cannot always be determined
when a TOE is evaluated, it is possible to evaluate the procedures that a developer
has developed to distribute the TOE to users.

2.6.2.2 Installation, generation and start-up (ADO_IGS)

97 Installation, generation, and start-up requires that the copy of the TOE is configured
and activated by the administrator to exhibit the same protection properties as the
master copy of the TOE. The installation, generation, and start-up procedures
provide confidence that the administrator will be aware of the TOE configuration
parameters and how they can affect the TSF.

2 - Security assurance requirements Assurance class and family overview

Page 18 of 208 Version 2.1 August 1999

2.6.3 Class ADV: Development

98 Assurance class ADV defines requirements for the stepwise refinement of the TSF
from the TOE summary specification in the ST down to the actual implementation.
Each of the resulting TSF representations provide information to help the evaluator
determine whether the functional requirements of the TOE have been met.

2.6.3.1 Functional specification (ADV_FSP)

99 The functional specification describes the TSF, and must be a complete and
accurate instantiation of the TOE security functional requirements. The functional
specification also details the external interface to the TOE. Users of the TOE are
expected to interact with the TSF through this interface.

2.6.3.2 High-level design (ADV_HLD)

100 The high-level design is a top level design specification that refines the TSF
functional specification into the major constituent parts of the TSF. The high level
design identifies the basic structure of the TSF and the major hardware, firmware,
and software elements.

2.6.3.3 Implementation representation (ADV_IMP)

101 The implementation representation is the least abstract representation of the TSF. It
captures the detailed internal workings of the TSF in terms of source code, hardware
drawings, etc., as applicable.

2.6.3.4 TSF internals (ADV_INT)

102 The TSF internals requirements specify the requisite internal structuring of the TSF.

2.6.3.5 Low-level design (ADV_LLD)

103 The low-level design is a detailed design specification that refines the high-level
design into a level of detail that can be used as a basis for programming and/or
hardware construction.

2.6.3.6 Representation correspondence (ADV_RCR)

104 The representation correspondence is a demonstration of mappings between all
adjacent pairs of available TSF representations, from the TOE summary
specification through to the least abstract TSF representation that is provided.

2.6.3.7 Security policy modeling (ADV_SPM)

105 Security policy models are structured representations of security policies of the
TSP, and are used to provide increased assurance that the functional specification
corresponds to the security policies of the TSP, and ultimately to the TOE security
functional requirements. This is achieved via correspondence mappings between

Assurance class and family overview 2 - Security assurance requirements

August 1999 Version 2.1 Page 19 of 208

the functional specification, the security policy model, and the security policies that
are modelled.

2.6.4 Class AGD: Guidance documents

106 Assurance class AGD defines requirements directed at the understandability,
coverage and completeness of the operational documentation provided by the
developer. This documentation, which provides two categories of information, for
users and for administrators, is an important factor in the secure operation of the
TOE.

2.6.4.1 Administrator guidance (AGD_ADM)

107 Requirements for administrative guidance help ensure that the environmental
constraints can be understood by administrators and operators of the TOE.
Administrative guidance is the primary means available to the developer for
providing the TOE administrators with detailed, accurate information of how to
administer the TOE in a secure manner and how to make effective use of the TSF
privileges and protection functions.

2.6.4.2 User guidance (AGD_USR)

108 Requirements for user guidance help ensure that users are able to operate the TOE
in a secure manner (e.g. the usage constraints assumed by the PP or ST must be
clearly explained and illustrated). User guidance is the primary vehicle available to
the developer for providing the TOE users with the necessary background and
specific information on how to correctly use the TOE's protection functions. User
guidance must do two things. First, it needs to explain what the user-visible security
functions do and how they are to be used, so that users are able to consistently and
effectively protect their information. Second, it needs to explain the user's role in
maintaining the TOE's security.

2.6.5 Class ALC: Life cycle support

109 Assurance class ALC defines requirements for assurance through the adoption of a
well defined life-cycle model for all the steps of the TOE development, including
flaw remediation procedures and policies, correct use of tools and techniques and
the security measures used to protect the development environment.

2.6.5.1 Development security (ALC_DVS)

110 Development security covers the physical, procedural, personnel, and other security
measures used in the development environment. It includes physical security of the
development location(s) and controls on the selection and hiring of development
staff.

2.6.5.2 Flaw remediation (ALC_FLR)

111 Flaw remediation ensures that flaws discovered by the TOE consumers will be
tracked and corrected while the TOE is supported by the developer. While future

2 - Security assurance requirements Assurance class and family overview

Page 20 of 208 Version 2.1 August 1999

compliance with the flaw remediation requirements cannot be determined when a
TOE is evaluated, it is possible to evaluate the procedures and policies that a
developer has in place to track and repair flaws, and to distribute the repairs to
consumers.

2.6.5.3 Life cycle definition (ALC_LCD)

112 Life cycle definition establishes that the engineering practices used by a developer
to produce the TOE include the considerations and activities identified in the
development process and operational support requirements. Confidence in the
correspondence between the requirements and the TOE is greater when security
analysis and the production of evidence are done on a regular basis as an integral
part of the development process and operational support activities. It is not the
intent of this component to dictate any specific development process.

2.6.5.4 Tools and techniques (ALC_TAT)

113 Tools and techniques addresses the need to define the development tools being used
to analyse and implement the TOE. It includes requirements concerning the
development tools and implementation dependent options of those tools.

2.6.6 Class ATE: Tests

114 Assurance class ATE states testing requirements that demonstrate that the TSF
satisfies the TOE security functional requirements.

2.6.6.1 Coverage (ATE_COV)

115 Coverage deals with the completeness of the functional tests performed by the
developer on the TOE. It addresses the extent to which the TOE security functions
are tested.

2.6.6.2 Depth (ATE_DPT)

116 Depth deals with the level of detail to which the developer tests the TOE. Testing
of security functions is based upon increasing depth of information derived from
analysis of the TSF representations.

2.6.6.3 Functional tests (ATE_FUN)

117 Functional testing establishes that the TSF exhibits the properties necessary to
satisfy the requirements of its ST. Functional testing provides assurance that the
TSF satisfies at least the requirements of the chosen functional components.
However, functional tests do not establish that the TSF does no more than expected.
This family focuses on functional testing performed by the developer.

2.6.6.4 Independent testing (ATE_IND)

118 Independent testing specifies the degree to which the functional testing of the TOE
must be performed by a party other than the developer (e.g. a third party). This

Maintenance categorisation 2 - Security assurance requirements

August 1999 Version 2.1 Page 21 of 208

family adds value by the introduction of tests that are not part of the developers
tests.

2.6.7 Class AVA: Vulnerability assessment

119 Assurance class AVA defines requirements directed at the identification of
exploitable vulnerabilities. Specifically, it addresses those vulnerabilities
introduced in the construction, operation, misuse, or incorrect configuration of the
TOE.

2.6.7.1 Covert channel analysis (AVA_CCA)

120 Covert channel analysis is directed towards the discovery and analysis of
unintended communications channels that can be exploited to violate the intended
TSP.

2.6.7.2 Misuse (AVA_MSU)

121 Misuse analysis investigates whether an administrator or user, with an
understanding of the guidance documentation, would reasonably be able to
determine if the TOE is configured and operating in a manner that is insecure.

2.6.7.3 Strength of TOE security functions (AVA_SOF)

122 Strength of function analysis addresses TOE security functions that are realised by
a probabilistic or permutational mechanism (e.g. a password or hash function).
Even if such functions cannot be bypassed, deactivated, or corrupted, it may still be
possible to defeat them by direct attack. A level or a specific metric may be claimed
for the strength of each of these functions. Strength of function analysis is
performed to determine whether such functions meet or exceed the claim. For
example, strength of function analysis of a password mechanism can demonstrate
that the password function meets the strength claim by showing that the password
space is sufficiently large.

2.6.7.4 Vulnerability analysis (AVA_VLA)

123 Vulnerability analysis consists of the identification of flaws potentially introduced
in the different refinement steps of the development. It results in the definition of
penetration tests through the collection of the necessary information concerning: (1)
the completeness of the TSF (does the TSF counter all the postulated threats?) and
(2) the dependencies between all security functions. These potential vulnerabilities
are assessed through penetration testing to determine whether they could, in
practice, be exploitable to compromise the security of the TOE.

2.7 Maintenance categorisation

124 The requirements for the maintenance of assurance are treated as an assurance class
and are presented using the class structure defined above.

2 - Security assurance requirements Maintenance of assurance class and family

Page 22 of 208 Version 2.1 August 1999

125 The maintenance of assurance families, and the abbreviation for each family are
shown in Table 2.2.

2.8 Maintenance of assurance class and family overview

126 The following summarises the assurance class and families of clause 16. The class
and family summaries are presented in the same order as they appear in clause 16.

2.8.1 Class AMA: Maintenance of assurance

127 Assurance class AMA is aimed at maintaining the level of assurance that the TOE
will continue to meet its security target as changes are made to the TOE or its
environment. Each of the families in this class identifies developer and evaluator
actions that are to be applied after the TOE has been successfully evaluated,
although some requirements can be applied at the time of the evaluation.

2.8.1.1 Assurance maintenance plan (AMA_AMP)

128 The assurance maintenance plan identifies the plans and procedures a developer is
to implement in order to ensure that the assurance that was established in the
evaluated TOE is maintained as changes are made to the TOE or its environment.

2.8.1.2 TOE component categorisation report (AMA_CAT)

129 The TOE component categorisation report provides a categorisation of the
components of a TOE (e.g. TSF subsystems) according to their relevance to
security. This categorisation acts as a focus for the developer’s security impact
analysis.

2.8.1.3 Evidence of assurance maintenance (AMA_EVD)

130 Evidence of assurance maintenance seeks to establish confidence that the assurance
in the TOE is being maintained by the developer, in accordance with the assurance
maintenance plan.

Table 2.2 - Maintenance of assurance class decomposition

Assurance Class Assurance Family Abbreviated Name

Maintenance of assurance

Assurance maintenance plan AMA_AMP
TOE component categorisation
report AMA_CAT

Evidence of assurance maintenance AMA_EVD
Security impact analysis AMA_SIA

Maintenance of assurance class and family overview 2 - Security assurance

August 1999 Version 2.1 Page 23 of 208

2.8.1.4 Security impact analysis (AMA_SIA)

131 Security impact analysis seeks to establish confidence that assurance has been
maintained in the TOE through an analysis performed by the developer of the
security impact of all changes affecting the TOE since it was evaluated.

52Part 3: Security assurance requirements Overview

August 1999 Version 2.1 Page 24 of 208

3 Protection Profile and Security Target
evaluation criteria

3.1 Overview

132 This clause introduces the evaluation criteria for PPs and STs. The evaluation
criteria are then fully presented in clause 4, Class APE: Protection Profile
evaluation, and clause 5, Class ASE: Security Target evaluation.

133 These criteria are the first requirements presented in this Part 3 because the PP and
ST evaluation will normally be performed before the TOE evaluation. They play a
special role in that information about the TOE is assessed and the functional and
assurance requirements are evaluated in order to find out whether the PP or ST is a
meaningful basis for a TOE evaluation.

134 Although these evaluation criteria differ somewhat from the requirements in
clauses 7 through 14, they are presented in a similar manner because the developer
and evaluator activities are comparable for PP, ST and TOE evaluations.

135 The PP and ST classes differ from the TOE classes in that all the requirements in
the PP or ST class need to be considered for a PP or ST evaluation, whereas the
requirements presented in the TOE classes cover a wide range of topics not all of
which need be considered for a given TOE.

136 The evaluation criteria for PPs and STs are based on the information provided in
annexes B and C of CC Part 1. Useful background information for the requirements
in the classes APE and ASE, as presented in the following clauses, can be found
there.

3.2 Protection Profile criteria overview

3.2.1 Protection Profile evaluation

137 The goal of a PP evaluation is to demonstrate that the PP is complete, consistent,
technically sound, and hence suitable for use as a statement of requirements for one
or more evaluatable TOEs. Such a PP may be eligible for inclusion within a PP
registry.

3.2.2 Relation to the Security Target evaluation criteria

138 As described in annexes B and C of CC Part 1, there are many similarities in
structure and content between the generic PP and the TOE-specific ST.
Consequently, the criteria for evaluating PPs contain requirements that are similar
to many of those for STs, and the criteria for both are presented in a similar manner.

Security Target criteria overview

August 1999 Version 2.1 Page 25 of 208

3 - Protection Profile and Security Target
evaluation criteria

3.2.3 Evaluator tasks

3.2.3.1 Evaluator tasks for an evaluation based on CC requirements only

139 Evaluators performing a PP evaluation that does not include requirements from
outside the standard shall apply the requirements of the APE class as described in
Table 3.1.

3.2.3.2 Evaluator tasks for a CC extended evaluation

140 Evaluators performing a PP evaluation that includes requirements from outside the
standard shall apply the requirements of the APE class as described in Table 3.2.

3.3 Security Target criteria overview

3.3.1 Security Target evaluation

141 The goal of an ST evaluation is to demonstrate that the ST is complete, consistent,
technically sound, and hence suitable for use as the basis for the corresponding TOE
evaluation.

3.3.2 Relation to the other evaluation criteria in this Part 3

142 There are two identified stages for the evaluation of a TOE; the ST evaluation and
the corresponding TOE evaluation. The requirements for ST evaluations are

Table 3.1 - Protection Profile families - only CC requirements

Class Family Abbreviated Name

Class APE:
Protection

Profile
evaluation

Protection Profile, TOE description APE_DES
Protection Profile, Security environment APE_ENV
Protection Profile, PP introduction APE_INT
Protection Profile, Security objectives APE_OBJ
Protection Profile, IT security requirements APE_REQ

Table 3.2 - Protection Profile families - CC extended requirements

Class Family Abbreviated Name

Class APE:
Protection

Profile
evaluation

Protection Profile, TOE description APE_DES
Protection Profile, Security environment APE_ENV
Protection Profile, PP introduction APE_INT
Protection Profile, Security objectives APE_OBJ
Protection Profile, TOE description APE_DES
Protection Profile, Explicitly stated IT
security requirements APE_SRE

Security Target criteria overview

Page 26 of 208 Version 2.1 August 1999

3 - Protection Profile and Security
Target evaluation criteria

discussed here and in clause 6 while the requirements for TOE evaluations are
contained in clauses 7 through 14.

143 An ST evaluation includes a PP claims evaluation. If the ST does not claim PP
conformance, the PP claims part of the ST shall contain a statement that the TOE
does not claim conformance to any PP.

3.3.3 Evaluator tasks

3.3.3.1 Evaluator tasks for an evaluation based on CC requirements only

144 Evaluators performing an ST evaluation that does not include requirements from
outside the standard shall apply the requirements of the ASE class as described in
Table 3.3.

3.3.3.2 Evaluator tasks for a CC extended evaluation

145 Evaluators performing an ST evaluation that includes requirements from outside
the standard shall apply the requirements of the ASE class as described in Table 3.4.

Table 3.3 - Security Target families - only CC requirements

Class Family Abbreviated Name

Class ASE:
Security
Target

evaluation

Security Target, TOE description ASE_DES
Security Target, Security environment ASE_ENV
Security Target, ST introduction ASE_INT
Security Target, Security objectives ASE_OBJ
Security Target, PP claims ASE_PPC
Security Target, IT security requirements ASE_REQ
Security Target, TOE summary specification ASE_TSS

Table 3.4 - Security Target families - CC extended requirements

Class Family Abbreviated Name

Class ASE:
Security
Target

evaluation

Security Target, TOE description ASE_DES
Security Target, Security environment ASE_ENV
Security Target, ST introduction ASE_INT
Security Target, Security objectives ASE_OBJ
Security Target, PP claims ASE_PPC
Security Target, IT security requirements ASE_REQ
Security Target, Explicitly stated IT
security requirements ASE_SRE

Security Target, TOE summary specification ASE_TSS

Security Target criteria overview

August 1999 Version 2.1 Page 27 of 208

4 - Class APE: Protection Profile evaluation

4 Class APE: Protection Profile evaluation

146 The goal of a PP evaluation is to demonstrate that the PP is complete, consistent and
technically sound. An evaluated PP is suitable for use as the basis for the
development of STs. Such a PP is eligible for inclusion in a registry.

147 Figure 4.1 shows the families within this class.

 Class APE: Protection Profile evaluation

APE_DES: Protection Profile, TOE description 1

APE_ENV: Protection Profile, Security environment 1

APE_INT: Protection Profile, PP introduction 1

APE_OBJ: Protection Profile, Security objectives 1

APE_REQ: Protection Profile, IT security requirements 1

APE_SRE: Protection Profile, Explicitly stated IT security
requirements

1

Figure 4.1 - Protection Profile evaluation class decomposition

TOE description (APE_DES)

Page 28 of 208 Version 2.1 August 1999

4 - Class APE: Protection Profile
evaluation

4.1 TOE description (APE_DES)
APE_DES Protection Profile, TOE description

Objectives

148 The TOE description is an aid to the understanding of the TOE’s security
requirements. Evaluation of the TOE description is required to show that it is
coherent, internally consistent and consistent with all other parts of the PP.

APE_DES.1 Protection Profile, TOE description, Evaluation requirements

Dependencies:

APE_ENV.1 Protection Profile, Security environment, Evaluation
requirements

APE_INT.1 Protection Profile, PP introduction, Evaluation
requirements

APE_OBJ.1 Protection Profile, Security objectives, Evaluation
requirements

APE_REQ.1 Protection Profile, IT security requirements, Evaluation
requirements

Developer action elements:

APE_DES.1.1D The PP developer shall provide a TOE description as part of the PP.

Content and presentation of evidence elements:

APE_DES.1.1C The TOE description shall as a minimum describe the product type and the
general IT features of the TOE.

Evaluator action elements:

APE_DES.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_DES.1.2E The evaluator shall confirm that the TOE description is coherent and
internally consistent.

APE_DES.1.3E The evaluator shall confirm that the TOE description is consistent with the
other parts of the PP.

Security environment (APE_ENV)

August 1999 Version 2.1 Page 29 of 208

4 - Class APE: Protection Profile evaluation

4.2 Security environment (APE_ENV)
APE_ENV Protection Profile, Security environment

Objectives

149 In order to determine whether the IT security requirements in the PP are sufficient,
it is important that the security problem to be solved is clearly understood by all
parties to the evaluation.

APE_ENV.1 Protection Profile, Security environment, Evaluation requirements

Dependencies:

No dependencies.

Developer action elements:

APE_ENV.1.1D The PP developer shall provide a statement of TOE security environment as
part of the PP.

Content and presentation of evidence elements:

APE_ENV.1.1C The statement of TOE security environment shall identify and explain any
assumptions about the intended usage of the TOE and the environment of use
of the TOE.

APE_ENV.1.2C The statement of TOE security environment shall identify and explain any
known or presumed threats to the assets against which protection will be
required, either by the TOE or by its environment.

APE_ENV.1.3C The statement of TOE security environment shall identify and explain any
organisational security policies with which the TOE must comply.

Evaluator action elements:

APE_ENV.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_ENV.1.2E The evaluator shall confirm that the statement of TOE security environment
is coherent and internally consistent.

PP introduction (APE_INT)

Page 30 of 208 Version 2.1 August 1999

4 - Class APE: Protection Profile
evaluation

4.3 PP introduction (APE_INT)
APE_INT Protection Profile, PP introduction

Objectives

150 The PP introduction contains document management and overview information
necessary to operate a PP registry. Evaluation of the PP introduction is required to
demonstrate that the PP is correctly identified and that it is consistent with all other
parts of the PP.

APE_INT.1 Protection Profile, PP introduction, Evaluation requirements

Dependencies:

APE_DES.1 Protection Profile, TOE description, Evaluation
requirements

APE_ENV.1 Protection Profile, Security environment, Evaluation
requirements

APE_OBJ.1 Protection Profile, Security objectives, Evaluation
requirements

APE_REQ.1 Protection Profile, IT security requirements, Evaluation
requirements

Developer action elements:

APE_INT.1.1D The PP developer shall provide a PP introduction as part of the PP.

Content and presentation of evidence elements:

APE_INT.1.1C The PP introduction shall contain a PP identification that provides the
labelling and descriptive information necessary to identify, catalogue,
register, and cross reference the PP.

APE_INT.1.2C The PP introduction shall contain a PP overview which summarises the PP in
narrative form.

Evaluator action elements:

APE_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_INT.1.2E The evaluator shall confirm that the PP introduction is coherent and
internally consistent.

APE_INT.1.3E The evaluator shall confirm that the PP introduction is consistent with the
other parts of the PP.

Security objectives (APE_OBJ)

August 1999 Version 2.1 Page 31 of 208

4 - Class APE: Protection Profile evaluation

4.4 Security objectives (APE_OBJ)
APE_OBJ Protection Profile, Security objectives

Objectives

151 The security objectives is a concise statement of the intended response to the
security problem. Evaluation of the security objectives is required to demonstrate
that the stated objectives adequately address the security problem. The security
objectives are categorised as security objectives for the TOE and as security
objectives for the environment. The security objectives for both the TOE and the
environment must be shown to be traced back to the identified threats to be
countered and/or policies and assumptions to be met by each.

APE_OBJ.1 Protection Profile, Security objectives, Evaluation requirements

Dependencies:

APE_ENV.1 Protection Profile, Security environment, Evaluation
requirements

Developer action elements:

APE_OBJ.1.1D The PP developer shall provide a statement of security objectives as part of
the PP.

APE_OBJ.1.2D The PP developer shall provide the security objectives rationale.

Content and presentation of evidence elements:

APE_OBJ.1.1C The statement of security objectives shall define the security objectives for the
TOE and its environment.

APE_OBJ.1.2C The security objectives for the TOE shall be clearly stated and traced back to
aspects of the identified threats to be countered by the TOE and/or
organisational security policies to be met by the TOE.

APE_OBJ.1.3C The security objectives for the environment shall be clearly stated and traced
back to aspects of identified threats not completely countered by the TOE
and/or organisational security policies or assumptions not completely met by
the TOE.

APE_OBJ.1.4C The security objectives rationale shall demonstrate that the stated security
objectives are suitable to counter the identified threats to security.

APE_OBJ.1.5C The security objectives rationale shall demonstrate that the stated security
objectives are suitable to cover all of the identified organisational security
policies and assumptions.

Security objectives (APE_OBJ)

Page 32 of 208 Version 2.1 August 1999

4 - Class APE: Protection Profile
evaluation

Evaluator action elements:

APE_OBJ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_OBJ.1.2E The evaluator shall confirm that the statement of security objectives is
complete, coherent, and internally consistent.

IT security requirements (APE_REQ)

August 1999 Version 2.1 Page 33 of 208

4 - Class APE: Protection Profile evaluation

4.5 IT security requirements (APE_REQ)
APE_REQ Protection Profile, IT security requirements

Objectives

152 The IT security requirements chosen for a TOE and presented or cited in a PP need
to be evaluated in order to confirm that they are internally consistent and lead to the
development of a TOE that will meet its security objectives.

153 Not all of the security objectives expressed in a PP may be met by a compliant TOE,
as some TOEs may depend on certain IT security requirements to be met by the IT
environment. When this is the case, the environmental IT security requirements
must be clearly stated and evaluated in context with the TOE requirements.

154 This family presents evaluation requirements that permit the evaluator to determine
that a PP is suitable for use as a statement of requirements for an evaluatable TOE.
The additional criteria necessary for the evaluation of explicitly stated requirements
is covered in the APE_SRE family.

Application notes

155 The term “IT security requirements” refers to “TOE security requirements” and the
optionally included “security requirements for the IT environment”.

156 The term “TOE security requirements” refers to “TOE security functional
requirements” and/or “TOE security assurance requirements”.

157 In the APE_REQ.1 component, the word “appropriate” is used to indicate that
certain elements allow options in certain cases. Which options are applicable
depends on the given context in the PP. Detailed information for all these aspects is
contained in CC Part 1, annex B.

APE_REQ.1 Protection Profile, IT security requirements, Evaluation requirements

Dependencies:

APE_OBJ.1 Protection Profile, Security objectives, Evaluation
requirements

Developer action elements:

APE_REQ.1.1D The PP developer shall provide a statement of IT security requirements as
part of the PP.

APE_REQ.1.2D The PP developer shall provide the security requirements rationale.

Content and presentation of evidence elements:

APE_REQ.1.1C The statement of TOE security functional requirements shall identify the
TOE security functional requirements drawn from CC Part 2 functional
requirements components.

IT security requirements (APE_REQ)

Page 34 of 208 Version 2.1 August 1999

4 - Class APE: Protection Profile
evaluation

APE_REQ.1.2C The statement of TOE security assurance requirements shall identify the
TOE security assurance requirements drawn from CC Part 3 assurance
requirements components.

APE_REQ.1.3C The statement of TOE security assurance requirements should include an
Evaluation Assurance Level (EAL) as defined in CC Part 3.

APE_REQ.1.4C The evidence shall justify that the statement of TOE security assurance
requirements is appropriate.

APE_REQ.1.5C The PP shall, if appropriate, identify any security requirements for the IT
environment.

APE_REQ.1.6C All completed operations on IT security requirements included in the PP shall
be identified.

APE_REQ.1.7C Any uncompleted operations on IT security requirements included in the PP
shall be identified.

APE_REQ.1.8C Dependencies among the IT security requirements included in the PP should
be satisfied.

APE_REQ.1.9C The evidence shall justify why any non-satisfaction of dependencies is
appropriate.

APE_REQ.1.10C The PP shall include a statement of the minimum strength of function level
for the TOE security functional requirements, either SOF-basic, SOF-
medium or SOF-high, as appropriate.

APE_REQ.1.11C The PP shall identify any specific TOE security functional requirements for
which an explicit strength of function is appropriate, together with the
specific metric.

APE_REQ.1.12C The security requirements rationale shall demonstrate that the minimum
strength of function level for the PP, together with any explicit strength of
function claim, is consistent with the security objectives for the TOE.

APE_REQ.1.13C The security requirements rationale shall demonstrate that the IT security
requirements are suitable to meet the security objectives.

APE_REQ.1.14C The security requirements rationale shall demonstrate that the set of IT
security requirements together forms a mutually supportive and internally
consistent whole.

Evaluator action elements:

APE_REQ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

IT security requirements (APE_REQ)

August 1999 Version 2.1 Page 35 of 208

4 - Class APE: Protection Profile evaluation

APE_REQ.1.2E The evaluator shall confirm that the statement of IT security requirements is
complete, coherent, and internally consistent.

Explicitly stated IT security requirements
(APE_SRE)

Page 36 of 208 Version 2.1 August 1999

4 - Class APE: Protection Profile
evaluation

4.6 Explicitly stated IT security requirements (APE_SRE)
APE_SRE Protection Profile, Explicitly stated IT security requirements

Objectives

158 If, after careful consideration, none of the requirements components in CC Part 2 or
CC Part 3 are readily applicable to all or parts of the IT security requirements, the
PP author may state other requirements which do not reference the CC. The use of
such requirements shall be justified.

159 This family presents evaluation requirements that permit the evaluator to determine
that the explicitly stated requirements are clearly and unambiguously expressed.
The evaluation of requirements taken from the CC in conjunction with valid
explicitly stated security requirements is addressed by the APE_REQ family.

160 Explicitly stated IT security requirements for a TOE presented or cited in a PP need
to be evaluated in order to demonstrate that they are clearly and unambiguously
expressed.

Application notes

161 Formulation of the explicitly stated requirements in a structure comparable to those
of existing CC components and elements involves choosing similar labelling,
manner of expression, and level of detail.

162 Using the CC requirements as a model means that the requirements can be clearly
identified, that they are self-contained, and that the application of each requirement
is feasible and will yield a meaningful evaluation result based on a compliance
statement of the TOE for that particular requirement.

163 The term “IT security requirements” refers to “TOE security requirements” and the
optionally included “security requirements for the IT environment”.

164 The term “TOE security requirements” refers to “TOE security functional
requirements” and/or “TOE security assurance requirements”.

APE_SRE.1 Protection Profile, Explicitly stated IT security requirements,
Evaluation requirements

Dependencies:

APE_REQ.1 Protection Profile, IT security requirements, Evaluation
requirements

Developer action elements:

APE_SRE.1.1D The PP developer shall provide a statement of IT security requirements as
part of the PP.

APE_SRE.1.2D The PP developer shall provide the security requirements rationale.

Explicitly stated IT security
requirements (APE_SRE)

August 1999 Version 2.1 Page 37 of 208

4 - Class APE: Protection Profile evaluation

Content and presentation of evidence elements:

APE_SRE.1.1C All TOE security requirements that are explicitly stated without reference to
the CC shall be identified.

APE_SRE.1.2C All security requirements for the IT environment that are explicitly stated
without reference to the CC shall be identified.

APE_SRE.1.3C The evidence shall justify why the security requirements had to be explicitly
stated.

APE_SRE.1.4C The explicitly stated IT security requirements shall use the CC requirements
components, families and classes as a model for presentation.

APE_SRE.1.5C The explicitly stated IT security requirements shall be measurable and state
objective evaluation requirements such that compliance or noncompliance of
a TOE can be determined and systematically demonstrated.

APE_SRE.1.6C The explicitly stated IT security \requirements shall be clearly and
unambiguously expressed.

APE_SRE.1.7C The security requirements rationale shall demonstrate that the assurance
requirements are applicable and appropriate to support any explicitly stated
TOE security functional requirements.

Evaluator action elements:

APE_SRE.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_SRE.1.2E The evaluator shall determine that all of the dependencies of the explicitly
stated IT security requirements have been identified.

Explicitly stated IT security requirements
(APE_SRE)

Page 38 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

5 Class ASE: Security Target evaluation

165 The goal of an ST evaluation is to demonstrate that the ST is complete, consistent,
technically sound, and hence suitable for use as the basis for the corresponding TOE
evaluation.

166 Figure 5.1 shows the families within this class.

 Class ASE: Security Target evaluation

APE_DES: Protection Profile, TOE description 1

ASE_ENV: Security Target, Security environment 1

ASE_INT: Security Target, ST introduction 1

ASE_OBJ: Security Target, Security objectives 1

ASE_PPC: Security Target, PP claims 1

ASE_REQ: Security Target, IT security requirements 1

ASE_SRE: Security Target, Explicitly stated IT security
requirements

1

ASE_TSS: Security Target, TOE summary specification 1

Figure 5.1 - Security Target evaluation class decomposition

TOE description (ASE_DES)

August 1999 Version 2.1 Page 39 of 208

5 - Class ASE: Security Target evaluation

5.1 TOE description (ASE_DES)
ASE_DES Security Target, TOE description

Objectives

167 The TOE description is an aid to the understanding of the TOE’s security
requirements. Evaluation of the TOE description is required to show that it is
coherent, internally consistent and consistent with all other parts of the ST.

ASE_DES.1 Security Target, TOE description, Evaluation requirements

Dependencies:

ASE_ENV.1 Security Target, Security environment, Evaluation
requirements

ASE_INT.1 Security Target, ST introduction, Evaluation
requirements

ASE_OBJ.1 Security Target, Security objectives, Evaluation
requirements

ASE_PPC.1 Security Target, PP claims, Evaluation requirements

ASE_REQ.1 Security Target, IT security requirements, Evaluation
requirements

ASE_TSS.1 Security Target, TOE summary specification, Evaluation
requirements

Developer action elements:

ASE_DES.1.1D The developer shall provide a TOE description as part of the ST.

Content and presentation of evidence elements:

ASE_DES.1.1C The TOE description shall as a minimum describe the product or system type,
and the scope and boundaries of the TOE in general terms both in a physical
and a logical way.

Evaluator action elements:

ASE_DES.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_DES.1.2E The evaluator shall confirm that the TOE description is coherent and
internally consistent.

ASE_DES.1.3E The evaluator shall confirm that the TOE description is consistent with the
other parts of the ST.

Security environment (ASE_ENV)

Page 40 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

5.2 Security environment (ASE_ENV)
ASE_ENV Security Target, Security environment

Objectives

168 In order to determine whether the IT security requirements in the ST are sufficient,
it is important that the security problem to be solved is clearly understood by all
parties to the evaluation.

ASE_ENV.1 Security Target, Security environment, Evaluation requirements

Dependencies:

No dependencies.

Developer action elements:

ASE_ENV.1.1D The developer shall provide a statement of TOE security environment as part
of the ST.

Content and presentation of evidence elements:

ASE_ENV.1.1C The statement of TOE security environment shall identify and explain any
assumptions about the intended usage of the TOE and the environment of use
of the TOE.

ASE_ENV.1.2C The statement of TOE security environment shall identify and explain any
known or presumed threats to the assets against which protection will be
required, either by the TOE or by its environment.

ASE_ENV.1.3C The statement of TOE security environment shall identify and explain any
organisational security policies with which the TOE must comply.

Evaluator action elements:

ASE_ENV.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_ENV.1.2E The evaluator shall confirm that the statement of TOE security environment
is coherent and internally consistent.

ST introduction (ASE_INT)

August 1999 Version 2.1 Page 41 of 208

5 - Class ASE: Security Target evaluation

5.3 ST introduction (ASE_INT)
ASE_INT Security Target, ST introduction

Objectives

169 The ST introduction contains identification and indexing material. Evaluation of the
ST introduction is required to demonstrate that the ST is correctly identified and
that it is consistent with all other parts of the ST.

ASE_INT.1 Security Target, ST introduction, Evaluation requirements

Dependencies:

ASE_DES.1 Security Target, TOE description, Evaluation
requirements

ASE_ENV.1 Security Target, Security environment, Evaluation
requirements

ASE_OBJ.1 Security Target, Security objectives, Evaluation
requirements

ASE_PPC.1 Security Target, PP claims, Evaluation requirements

ASE_REQ.1 Security Target, IT security requirements, Evaluation
requirements

ASE_TSS.1 Security Target, TOE summary specification, Evaluation
requirements

Developer action elements:

ASE_INT.1.1D The developer shall provide an ST introduction as part of the ST.

Content and presentation of evidence elements:

ASE_INT.1.1C The ST introduction shall contain an ST identification that provides the
labelling and descriptive information necessary to control and identify the ST
and the TOE to which it refers.

ASE_INT.1.2C The ST introduction shall contain an ST overview which summarises the ST
in narrative form.

ASE_INT.1.3C The ST introduction shall contain a CC conformance claim that states any
evaluatable claim of CC conformance for the TOE.

Evaluator action elements:

ASE_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_INT.1.2E The evaluator shall confirm that the ST introduction is coherent and
internally consistent.

ST introduction (ASE_INT)

Page 42 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

ASE_INT.1.3E The evaluator shall confirm that the ST introduction is consistent with the
other parts of the ST.

Security objectives (ASE_OBJ)

August 1999 Version 2.1 Page 43 of 208

5 - Class ASE: Security Target evaluation

5.4 Security objectives (ASE_OBJ)
ASE_OBJ Security Target, Security objectives

Objectives

170 The security objectives are a concise statement of the intended response to the
security problem. Evaluation of the security objectives is required to demonstrate
that the stated objectives adequately address the security problem. The security
objectives are categorised as security objectives for the TOE and as security
objectives for the environment. The security objectives for both the TOE and the
environment must be shown to be traced back to the identified threats to be
countered and/or policies and assumptions to be met by each.

ASE_OBJ.1 Security Target, Security objectives, Evaluation requirements

Dependencies:

ASE_ENV.1 Security Target, Security environment, Evaluation
requirements

Developer action elements:

ASE_OBJ.1.1D The developer shall provide a statement of security objectives as part of the
ST.

ASE_OBJ.1.2D The developer shall provide the security objectives rationale.

Content and presentation of evidence elements:

ASE_OBJ.1.1C The statement of security objectives shall define the security objectives for the
TOE and its environment.

ASE_OBJ.1.2C The security objectives for the TOE shall be clearly stated and traced back to
aspects of the identified threats to be countered by the TOE and/or
organisational security policies to be met by the TOE.

ASE_OBJ.1.3C The security objectives for the environment shall be clearly stated and traced
back to aspects of identified threats not completely countered by the TOE
and/or organisational security policies or assumptions not completely met by
the TOE.

ASE_OBJ.1.4C The security objectives rationale shall demonstrate that the stated security
objectives are suitable to counter the identified threats to security.

ASE_OBJ.1.5C The security objectives rationale shall demonstrate that the stated security
objectives are suitable to cover all of the identified organisational security
policies and assumptions.

Security objectives (ASE_OBJ)

Page 44 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

Evaluator action elements:

ASE_OBJ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_OBJ.1.2E The evaluator shall confirm that the statement of security objectives is
complete, coherent, and internally consistent.

PP claims (ASE_PPC)

August 1999 Version 2.1 Page 45 of 208

5 - Class ASE: Security Target evaluation

5.5 PP claims (ASE_PPC)
ASE_PPC Security Target, PP claims

Objectives

171 The goal of the evaluation of the Security Target PP claims is to determine whether
the ST is a correct instantiation of the PP.

Application notes

172 The family applies only in the case of a PP claim. In all other cases, no developer
action and no evaluator action is necessary.

173 Although additional evaluation activity is necessary when a PP claim is made, the
ST evaluation effort is generally smaller than in cases where no PP is used because
it is possible to reuse the PP evaluation results for the ST evaluation.

ASE_PPC.1 Security Target, PP claims, Evaluation requirements

Dependencies:

ASE_OBJ.1 Security Target, Security objectives, Evaluation
requirements

ASE_REQ.1 Security Target, IT security requirements, Evaluation
requirements

Developer action elements:

ASE_PPC.1.1D The developer shall provide any PP claims as part of the ST.

ASE_PPC.1.2D The developer shall provide the PP claims rationale for each provided PP
claim.

Content and presentation of evidence elements:

ASE_PPC.1.1C Each PP claim shall identify the PP for which compliance is being claimed,
including qualifications needed for that claim.

ASE_PPC.1.2C Each PP claim shall identify the IT security requirements statements that
satisfy the permitted operations of the PP or otherwise further qualify the PP
requirements.

ASE_PPC.1.3C Each PP claim shall identify security objectives and IT security requirements
statements contained in the ST that are in addition to those contained in the
PP.

Evaluator action elements:

ASE_PPC.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

PP claims (ASE_PPC)

Page 46 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

ASE_PPC.1.2E The evaluator shall confirm that the PP claims are a correct instantiation of
the PP.

IT security requirements (ASE_REQ)

August 1999 Version 2.1 Page 47 of 208

5 - Class ASE: Security Target evaluation

5.6 IT security requirements (ASE_REQ)
ASE_REQ Security Target, IT security requirements

Objectives

174 The IT security requirements chosen for a TOE and presented or cited in an ST need
to be evaluated in order to confirm that they are internally consistent and lead to the
development of a TOE that will meet its security objectives.

175 This family presents evaluation requirements that permit the evaluator to determine
that an ST is suitable for use as a statement of requirements for the corresponding
TOE. The additional criteria necessary for the evaluation of explicitly stated
requirements is covered in the ASE_SRE family.

Application notes

176 The term “IT security requirements” refers to “TOE security requirements” and the
optionally included “security requirements for the IT environment”.

177 The term “TOE security requirements” refers to “TOE security functional
requirements” and/or “TOE security assurance requirements”.

178 In the ASE_REQ.1 component, the word “appropriate” is used to indicate that
certain elements allow options in certain cases. Which options are applicable
depends on the given context in the ST. Detailed information for all these aspects is
contained in CC Part 1, annex C.

ASE_REQ.1 Security Target, IT security requirements, Evaluation requirements

Dependencies:

ASE_OBJ.1 Security Target, Security objectives, Evaluation
requirements

Developer action elements:

ASE_REQ.1.1D The developer shall provide a statement of IT security requirements as part
of the ST.

ASE_REQ.1.2D The developer shall provide the security requirements rationale.

Content and presentation of evidence elements:

ASE_REQ.1.1C The statement of TOE security functional requirements shall identify the
TOE security functional requirements drawn from CC Part 2 functional
requirements components.

ASE_REQ.1.2C The statement of TOE security assurance requirements shall identify the
TOE security assurance requirements drawn from CC Part 3 assurance
requirements components.

IT security requirements (ASE_REQ)

Page 48 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

ASE_REQ.1.3C The statement of TOE security assurance requirements should include an
Evaluation Assurance Level (EAL) as defined in CC Part 3.

ASE_REQ.1.4C The evidence shall justify that the statement of TOE security assurance
requirements is appropriate.

ASE_REQ.1.5C The ST shall, if appropriate, identify any security requirements for the IT
environment.

ASE_REQ.1.6C Operations on IT security requirements included in the ST shall be identified
and performed.

ASE_REQ.1.7C Dependencies among the IT security requirements included in the ST should
be satisfied.

ASE_REQ.1.8C The evidence shall justify why any non-satisfaction of dependencies is
appropriate.

ASE_REQ.1.9C The ST shall include a statement of the minimum strength of function level
for the TOE security functional requirements, either SOF-basic, SOF-
medium or SOF-high, as appropriate.

ASE_REQ.1.10C The ST shall identify any specific TOE security functional requirements for
which an explicit strength of function is appropriate, together with the
specific metric.

ASE_REQ.1.11C The security requirements rationale shall demonstrate that the minimum
strength of function level for the ST together with any explicit strength of
function claim is consistent with the security objectives for the TOE.

ASE_REQ.1.12C The security requirements rationale shall demonstrate that the IT security
requirements are suitable to meet the security objectives.

ASE_REQ.1.13C The security requirements rationale shall demonstrate that the set of IT
security requirements together forms a mutually supportive and internally
consistent whole.

Evaluator action elements:

ASE_REQ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_REQ.1.2E The evaluator shall confirm that the statement of IT security requirements is
complete, coherent, and internally consistent.

Explicitly stated IT security
requirements (ASE_SRE)

August 1999 Version 2.1 Page 49 of 208

5 - Class ASE: Security Target evaluation

5.7 Explicitly stated IT security requirements (ASE_SRE)
ASE_SRE Security Target, Explicitly stated IT security requirements

Objectives

179 If, after careful consideration, none of the requirements components in CC Part 2 or
CC Part 3 are readily applicable to all or parts of the IT security requirements, the
ST author may state other requirements which do not reference the CC. The use of
such requirements shall be justified.

180 This family presents evaluation requirements that permit the evaluator to determine
that the explicitly stated requirements are clearly and unambiguously expressed.
The evaluation of requirements taken from the CC in conjunction with valid
explicitly stated security requirements is addressed by the ASE_REQ family.

181 Explicitly stated IT security requirements for a TOE presented or cited in an ST
need to be evaluated in order to demonstrate that they are clearly and
unambiguously expressed.

Application notes

182 Formulation of the explicitly stated requirements in a structure comparable to those
of existing CC components and elements involves choosing similar labelling,
manner of expression, and level of detail.

183 Using the CC requirements as a model means that the requirements can be clearly
identified, that they are self-contained, and that the application of each requirement
is feasible and will yield a meaningful evaluation result based on a compliance
statement of the TOE for that particular requirement.

184 The term “IT security requirements” refers to “TOE security requirements” and the
optionally included “security requirements for the IT environment”.

185 The term “TOE security requirements” refers to “TOE security functional
requirements” and/or “TOE security assurance requirements”.

ASE_SRE.1 Security Target, Explicitly stated IT security requirements, Evaluation
requirements

Dependencies:

ASE_REQ.1 Security Target, IT security requirements, Evaluation
requirements

Developer action elements:

ASE_SRE.1.1D The developer shall provide a statement of IT security requirements as part
of the ST.

ASE_SRE.1.2D The developer shall provide the security requirements rationale.

Explicitly stated IT security requirements
(ASE_SRE)

Page 50 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

Content and presentation of evidence elements:

ASE_SRE.1.1C All TOE security requirements that are explicitly stated without reference to
the CC shall be identified.

ASE_SRE.1.2C All security requirements for the IT environment that are explicitly stated
without reference to the CC shall be identified.

ASE_SRE.1.3C The evidence shall justify why the security requirements had to be explicitly
stated.

ASE_SRE.1.4C The explicitly stated IT security requirements shall use the CC requirements
components, families and classes as a model for presentation.

ASE_SRE.1.5C The explicitly stated IT security requirements shall be measurable and state
objective evaluation requirements such that compliance or noncompliance of
a TOE can be determined and systematically demonstrated.

ASE_SRE.1.6C The explicitly stated IT security requirements shall be clearly and
unambiguously expressed.

ASE_SRE.1.7C The security requirements rationale shall demonstrate that the assurance
requirements are applicable and appropriate to support any explicitly stated
TOE security functional requirements.

Evaluator action elements:

ASE_SRE.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_SRE.1.2E The evaluator shall determine that all of the dependencies of the explicitly
stated IT security requirements have been identified.

TOE summary specification (ASE_TSS)

August 1999 Version 2.1 Page 51 of 208

5 - Class ASE: Security Target evaluation

5.8 TOE summary specification (ASE_TSS)
ASE_TSS Security Target, TOE summary specification

Objectives

186 The TOE summary specification provides a high-level definition of the security
functions claimed to meet the functional requirements and of the assurance
measures taken to meet the assurance requirements.

Application notes

187 The relationship between the IT security functions and the TOE security functional
requirements can be a “many to many” relationship. Nevertheless, every security
function shall contribute to the satisfaction of at least one security requirement in
order be able to clearly define the TSF. Security functions that do not fulfil this
requirement should normally not be necessary. Note, however, that the requirement
that a security function contributes to the satisfaction of at least one security
requirement is worded in a quite general manner, so that all the security functions
found to be useful for the TOE should be justifiable.

188 The statement of assurance measures is of specific relevance in all those cases
where assurance requirements not taken from the CC are included in the ST. If the
TOE security assurance requirements in the ST are exclusively based on CC
evaluation assurance levels or other CC Part 3 assurance components, then the
assurance measures could be presented in the form of a reference to the documents
that show that the assurance requirements are met.

189 In the ASE_TSS.1 component, the word “appropriate” is used to indicate that
certain elements allow options in certain cases. Which options are applicable
depends on the given context in the ST. Detailed information for all these aspects is
contained in CC Part 1, annex C.

ASE_TSS.1 Security Target, TOE summary specification, Evaluation requirements

Dependencies:

ASE_REQ.1 Security Target, IT security requirements, Evaluation
requirements

Developer action elements:

ASE_TSS.1.1D The developer shall provide a TOE summary specification as part of the ST.

ASE_TSS.1.2D The developer shall provide the TOE summary specification rationale.

Content and presentation of evidence elements:

ASE_TSS.1.1C The TOE summary specification shall describe the IT security functions and
the assurance measures of the TOE.

TOE summary specification (ASE_TSS)

Page 52 of 208 Version 2.1 August 1999

5 - Class ASE: Security Target evalu-
ation

ASE_TSS.1.2C The TOE summary specification shall trace the IT security functions to the
TOE security functional requirements such that it can be seen which IT
security functions satisfy which TOE security functional requirements and
that every IT security function contributes to the satisfaction of at least one
TOE security functional requirement.

ASE_TSS.1.3C The IT security functions shall be defined in an informal style to a level of
detail necessary for understanding their intent.

ASE_TSS.1.4C All references to security mechanisms included in the ST shall be traced to the
relevant security functions so that it can be seen which security mechanisms
are used in the implementation of each function.

ASE_TSS.1.5C The TOE summary specification rationale shall demonstrate that the IT
security functions are suitable to meet the TOE security functional
requirements.

ASE_TSS.1.6C The TOE summary specification rationale shall demonstrate that the
combination of the specified IT security functions work together so as to
satisfy the TOE security functional requirements.

ASE_TSS.1.7C The TOE summary specification shall trace the assurance measures to the
assurance requirements so that it can be seen which measures contribute to
the satisfaction of which requirements.

ASE_TSS.1.8C The TOE summary specification rationale shall demonstrate that the
assurance measures meet all assurance requirements of the TOE.

ASE_TSS.1.9C The TOE summary specification shall identify all IT security functions that
are realised by a probabilistic or permutational mechanism, as appropriate.

ASE_TSS.1.10C The TOE summary specification shall, for each IT security function for which
it is appropriate, state the strength of function claim either as a specific
metric, or as SOF-basic, SOF-medium or SOF-high.

Evaluator action elements:

ASE_TSS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_TSS.1.2E The evaluator shall confirm that the TOE summary specification is complete,
coherent, and internally consistent.

67Part 3: Security assurance requirements Evaluation assurance level (EAL)

August 1999 Version 2.1 Page 53 of 208

Evaluation assurance level (EAL)
overview

6 Evaluation assurance levels

190 The Evaluation Assurance Levels (EALs) provide an increasing scale that balances
the level of assurance obtained with the cost and feasibility of acquiring that degree
of assurance. The CC approach identifies the separate concepts of assurance in a
TOE at the end of the evaluation, and of maintenance of that assurance during the
operational use of the TOE.

191 It is important to note that not all families and components from CC Part 3 are
included in the EALs. This is not to say that these do not provide meaningful and
desirable assurances. Instead, it is expected that these families and components will
be considered for augmentation of an EAL in those PPs and STs for which they
provide utility.

6.1 Evaluation assurance level (EAL) overview

192 Table 6.1 represents a summary of the EALs. The columns represent a
hierarchically ordered set of EALs, while the rows represent assurance families.
Each number in the resulting matrix identifies a specific assurance component
where applicable.

193 As outlined in the next subclause, seven hierarchically ordered evaluation assurance
levels are defined in the CC for the rating of a TOE's assurance. They are
hierarchically ordered inasmuch as each EAL represents more assurance than all
lower EALs. The increase in assurance from EAL to EAL is accomplished by
substitution of a hierarchically higher assurance component from the same
assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition
of assurance components from other assurance families (i.e. adding new
requirements).

194 These EALs consist of an appropriate combination of assurance components as
described in clause 2 of this Part 3. More precisely, each EAL includes no more than
one component of each assurance family and all assurance dependencies of every
component are addressed.

195 While the EALs are defined in the CC, it is possible to represent other combinations
of assurance. Specifically, the notion of “augmentation” allows the addition of
assurance components (from assurance families not already included in the EAL)
or the substitution of assurance components (with another hierarchically higher
assurance component in the same assurance family) to an EAL. Of the assurance
constructs defined in the CC, only EALs may be augmented. The notion of an “EAL
minus a constituent assurance component” is not recognised by the standard as a
valid claim. Augmentation carries with it the obligation on the part of the claimant
to justify the utility and added value of the added assurance component to the EAL.
An EAL may also be extended with explicitly stated assurance requirements.

6 - Evaluation assurance levels Evaluation assurance level details

Page 54 of 208 Version 2.1 August 1999

6.2 Evaluation assurance level details

196 The following subclauses provide definitions of the EALs, highlighting differences
between the specific requirements and the prose characterisations of those
requirements using bold type.

Table 6.1 - Evaluation assurance level summary

Assurance
Class

Assurance
Family

Assurance Components by
Evaluation Assurance Level

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

Class ACM:
Configuration
 management

ACM_AUT 1 1 2 2
ACM_CAP 1 2 3 4 4 5 5
ACM_SCP 1 2 3 3 3

Class ADO:
Delivery and

operation

ADO_DEL 1 1 2 2 2 3

ADO_IGS 1 1 1 1 1 1 1

Class ADV:
Development

ADV_FSP 1 1 1 2 3 3 4
ADV_HLD 1 2 2 3 4 5
ADV_IMP 1 2 3 3
ADV_INT 1 2 3
ADV_LLD 1 1 2 2
ADV_RCR 1 1 1 1 2 2 3
ADV_SPM 1 3 3 3

Class AGD:
Guidance
documents

AGD_ADM 1 1 1 1 1 1 1

AGD_USR 1 1 1 1 1 1 1

Class ALC:
Life cycle
support

ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 2 2 3
ALC_TAT 1 2 3 3

Class ATE:
Tests

ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 2 2 3
ATE_FUN 1 1 1 1 2 2
ATE_IND 1 2 2 2 2 2 3

Class AVA:
Vulnerability
assessment

AVA_CCA 1 2 2
AVA_MSU 1 2 2 3 3
AVA_SOF 1 1 1 1 1 1
AVA_VLA 1 1 2 3 4 4

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 55 of 208

6.2.1 Evaluation assurance level 1 (EAL1) - functionally tested

Objectives

197 EAL1 is applicable where some confidence in correct operation is required, but the
threats to security are not viewed as serious. It will be of value where independent
assurance is required to support the contention that due care has been exercised with
respect to the protection of personal or similar information.

198 EAL1 provides an evaluation of the TOE as made available to the customer,
including independent testing against a specification, and an examination of the
guidance documentation provided. It is intended that an EAL1 evaluation could be
successfully conducted without assistance from the developer of the TOE, and for
minimal outlay.

199 An evaluation at this level should provide evidence that the TOE functions in a
manner consistent with its documentation, and that it provides useful protection
against identified threats.

Assurance components

200 EAL1 (see Table 6.2) provides a basic level of assurance by an analysis of the
security functions using a functional and interface specification and guidance
documentation, to understand the security behaviour.

201 The analysis is supported by independent testing of the TOE security
functions.

202 This EAL provides a meaningful increase in assurance over an unevaluated IT
product or system.

Table 6.2 - EAL1

Assurance class Assurance components
Class ACM: Configuration

management
ACM_CAP.1 Version numbers

Class ADO: Delivery and
operation

ADO_IGS.1 Installation, generation, and start-up
procedures

Class ADV: Development
ADV_FSP.1 Informal functional specification
ADV_RCR.1 Informal correspondence demonstration

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ATE: Tests ATE_IND.1 Independent testing - conformance

6 - Evaluation assurance levels Evaluation assurance level details

Page 56 of 208 Version 2.1 August 1999

6.2.2 Evaluation assurance level 2 (EAL2) - structurally tested

Objectives

203 EAL2 requires the co-operation of the developer in terms of the delivery of design
information and test results, but should not demand more effort on the part of the
developer than is consistent with good commercial practice. As such it should not
require a substantially increased investment of cost or time.

204 EAL2 is therefore applicable in those circumstances where developers or users
require a low to moderate level of independently assured security in the absence of
ready availability of the complete development record. Such a situation may arise
when securing legacy systems, or where access to the developer may be limited.

Assurance components

205 EAL2 (see Table 6.3) provides assurance by an analysis of the security functions,
using a functional and interface specification, guidance documentation and the
high-level design of the TOE, to understand the security behaviour.

206 The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification, selective
independent confirmation of the developer test results, strength of function
analysis, and evidence of a developer search for obvious vulnerabilities (e.g.
those in the public domain).

207 EAL2 also provides assurance through a configuration list for the TOE, and
evidence of secure delivery procedures.

208 This EAL represents a meaningful increase in assurance from EAL1 by
requiring developer testing, a vulnerability analysis, and independent testing
based upon more detailed TOE specifications.

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 57 of 208

Table 6.3 - EAL2

Assurance class Assurance components
Class ACM: Configuration

management
ACM_CAP.2 Configuration items

Class ADO: Delivery and
operation

ADO_DEL.1 Delivery procedures
ADO_IGS.1 Installation, generation, and start-up procedures

Class ADV: Development
ADV_FSP.1 Informal functional specification
ADV_HLD.1 Descriptive high-level design
ADV_RCR.1 Informal correspondence demonstration

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ATE: Tests
ATE_COV.1 Evidence of coverage
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

Class AVA: Vulnerability
assessment

AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.1 Developer vulnerability analysis

6 - Evaluation assurance levels Evaluation assurance level details

Page 58 of 208 Version 2.1 August 1999

6.2.3 Evaluation assurance level 3 (EAL3) - methodically tested and
checked

Objectives

209 EAL3 permits a conscientious developer to gain maximum assurance from positive
security engineering at the design stage without substantial alteration of existing
sound development practices.

210 EAL3 is applicable in those circumstances where developers or users require a
moderate level of independently assured security, and require a thorough
investigation of the TOE and its development without substantial re-engineering.

Assurance components

211 EAL3 (see Table 6.4) provides assurance by an analysis of the security functions,
using a functional and interface specification, guidance documentation, and the
high-level design of the TOE, to understand the security behaviour.

212 The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification and high-level
design, selective independent confirmation of the developer test results, strength of
function analysis, and evidence of a developer search for obvious vulnerabilities
(e.g. those in the public domain).

213 EAL3 also provides assurance through the use of development environment
controls, TOE configuration management, and evidence of secure delivery
procedures.

214 This EAL represents a meaningful increase in assurance from EAL2 by
requiring more complete testing coverage of the security functions and
mechanisms and/or procedures that provide some confidence that the TOE
will not be tampered with during development.

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 59 of 208

Table 6.4 - EAL3

Assurance class Assurance components

Class ACM: Configuration
management

ACM_CAP.3 Authorisation controls
ACM_SCP.1 TOE CM coverage

Class ADO: Delivery and
operation

ADO_DEL.1 Delivery procedures
ADO_IGS.1 Installation, generation, and start-up procedures

Class ADV: Development
ADV_FSP.1 Informal functional specification
ADV_HLD.2 Security enforcing high-level design
ADV_RCR.1 Informal correspondence demonstration

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ALC: Life cycle
support

ALC_DVS.1 Identification of security measures

Class ATE: Tests

ATE_COV.2 Analysis of coverage
ATE_DPT.1 Testing: high-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

Class AVA: Vulnerability
assessment

AVA_MSU.1 Examination of guidance
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.1 Developer vulnerability analysis

6 - Evaluation assurance levels Evaluation assurance level details

Page 60 of 208 Version 2.1 August 1999

6.2.4 Evaluation assurance level 4 (EAL4) - methodically designed, tested,
and reviewed

Objectives

215 EAL4 permits a developer to gain maximum assurance from positive security
engineering based on good commercial development practices which, though
rigorous, do not require substantial specialist knowledge, skills, and other
resources. EAL4 is the highest level at which it is likely to be economically feasible
to retrofit to an existing product line.

216 EAL4 is therefore applicable in those circumstances where developers or users
require a moderate to high level of independently assured security in conventional
commodity TOEs and are prepared to incur additional security-specific engineering
costs.

Assurance components

217 EAL4 (see Table 6.5) provides assurance by an analysis of the security functions,
using a functional and complete interface specification, guidance documentation,
the high-level and low-level design of the TOE, and a subset of the
implementation, to understand the security behaviour. Assurance is additionally
gained through an informal model of the TOE security policy.

218 The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification and high-level
design, selective independent confirmation of the developer test results, strength of
function analysis, evidence of a developer search for vulnerabilities, and an
independent vulnerability analysis demonstrating resistance to penetration
attackers with a low attack potential.

219 EAL4 also provides assurance through the use of development environment
controls and additional TOE configuration management including automation,
and evidence of secure delivery procedures.

220 This EAL represents a meaningful increase in assurance from EAL3 by
requiring more design description, a subset of the implementation, and
improved mechanisms and/or procedures that provide confidence that the
TOE will not be tampered with during development or delivery.

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 61 of 208

Table 6.5 - EAL4

Assurance class Assurance components

Class ACM: Configuration
management

ACM_AUT.1 Partial CM automation
ACM_CAP.4 Generation support and acceptance procedures
ACM_SCP.2 Problem tracking CM coverage

Class ADO: Delivery and
operation

ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures

Class ADV: Development

ADV_FSP.2 Fully defined external interfaces
ADV_HLD.2 Security enforcing high-level design
ADV_IMP.1 Subset of the implementation of the TSF
ADV_LLD.1 Descriptive low-level design
ADV_RCR.1 Informal correspondence demonstration
ADV_SPM.1 Informal TOE security policy model

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ALC: Life cycle
support

ALC_DVS.1 Identification of security measures
ALC_LCD.1 Developer defined life-cycle model
ALC_TAT.1 Well-defined development tools

Class ATE: Tests

ATE_COV.2 Analysis of coverage
ATE_DPT.1 Testing: high-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

Class AVA: Vulnerability
assessment

AVA_MSU.2 Validation of analysis
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.2 Independent vulnerability analysis

6 - Evaluation assurance levels Evaluation assurance level details

Page 62 of 208 Version 2.1 August 1999

6.2.5 Evaluation assurance level 5 (EAL5) - semiformally designed and
tested

Objectives

221 EAL5 permits a developer to gain maximum assurance from security engineering
based upon rigorous commercial development practices supported by moderate
application of specialist security engineering techniques. Such a TOE will probably
be designed and developed with the intent of achieving EAL5 assurance. It is likely
that the additional costs attributable to the EAL5 requirements, relative to rigorous
development without the application of specialised techniques, will not be large.

222 EAL5 is therefore applicable in those circumstances where developers or users
require a high level of independently assured security in a planned development and
require a rigorous development approach without incurring unreasonable costs
attributable to specialist security engineering techniques.

Assurance components

223 EAL5 (see Table 6.6) provides assurance by an analysis of the security functions,
using a functional and complete interface specification, guidance documentation,
the high-level and low-level design of the TOE, and all of the implementation, to
understand the security behaviour. Assurance is additionally gained through a
formal model of the TOE security policy and a semiformal presentation of the
functional specification and high-level design and a semiformal demonstration
of correspondence between them. A modular TOE design is also required.

224 The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification, high-level
design and low-level design, selective independent confirmation of the developer
test results, strength of function analysis, evidence of a developer search for
vulnerabilities, and an independent vulnerability analysis demonstrating resistance
to penetration attackers with a moderate attack potential. The analysis also
includes validation of the developer’s covert channel analysis.

225 EAL5 also provides assurance through the use of a development environment
controls, and comprehensive TOE configuration management including
automation, and evidence of secure delivery procedures.

226 This EAL represents a meaningful increase in assurance from EAL4 by
requiring semiformal design descriptions, the entire implementation, a more
structured (and hence analysable) architecture, covert channel analysis, and
improved mechanisms and/or procedures that provide confidence that the
TOE will not be tampered with during development.

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 63 of 208

Table 6.6 - EAL5

Assurance class Assurance components

Class ACM: Configuration
management

ACM_AUT.1 Partial CM automation
ACM_CAP.4 Generation support and acceptance procedures
ACM_SCP.3 Development tools CM coverage

Class ADO: Delivery and
operation

ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures

Class ADV: Development

ADV_FSP.3 Semiformal functional specification
ADV_HLD.3 Semiformal high-level design
ADV_IMP.2 Implementation of the TSF
ADV_INT.1 Modularity
ADV_LLD.1 Descriptive low-level design
ADV_RCR.2 Semiformal correspondence demonstration
ADV_SPM.3 Formal TOE security policy model

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ALC: Life cycle
support

ALC_DVS.1 Identification of security measures
ALC_LCD.2 Standardised life-cycle model
ALC_TAT.2 Compliance with implementation standards

Class ATE: Tests

ATE_COV.2 Analysis of coverage
ATE_DPT.2 Testing: low-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

Class AVA: Vulnerability
assessment

AVA_CCA.1 Covert channel analysis
AVA_MSU.2 Validation of analysis
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.3 Moderately resistant

6 - Evaluation assurance levels Evaluation assurance level details

Page 64 of 208 Version 2.1 August 1999

6.2.6 Evaluation assurance level 6 (EAL6) - semiformally verified design and
tested

Objectives

227 EAL6 permits developers to gain high assurance from application of security
engineering techniques to a rigorous development environment in order to produce
a premium TOE for protecting high value assets against significant risks.

228 EAL6 is therefore applicable to the development of security TOEs for application
in high risk situations where the value of the protected assets justifies the additional
costs.

Assurance components

229 EAL6 (see Table 6.7) provides assurance by an analysis of the security functions,
using a functional and complete interface specification, guidance documentation,
the high-level and low-level design of the of the TOE, and a structured
presentation of the implementation, to understand the security behaviour.
Assurance is additionally gained through a formal model of the TOE security
policy, a semiformal presentation of the functional specification, high-level design,
and low-level design and a semiformal demonstration of correspondence between
them. A modular and layered TOE design is also required.

230 The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification, high-level
design and low-level design, selective independent confirmation of the developer
test results, strength of function analysis, evidence of a developer search for
vulnerabilities, and an independent vulnerability analysis demonstrating resistance
to penetration attackers with a high attack potential. The analysis also includes
validation of the developer’s systematic covert channel analysis.

231 EAL6 also provides assurance through the use of a structured development
process, development environment controls, and comprehensive TOE
configuration management including complete automation, and evidence of secure
delivery procedures.

232 This EAL represents a meaningful increase in assurance from EAL5 by
requiring more comprehensive analysis, a structured representation of the
implementation, more architectural structure (e.g. layering), more
comprehensive independent vulnerability analysis, systematic covert channel
identification, and improved configuration management and development
environment controls.

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 65 of 208

Table 6.7 - EAL6

Assurance class Assurance components

Class ACM:
Configuration
management

ACM_AUT.2 Complete CM automation
ACM_CAP.5 Advanced support
ACM_SCP.3 Development tools CM coverage

Class ADO: Delivery
and operation

ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures

Class ADV:
Development

ADV_FSP.3 Semiformal functional specification
ADV_HLD.4 Semiformal high-level explanation
ADV_IMP.3 Structured implementation of the TSF
ADV_INT.2 Reduction of complexity
ADV_LLD.2 Semiformal low-level design
ADV_RCR.2 Semiformal correspondence demonstration
ADV_SPM.3 Formal TOE security policy model

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ALC: Life cycle
support

ALC_DVS.2 Sufficiency of security measures
ALC_LCD.2 Standardised life-cycle model
ALC_TAT.3 Compliance with implementation standards - all parts

Class ATE: Tests

ATE_COV.3 Rigorous analysis of coverage
ATE_DPT.2 Testing: low-level design
ATE_FUN.2 Ordered functional testing
ATE_IND.2 Independent testing - sample

Class AVA:
Vulnerability
assessment

AVA_CCA.2 Systematic covert channel analysis
AVA_MSU.3 Analysis and testing for insecure states
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.4 Highly resistant

6 - Evaluation assurance levels Evaluation assurance level details

Page 66 of 208 Version 2.1 August 1999

6.2.7 Evaluation assurance level 7 (EAL7) - formally verified design and
tested

Objectives

233 EAL7 is applicable to the development of security TOEs for application in
extremely high risk situations and/or where the high value of the assets justifies the
higher costs. Practical application of EAL7 is currently limited to TOEs with tightly
focused security functionality that is amenable to extensive formal analysis.

Assurance components

234 EAL7 (see Table 6.8) provides assurance by an analysis of the security functions,
using a functional and complete interface specification, guidance documentation,
the high-level and low-level design of the TOE, and a structured presentation of the
implementation, to understand the security behaviour. Assurance is additionally
gained through a formal model of the TOE security policy, a formal presentation
of the functional specification and high-level design, a semiformal presentation
of the low-level design, and formal and semiformal demonstration of
correspondence between them, as appropriate. A modular, layered and simple
TOE design is also required.

235 The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification high-level
design, low-level design and implementation representation, complete
independent confirmation of the developer test results, strength of function
analysis, evidence of a developer search for vulnerabilities, and an independent
vulnerability analysis demonstrating resistance to penetration attackers with a high
attack potential. The analysis also includes validation of the developer’s systematic
covert channel analysis.

236 EAL7 also provides assurance through the use of a structured development process,
development environment controls, and comprehensive TOE configuration
management including complete automation, and evidence of secure delivery
procedures.

237 This EAL represents a meaningful increase in assurance from EAL6 by
requiring more comprehensive analysis using formal representations and
formal correspondence, and comprehensive testing.

Evaluation assurance level details 6 - Evaluation assurance levels

August 1999 Version 2.1 Page 67 of 208

Table 6.8 - EAL7

Assurance class Assurance components

Class ACM: Configuration
management

ACM_AUT.2 Complete CM automation
ACM_CAP.5 Advanced support
ACM_SCP.3 Development tools CM coverage

Class ADO: Delivery and
operation

ADO_DEL.3 Prevention of modification
ADO_IGS.1 Installation, generation, and start-up procedures

Class ADV: Development

ADV_FSP.4 Formal functional specification
ADV_HLD.5 Formal high-level design
ADV_IMP.3 Structured implementation of the TSF
ADV_INT.3 Minimisation of complexity
ADV_LLD.2 Semiformal low-level design
ADV_RCR.3 Formal correspondence demonstration
ADV_SPM.3 Formal TOE security policy model

Class AGD: Guidance
documents

AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Class ALC: Life cycle
support

ALC_DVS.2 Sufficiency of security measures
ALC_LCD.3 Measurable life-cycle model
ALC_TAT.3 Compliance with implementation standards - all parts

Class ATE: Tests

ATE_COV.3 Rigorous analysis of coverage
ATE_DPT.3 Testing: implementation representation
ATE_FUN.2 Ordered functional testing
ATE_IND.3 Independent testing - complete

Class AVA: Vulnerability
assessment

AVA_CCA.2 Systematic covert channel analysis
AVA_MSU.3 Analysis and testing for insecure states
AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.4 Highly resistant

68Part 3: Security assurance requirements

August 1999 Version 2.1 Page 68 of 208

7 Assurance classes, families, and components

238 The next seven clauses provide the detailed requirements, presented in alphabetical
order, of each of the assurance components, grouped by class and family.

84Part 3: Security assurance requirements

August 1999 Version 2.1 Page 69 of 208

8 Class ACM: Configuration management

239 Configuration management (CM) is one method or means for establishing that the
functional requirements and specifications are realised in the implementation of the
TOE. CM meets these objectives by requiring discipline and control in the
processes of refinement and modification of the TOE and the related information.
CM systems are put in place to ensure the integrity of the portions of the TOE that
they control, by providing a method of tracking any changes, and by ensuring that
all changes are authorised.

240 Figure 8.1 shows the families within this class, and the hierarchy of components
within the families.

Class ACM: Configuration management

ACM_AUT CM automation 1 2

ACM_CAP CM capabilities 1 2 3 4 5

ACM_SCP CM scope 1 2 3

Figure 8.1 -Configuration management class decomposition

8 - Class ACM: Configuration management CM automation (ACM_AUT)

Page 70 of 208 Version 2.1 August 1999

8.1 CM automation (ACM_AUT)
ACM_AUT CM automation

Objectives

241 The objective of introducing automated CM tools is to increase the effectiveness of
the CM system. While both automated and manual CM systems can be bypassed,
ignored, or prove insufficient to prevent unauthorised modification, automated
systems are less susceptible to human error or negligence.

Component levelling

242 The components in this family are levelled on the basis of the set of configuration
items that are controlled through automated means.

Application notes

243 ACM_AUT.1.1C introduces a requirement that is related to the implementation
representation of the TOE. The implementation representation of the TOE consists
of all hardware, software, and firmware that comprise the physical TOE. In the case
of a software-only TOE, the implementation representation may consist solely of
source and object code.

244 ACM_AUT.1.2C introduces a requirement that the CM system provide an
automated means to support the generation of the TOE. This requires that the CM
system provide an automated means to assist in determining that the correct
configuration items are used in generating the TOE.

245 ACM_AUT.2.5C introduces a requirement that the CM system provide an
automated means to ascertain the changes between the TOE and its preceding
version. If no previous version of the TOE exists, the developer still needs to
provide an automated means to ascertain the changes between the TOE and a future
version of the TOE.

ACM_AUT.1 Partial CM automation

Objectives

246 In development environments where the implementation representation is complex
or is being developed by multiple developers, it is difficult to control changes
without the support of automated tools. In particular, these automated tools need to
be able to support the numerous changes that occur during development and ensure
that those changes are authorised. It is the objective of this component to ensure that
the implementation representation is controlled through automated means.

Dependencies:

ACM_CAP.3 Authorisation controls

CM automation (ACM_AUT) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 71 of 208

Developer action elements:

ACM_AUT.1.1D The developer shall use a CM system.

ACM_AUT.1.2D The developer shall provide a CM plan.

Content and presentation of evidence elements:

ACM_AUT.1.1C The CM system shall provide an automated means by which only authorised
changes are made to the TOE implementation representation.

ACM_AUT.1.2C The CM system shall provide an automated means to support the generation
of the TOE.

ACM_AUT.1.3C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.1.4C The CM plan shall describe how the automated tools are used in the CM
system.

Evaluator action elements:

ACM_AUT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_AUT.2 Complete CM automation

Objectives

247 In development environments where the configuration items are complex or are
being developed by multiple developers, it is difficult to control changes without
the support of automated tools. In particular, these automated tools need to be able
to support the numerous changes that occur during development and ensure that
those changes are authorised. It is the objective of this component to ensure that all
configuration items are controlled through automated means.

248 Providing an automated means of ascertaining changes between versions of the
TOE and identifying which configuration items are affected by modifications to
other configuration items assists in determining the impact of the changes between
successive versions of the TOE. This in turn can provide valuable information in
determining whether changes to the TOE result in all configuration items being
consistent with one another.

Dependencies:

ACM_CAP.3 Authorisation controls

Developer action elements:

ACM_AUT.2.1D The developer shall use a CM system.

8 - Class ACM: Configuration management CM automation (ACM_AUT)

Page 72 of 208 Version 2.1 August 1999

ACM_AUT.2.2D The developer shall provide a CM plan.

Content and presentation of evidence elements:

ACM_AUT.2.1C The CM system shall provide an automated means by which only authorised
changes are made to the TOE implementation representation, and to all other
configuration items.

ACM_AUT.2.2C The CM system shall provide an automated means to support the generation of the
TOE.

ACM_AUT.2.3C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.2.4C The CM plan shall describe how the automated tools are used in the CM system.

ACM_AUT.2.5C The CM system shall provide an automated means to ascertain the changes
between the TOE and its preceding version.

ACM_AUT.2.6C The CM system shall provide an automated means to identify all other
configuration items that are affected by the modification of a given
configuration item.

Evaluator action elements:

ACM_AUT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CM capabilities (ACM_CAP) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 73 of 208

8.2 CM capabilities (ACM_CAP)
ACM_CAP CM capabilities

Objectives

249 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM system
should ensure the integrity of the TOE from the early design stages through all
subsequent maintenance efforts.

250 The objectives of this family include the following:

a) ensuring that the TOE is correct and complete before it is sent to the consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items.

Component levelling

251 The components in this family are levelled on the basis of the CM system
capabilities, the scope of the CM documentation provided by the developer, and
whether the developer provides justification that the CM system meets its security
requirements.

Application notes

252 ACM_CAP.2 introduces several elements which refer to configuration items. The
ACM_SCP family contains requirements for the configuration items to be tracked
by the CM system.

253 ACM_CAP.2.3C introduces a requirement that a configuration list be provided.
The configuration list contains all configuration items that are maintained by the
CM system.

254 ACM_CAP.2.6C introduces a requirement that the CM system uniquely identify all
configuration items. This also requires that modifications to configuration items
result in a new, unique identifier being assigned.

255 ACM_CAP.3.8C introduces the requirement that the evidence shall demonstrate
that the CM system operates in accordance with the CM plan. Examples of such
evidence might be documentation such as screen snapshots or audit trail output
from the CM system, or a detailed demonstration of the CM system by the
developer. The evaluator is responsible for determining that this evidence is
sufficient to show that the CM system operates in accordance with the CM plan.

256 ACM_CAP.3.9C introduces the requirement that evidence be provided to show that
all configuration items are being maintained under the CM system. Since a

8 - Class ACM: Configuration management CM capabilities (ACM_CAP)

Page 74 of 208 Version 2.1 August 1999

configuration item refers to an item that is on the configuration list, this requirement
states that all items on the configuration list are maintained under the CM system.

257 ACM_CAP.4.11C introduces the requirement that the CM system support the
generation of the TOE. This requires that the CM system provide information and/
or electronic means to assist in determining that the correct configuration items are
used in generating the TOE.

ACM_CAP.1 Version numbers

Objectives

258 A unique reference is required to ensure that there is no ambiguity in terms of which
instance of the TOE is being evaluated. Labelling the TOE with its reference
ensures that users of the TOE can be aware of which instance of the TOE they are
using.

Dependencies:

No dependencies.

Developer action elements:

ACM_CAP.1.1D The developer shall provide a reference for the TOE.

Content and presentation of evidence elements:

ACM_CAP.1.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.1.2C The TOE shall be labelled with its reference.

Evaluator action elements:

ACM_CAP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_CAP.2 Configuration items

Objectives

259 A unique reference is required to ensure that there is no ambiguity in terms of which
instance of the TOE is being evaluated. Labelling the TOE with its reference
ensures that users of the TOE can be aware of which instance of the TOE they are
using.

260 Unique identification of the configuration items leads to a clearer understanding of
the composition of the TOE, which in turn helps to determine those items which are
subject to the evaluation requirements for the TOE.

CM capabilities (ACM_CAP) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 75 of 208

Dependencies:

No dependencies.

Developer action elements:

ACM_CAP.2.1D The developer shall provide a reference for the TOE.

ACM_CAP.2.2D The developer shall use a CM system.

ACM_CAP.2.3D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.2.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.2.2C The TOE shall be labelled with its reference.

ACM_CAP.2.3C The CM documentation shall include a configuration list.

ACM_CAP.2.4C The configuration list shall describe the configuration items that comprise the
TOE.

ACM_CAP.2.5C The CM documentation shall describe the method used to uniquely identify the
configuration items.

ACM_CAP.2.6C The CM system shall uniquely identify all configuration items.

Evaluator action elements:

ACM_CAP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_CAP.3 Authorisation controls

Objectives

261 A unique reference is required to ensure that there is no ambiguity in terms of which
instance of the TOE is being evaluated. Labelling the TOE with its reference
ensures that users of the TOE can be aware of which instance of the TOE they are
using.

262 Unique identification of the configuration items leads to a clearer understanding of
the composition of the TOE, which in turn helps to determine those items which are
subject to the evaluation requirements for the TOE.

263 Providing controls to ensure that unauthorised modifications are not made to the
TOE, and ensuring proper functionality and use of the CM system, helps to
maintain the integrity of the TOE.

8 - Class ACM: Configuration management CM capabilities (ACM_CAP)

Page 76 of 208 Version 2.1 August 1999

Dependencies:

ACM_SCP.1 TOE CM coverage

ALC_DVS.1 Identification of security measures

Developer action elements:

ACM_CAP.3.1D The developer shall provide a reference for the TOE.

ACM_CAP.3.2D The developer shall use a CM system.

ACM_CAP.3.3D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.3.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.3.2C The TOE shall be labelled with its reference.

ACM_CAP.3.3C The CM documentation shall include a configuration list and a CM plan.

ACM_CAP.3.4C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.3.5C The CM documentation shall describe the method used to uniquely identify the
configuration items.

ACM_CAP.3.6C The CM system shall uniquely identify all configuration items.

ACM_CAP.3.7C The CM plan shall describe how the CM system is used.

ACM_CAP.3.8C The evidence shall demonstrate that the CM system is operating in accordance
with the CM plan.

ACM_CAP.3.9C The CM documentation shall provide evidence that all configuration items
have been and are being effectively maintained under the CM system.

ACM_CAP.3.10C The CM system shall provide measures such that only authorised changes are
made to the configuration items.

Evaluator action elements:

ACM_CAP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_CAP.4 Generation support and acceptance procedures

Objectives

264 A unique reference is required to ensure that there is no ambiguity in terms of which
instance of the TOE is being evaluated. Labelling the TOE with its reference

CM capabilities (ACM_CAP) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 77 of 208

ensures that users of the TOE can be aware of which instance of the TOE they are
using.

265 Unique identification of the configuration items leads to a clearer understanding of
the composition of the TOE, which in turn helps to determine those items which are
subject to the evaluation requirements for the TOE.

266 Providing controls to ensure that unauthorised modifications are not made to the
TOE, and ensuring proper functionality and use of the CM system, helps to
maintain the integrity of the TOE.

267 The purpose of acceptance procedures is to confirm that any creation or
modification of configuration items is authorised.

Dependencies:

ACM_SCP.1 TOE CM coverage

ALC_DVS.1 Identification of security measures

Developer action elements:

ACM_CAP.4.1D The developer shall provide a reference for the TOE.

ACM_CAP.4.2D The developer shall use a CM system.

ACM_CAP.4.3D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.4.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.4.2C The TOE shall be labelled with its reference.

ACM_CAP.4.3C The CM documentation shall include a configuration list, a CM plan, and an
acceptance plan.

ACM_CAP.4.4C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.4.5C The CM documentation shall describe the method used to uniquely identify the
configuration items.

ACM_CAP.4.6C The CM system shall uniquely identify all configuration items.

ACM_CAP.4.7C The CM plan shall describe how the CM system is used.

ACM_CAP.4.8C The evidence shall demonstrate that the CM system is operating in accordance with
the CM plan.

ACM_CAP.4.9C The CM documentation shall provide evidence that all configuration items have
been and are being effectively maintained under the CM system.

8 - Class ACM: Configuration management CM capabilities (ACM_CAP)

Page 78 of 208 Version 2.1 August 1999

ACM_CAP.4.10C The CM system shall provide measures such that only authorised changes are made
to the configuration items.

ACM_CAP.4.11C The CM system shall support the generation of the TOE.

ACM_CAP.4.12C The acceptance plan shall describe the procedures used to accept modified or
newly created configuration items as part of the TOE.

Evaluator action elements:

ACM_CAP.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_CAP.5 Advanced support

Objectives

268 A unique reference is required to ensure that there is no ambiguity in terms of which
instance of the TOE is being evaluated. Labelling the TOE with its reference
ensures that users of the TOE can be aware of which instance of the TOE they are
using.

269 Unique identification of the configuration items leads to a clearer understanding of
the composition of the TOE, which in turn helps to determine those items which are
subject to the evaluation requirements for the TOE.

270 Providing controls to ensure that unauthorised modifications are not made to the
TOE, and ensuring proper functionality and use of the CM system, helps to
maintain the integrity of the TOE.

271 The purpose of acceptance procedures is to confirm that any creation or
modification of configuration items is authorised.

272 Integration procedures help to ensure that generation of the TOE from a managed
set of configuration items is correctly performed in an authorised manner.

273 Requiring that the CM system be able to identify the master copy of the material
used to generate the TOE helps to ensure that the integrity of this material is
preserved by the appropriate technical, physical and procedural safeguards.

Dependencies:

ACM_SCP.1 TOE CM coverage

ALC_DVS.2 Sufficiency of security measures

Developer action elements:

ACM_CAP.5.1D The developer shall provide a reference for the TOE.

ACM_CAP.5.2D The developer shall use a CM system.

CM capabilities (ACM_CAP) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 79 of 208

ACM_CAP.5.3D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_CAP.5.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.5.2C The TOE shall be labelled with its reference.

ACM_CAP.5.3C The CM documentation shall include a configuration list, a CM plan, an acceptance
plan, and integration procedures.

ACM_CAP.5.4C The configuration list shall describe the configuration items that comprise the TOE.

ACM_CAP.5.5C The CM documentation shall describe the method used to uniquely identify the
configuration items.

ACM_CAP.5.6C The CM system shall uniquely identify all configuration items.

ACM_CAP.5.7C The CM plan shall describe how the CM system is used.

ACM_CAP.5.8C The evidence shall demonstrate that the CM system is operating in accordance with
the CM plan.

ACM_CAP.5.9C The CM documentation shall provide evidence that all configuration items have
been and are being effectively maintained under the CM system.

ACM_CAP.5.10C The CM system shall provide measures such that only authorised changes are made
to the configuration items.

ACM_CAP.5.11C The CM system shall support the generation of the TOE.

ACM_CAP.5.12C The acceptance plan shall describe the procedures used to accept modified or newly
created configuration items as part of the TOE.

ACM_CAP.5.13C The integration procedures shall describe how the CM system is applied in the
TOE manufacturing process.

ACM_CAP.5.14C The CM system shall require that the person responsible for accepting a
configuration item into CM is not the person who developed it.

ACM_CAP.5.15C The CM system shall clearly identify the configuration items that comprise the
TSF.

ACM_CAP.5.16C The CM system shall support the audit of all modifications to the TOE,
including as a minimum the originator, date, and time in the audit trail.

ACM_CAP.5.17C The CM system shall be able to identify the master copy of all material used to
generate the TOE.

8 - Class ACM: Configuration management CM capabilities (ACM_CAP)

Page 80 of 208 Version 2.1 August 1999

ACM_CAP.5.18C The CM documentation shall demonstrate that the use of the CM system,
together with the development security measures, allow only authorised
changes to be made to the TOE.

ACM_CAP.5.19C The CM documentation shall demonstrate that the use of the integration
procedures ensures that the generation of the TOE is correctly performed in
an authorised manner.

ACM_CAP.5.20C The CM documentation shall demonstrate that the CM system is sufficient to
ensure that the person responsible for accepting a configuration item into CM
is not the person who developed it.

ACM_CAP.5.21C The CM documentation shall justify that the acceptance procedures provide
for an adequate and appropriate review of changes to all configuration items.

Evaluator action elements:

ACM_CAP.5.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

CM scope (ACM_SCP) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 81 of 208

8.3 CM scope (ACM_SCP)
ACM_SCP CM scope

Objectives

274 The objective of this family is to ensure that all necessary TOE configuration items
are tracked by the CM system. This helps to ensure that the integrity of these
configuration items is protected through the capabilities of the CM system.

275 The objectives of this family include the following:

a) ensuring that the TOE implementation representation is tracked;

b) ensuring that all necessary documentation, including problem reports, are
tracked during development and operation;

c) ensuring that configuration options (e.g. compiler switches) are tracked; and

d) ensuring that development tools are tracked.

Component levelling

276 The components in this family are levelled on the basis of which of the following
are tracked by the CM system: the TOE implementation representation; design
documentation; test documentation; user documentation; administrator
documentation; CM documentation; security flaws; and development tools.

Application notes

277 ACM_SCP.1.1C introduces the requirement that the TOE implementation
representation be tracked by the CM system. The TOE implementation
representation refers to all hardware, software, and firmware that comprise the
physical TOE. In the case of a software-only TOE, the implementation
representation may consist solely of source and object code.

278 ACM_SCP.1.1C also introduces the requirement that the CM documentation be
tracked by the CM system. This includes the CM plan, as well as information on the
current versions of any tools that comprise the CM system.

279 ACM_SCP.2.1C introduces the requirement that security flaws be tracked by the
CM system. This requires that information regarding previous security flaws and
their resolution be maintained, as well as details regarding current security flaws.

280 ACM_SCP.3.1C introduces the requirement that development tools and other
related information be tracked by the CM system. Examples of development tools
are programming languages and compilers. Information pertaining to TOE
generation items (such as compiler options, installation/generation options, and
build options) is an example of information relating to development tools.

8 - Class ACM: Configuration management CM scope (ACM_SCP)

Page 82 of 208 Version 2.1 August 1999

ACM_SCP.1 TOE CM coverage

Objectives

281 A CM system can control changes only to those items that have been placed under
CM. Placing the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation under CM provides
assurance that they have been modified in a controlled manner with proper
authorisations.

Dependencies:

ACM_CAP.3 Authorisation controls

Developer action elements:

ACM_SCP.1.1D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_SCP.1.1C The CM documentation shall show that the CM system, as a minimum, tracks
the following: the TOE implementation representation, design documentation,
test documentation, user documentation, administrator documentation, and
CM documentation.

ACM_SCP.1.2C The CM documentation shall describe how configuration items are tracked by
the CM system.

Evaluator action elements:

ACM_SCP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_SCP.2 Problem tracking CM coverage

Objectives

282 A CM system can control changes only to those items that have been placed under
CM. Placing the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation under CM provides
assurance that they have been modified in a controlled manner with proper
authorisations.

283 The ability to track security flaws under CM ensures that security flaw reports are
not lost or forgotten, and allows a developer to track security flaws to their
resolution.

Dependencies:

ACM_CAP.3 Authorisation controls

CM scope (ACM_SCP) 8 - Class ACM: Configuration management

August 1999 Version 2.1 Page 83 of 208

Developer action elements:

ACM_SCP.2.1D The developer shall provide CM documentation.

Content and presentation of evidence elements:

ACM_SCP.2.1C The CM documentation shall show that the CM system, as a minimum, tracks the
following: the TOE implementation representation, design documentation, test
documentation, user documentation, administrator documentation, CM
documentation, and security flaws.

ACM_SCP.2.2C The CM documentation shall describe how configuration items are tracked by the
CM system.

Evaluator action elements:

ACM_SCP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ACM_SCP.3 Development tools CM coverage

Objectives

284 A CM system can control changes only to those items that have been placed under
CM. Placing the TOE implementation representation, design, tests, user and
administrator documentation, and CM documentation under CM provides
assurance that they have been modified in a controlled manner with proper
authorisations.

285 The ability to track security flaws under CM ensures that security flaw reports are
not lost or forgotten, and allows a developer to track security flaws to their
resolution.

286 Development tools play an important role in ensuring the production of a quality
version of the TOE. Therefore, it is important to control modifications to these
tools.

Dependencies:

ACM_CAP.3 Authorisation controls

Developer action elements:

ACM_SCP.3.1D The developer shall provide CM documentation.

8 - Class ACM: Configuration management CM scope (ACM_SCP)

Page 84 of 208 Version 2.1 August 1999

Content and presentation of evidence elements:

ACM_SCP.3.1C The CM documentation shall show that the CM system, as a minimum, tracks the
following: the TOE implementation representation, design documentation, test
documentation, user documentation, administrator documentation, CM
documentation, security flaws, and development tools and related information.

ACM_SCP.3.2C The CM documentation shall describe how configuration items are tracked by the
CM system.

Evaluator action elements:

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

89Part 3: Security assurance requirements

August 1999 Version 2.1 Page 85 of 208

9 Class ADO: Delivery and operation

287 Delivery and operation provides requirements for correct delivery, installation,
generation, and start-up of the TOE.

288 Figure 9.1 shows the families within this class, and the hierarchy of components
within the families.

 Class ADO: Delivery and operation

ADO_DEL Delivery 1 2 3

ADO_IGS Installation, generation and start-up 1 2

Figure 9.1 -Delivery and operation class decomposition

9 - Class ADO: Delivery and operation

Page 86 of 208 Version 2.1 August 1999

Delivery (ADO_DEL)

9.1 Delivery (ADO_DEL)
ADO_DELDelivery

Objectives

289 The requirements for delivery call for system control and distribution facilities and
procedures that provide assurance that the recipient receives the TOE that the
sender intended to send, without any modifications. For a valid delivery, what is
received must correspond precisely to the TOE master copy, thus avoiding any
tampering with the actual version, or substitution of a false version.

Component levelling

290 The components in this family are levelled on the basis of increasing requirements
on the developer to detect and prevent modifications to the TOE during delivery.

ADO_DEL.1 Delivery procedures

Dependencies:

No dependencies.

Developer action elements:

ADO_DEL.1.1D The developer shall document procedures for delivery of the TOE or parts of
it to the user.

ADO_DEL.1.2D The developer shall use the delivery procedures.

Content and presentation of evidence elements:

ADO_DEL.1.1C The delivery documentation shall describe all procedures that are necessary to
maintain security when distributing versions of the TOE to a user’s site.

Evaluator action elements:

ADO_DEL.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_DEL.2 Detection of modification

Dependencies:

ACM_CAP.3 Authorisation controls

Developer action elements:

ADO_DEL.2.1D The developer shall document procedures for delivery of the TOE or parts of it to
the user.

ADO_DEL.2.2D The developer shall use the delivery procedures.

Delivery (ADO_DEL)

August 1999 Version 2.1 Page 87 of 208

9 - Class ADO: Delivery and operation

Content and presentation of evidence elements:

ADO_DEL.2.1C The delivery documentation shall describe all procedures that are necessary to
maintain security when distributing versions of the TOE to a user’s site.

ADO_DEL.2.2C The delivery documentation shall describe how the various procedures and
technical measures provide for the detection of modifications, or any
discrepancy between the developer’s master copy and the version received at
the user site.

ADO_DEL.2.3C The delivery documentation shall describe how the various procedures allow
detection of attempts to masquerade as the developer, even in cases in which
the developer has sent nothing to the user’s site.

Evaluator action elements:

ADO_DEL.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADO_DEL.3 Prevention of modification

Dependencies:

ACM_CAP.3 Authorisation controls

Developer action elements:

ADO_DEL.3.1D The developer shall document procedures for delivery of the TOE or parts of it to
the user.

ADO_DEL.3.2D The developer shall use the delivery procedures.

Content and presentation of evidence elements:

ADO_DEL.3.1C The delivery documentation shall describe all procedures that are necessary to
maintain security when distributing versions of the TOE to a user’s site.

ADO_DEL.3.2C The delivery documentation shall describe how the various procedures and
technical measures provide for the prevention of modifications, or any
discrepancy between the developer’s master copy and the version received at the
user site.

ADO_DEL.3.3C The delivery documentation shall describe how the various procedures allow
detection of attempts to masquerade as the developer, even in cases in which the
developer has sent nothing to the user’s site.

Evaluator action elements:

ADO_DEL.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

9 - Class ADO: Delivery and operation

Page 88 of 208 Version 2.1 August 1999

Installation, generation and start-up
(ADO_IGS)

9.2 Installation, generation and start-up (ADO_IGS)
ADO_IGS Installation, generation and start-up

Objectives

291 Installation, generation, and start-up procedures are useful for ensuring that the
TOE has been installed, generated, and started up in a secure manner as intended by
the developer. The requirements for installation, generation and start-up call for a
secure transition from the TOE’s implementation representation being under
configuration control to its initial operation in the user environment.

Component levelling

292 The components in this family are levelled on the basis of whether the TOE
generation options are logged.

Application notes

293 It is recognised that the application of these requirements will vary depending on
aspects such as whether the TOE is an IT product or system, whether it is delivered
in an operational state, or whether it has to be brought up at the TOE owner’s site,
etc. For a given TOE, there will normally be a division of responsibility with respect
to installation, generation and start-up between the TOE developer and the owner
of the TOE, but there are examples where all activities take place at one site. For
example, for a smart card all aspects of installation, generation and start-up may
have been performed at the TOE developer’s site. On the other hand the TOE might
be delivered as an IT system in the form of software, where all aspects of
installation, generation and start-up are carried out at the TOE owner’s site.

294 It might also be the case that the TOE is already installed by the time the evaluation
starts. In this case it may be inappropriate to demand and analyse installation
procedures.

295 Furthermore, the generation requirements are applicable only to TOEs that provide
the ability to generate portions of an operational TOE from its implementation
representation.

296 The installation, generation, and start-up procedures may exist as a separate
documents or could be grouped with other administrative guidance. The
requirements in this assurance family are presented separately from those in the
AGD_ADM family, due to the infrequent, possibly one-time use of the installation,
generation and start-up procedures.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies:

AGD_ADM.1 Administrator guidance

Installation, generation and start-up

August 1999 Version 2.1 Page 89 of 208

9 - Class ADO: Delivery and operation

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures necessary for the secure installation,
generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_IGS.1.2E The evaluator shall determine that the installation, generation, and start-up
procedures result in a secure configuration.

ADO_IGS.2 Generation log

Dependencies:

AGD_ADM.1 Administrator guidance

Developer action elements:

ADO_IGS.2.1D The developer shall document procedures necessary for the secure installation,
generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.2.1C The documentation shall describe the steps necessary for secure installation,
generation, and start-up of the TOE.

ADO_IGS.2.2C The documentation shall describe procedures capable of creating a log
containing the generation options used to generate the TOE in such a way that
it is possible to determine exactly how and when the TOE was generated.

Evaluator action elements:

ADO_IGS.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADO_IGS.2.2E The evaluator shall determine that the installation, generation, and start-up
procedures result in a secure configuration.

126Part 3: Security assurance requirements

August 1999 Version 2.1 Page 90 of 208

10 Class ADV: Development

297 The development class encompasses four families of requirements for representing
the TSF at various levels of abstraction from the functional interface to the
implementation representation. The development class also includes a family of
requirements for a correspondence mapping between the various TSF
representations, ultimately requiring a demonstration of correspondence from the
least abstract representation through all intervening representations to the TOE
summary specification provided in the ST. In addition, there is a family of
requirements for a TSP model, and for correspondence mappings between the TSP,
the TSP model, and the functional specification. Finally, there is a family of
requirements on the internal structure of the TSF, which covers aspects such as
modularity, layering, and minimisation of complexity.

298 Figure 10.1 shows the families within this class, and the hierarchy of components
within the families.

299 The paradigm evident for these families is one of a functional specification of the
TSF, decomposing the TSF into subsystems, decomposing the subsystems into
modules, showing the implementation of the modules, and demonstration of
correspondence between all decompositions that are provided as evidence. The
requirements for the various TSF representations are separated into different

Class ADV: Development

ADV_FSP Functional specification 1 2 3 4

ADV_HLD High-level design 1 2 3 4 5

ADV_IMP Implementation representation 1 2 3

ADV_INT TSF internals 1 2 3

ADV_LLD Low-level design 1 2 3

ADV_RCR Representation correspondence 1 2 3

ADV_SPM Security policy modeling 1 2 3

Figure 10.1 - Development class decomposition

10 - Class ADV: Development

August 1999 Version 2.1 Page 91 of 208

families, however, to allow the PP/ST author to specify which subset of the TSF
representations are required.

Figure 10.2 - Relationships between TOE representations and requirements

300 Figure 10.2 indicates the relationships between the various TSF representations and
the objectives and requirements that they are intended to address. As the figure
indicates, the APE and ASE classes define the requirements for the correspondence
between the functional requirements and the security objectives as well as between

Environment

Security
Objectives

Functional
Requirements/TSP

TOE Summary
Specification

Functional
Specification

Low-level Design

High-level Design

Implementation
Representation

TSP Model

ADV_IMP

ADV_LLD

ADV_HLD

ADV_RCR

ADV_RCR

ADV_RCR

ADV_RCR
ADV_FSP

APE/ASE_OBJ

APE/ASE_REQ

ASE_TSS

ADV_SPM

ADV_SPM

Source corresponds
to target.

Source is refined in
target.

10 - Class ADV: Development

Page 92 of 208 Version 2.1 August 1999

the security objectives and the TOE’s anticipated environment. Class ASE also
defines requirements for the correspondence between both the security objectives
and functional requirements and the TOE summary specification.

301 The requirements for all other correspondence shown in Figure 10.2 are defined in
the ADV class. The ADV_SPM family defines the requirements for
correspondence between the TSP and the TSP model, and between the TSP model
and the functional specification. The ADV_RCR family defines the requirements
for correspondence between all available TSF representations from the TOE
summary specification through the implementation representation. Finally, each
assurance family specific to a TSF representation (i.e. ADV_FSP, ADV_HLD,
ADV_LLD and ADV_IMP) defines requirements relating that TSF representation
to the functional requirements, the combination of which helps to ensure that the
TOE security functional requirements have been addressed. The traceability
analysis is always to be performed from the highest-level TSF representation down
through each of the TSF representations that are provided. The CC captures this
traceability requirement via dependencies on the ADV_RCR family. The
ADV_INT family is not represented in this figure, as it is related to the internal
structure of the TSF, and is only indirectly related to the process of refinement of
the TSF representations.

Application notes

302 The TOE security policy (TSP) is the set of rules that regulate how resources are
managed, protected and distributed within a TOE, expressed by the TOE security
functional requirements. The developer is not explicitly required to provide a TSP,
as the TSP is expressed by the TOE security functional requirements, through a
combination of security function policies (SFPs) and the other individual
requirement elements.

303 The TOE security functions (TSF) are all the parts of the TOE that have to be relied
upon for enforcement of the TSP. The TSF includes both functions that directly
enforce the TSP, and also those functions that, while not directly enforcing the TSP,
contribute to the enforcement of the TSP in a more indirect manner.

304 Although the requirements within the ASE_TSS family and within several families
of this class call for several different TSF representations, it is not absolutely
necessary for each and every TSF representation to be in a separate document.
Indeed, it may be the case that a single document meets the documentation
requirements for more than one TSF representation, since it is the information about
each of these TSF representations that is required, rather than the resulting
document structure. In cases where multiple TSF representations are combined
within a single document, the developer should indicate which documents meet
which requirements.

305 Three types of specification style are mandated by this class: informal, semiformal
and formal. The functional specification, high-level design, low-level design and
TSP models will be written using one or more of these specification styles.
Ambiguity in these specifications is reduced by using an increased level of
formality.

10 - Class ADV: Development

August 1999 Version 2.1 Page 93 of 208

306 An informal specification is written as prose in natural language. Natural language
is used here as meaning communication in any commonly spoken tongue (e.g.
Dutch, English, French, German). An informal specification is not subject to any
notational or special restrictions other than those required as ordinary conventions
for that language (e.g. grammar and syntax). While no notational restrictions apply,
the informal specification is also required to provide defined meanings for terms
that are used in a context other than that accepted by normal usage.

307 A semiformal specification is written in a restricted syntax language and is typically
accompanied by supporting explanatory (informal) prose. The restricted syntax
language may be a natural language with restricted sentence structure and keywords
with special meanings, or it may be diagrammatic (e.g. data-flow diagrams, state
transition diagrams, entity-relationship diagrams, data structure diagrams, and
process or program structure diagrams). Whether based on diagrams or natural
language, a set of conventions must be supplied to define the restrictions placed on
the syntax.

308 A formal specification is written in a notation based upon well-established
mathematical concepts, and is typically accompanied by supporting explanatory
(informal) prose. These mathematical concepts are used to define the syntax and
semantics of the notation and the proof rules that support logical reasoning. The
syntactic and semantic rules supporting a formal notation should define how to
recognise constructs unambiguously and determine their meaning. There needs to
be evidence that it is impossible to derive contradictions, and all rules supporting
the notation need to be defined or referenced.

309 Significant assurance can be gained by ensuring that the TSF can be traced though
each of its representations, and by ensuring that the TSP model corresponds to the
functional specification. The ADV_RCR family contains requirements for
correspondence mappings between the various TSF representations, and the
ADV_SPM family contains requirements for a correspondence mapping between
the TSP model and the functional specification. A correspondence can take the form
of an informal demonstration, a semiformal demonstration, or a formal proof.

310 When an informal demonstration of correspondence is required, this means that
only a basic correspondence is required. Correspondence methods include, for
example, the use of a two-dimensional table with entries denoting correspondence,
or the use of appropriate notation of design diagrams. Pointers and references to
other documents may also be used.

311 A semiformal demonstration of correspondence requires a structured approach at
the analysis of the correspondence. This approach should lessen ambiguity that
could exist in an informal correspondence by limiting the interpretation of the terms
included in the correspondence. Pointers and references to other documents may be
used.

312 A formal proof of correspondence requires that well-established mathematical
concepts be used to define the syntax and semantics of the formal notation and the
proof rules that support logical reasoning. The security properties need to be
expressible in the formal specification language, and these security properties need

10 - Class ADV: Development

Page 94 of 208 Version 2.1 August 1999

to be shown to be satisfied by the formal specification. Pointers and references to
other documents may also be used.

313 The ADV_RCR.*.1C elements require that the developer provide evidence, for
each adjacent pair of TSF representations, that all relevant security functionality of
the more abstract TSF representation is refined in the less abstract TSF
representation. The ADV_FSP.*.2E, ADV_HLD.*.2E, ADV_LLD.*.2E and
ADV_IMP.*.2E elements each require the evaluator to determine that the TSF
represented by that family of requirements is an accurate and complete instantiation
of the TOE security functional requirements. In order to determine that a TSF
representation is an accurate and complete instantiation of the TOE security
functional requirements, it is intended that the evaluator use the evidence provided
by the developer in ADV_RCR.*.1C as an input to this determination. By
establishing a correspondence between the TOE security functional requirements
and each of successive TSF representations down the chain, this step-wise process
will ultimately provide more assurance that the least abstract TSF representation
corresponds to the TOE security functional requirements, which is the ultimate goal
of this class. If the evaluator makes no correspondence determinations back to the
TOE security functional requirements for intermediate TSF representations, then
trying to determine the correspondence from the least abstract TSF representation
back to the TOE security functional requirements may represent too large a step to
be accurately performed. Finally, depending on the set of TSF representations that
are required, it is quite possible that the low-level design, high-level design, or even
the functional specification might be the least abstract TSF representation that is
provided.

Functional specification (ADV_FSP) 10 - Class ADV: Development

August 1999 Version 2.1 Page 95 of 208

10.1 Functional specification (ADV_FSP)
ADV_FSP Functional specification

Objectives

314 The functional specification is a high-level description of the user-visible interface
and behaviour of the TSF. It is an instantiation of the TOE security functional
requirements. The functional specification has to show that all the TOE security
functional requirements are addressed.

Component levelling

315 The components in this family are levelled on the basis of the degree of formalism
required of the functional specification, and the degree of detail provided for the
external interfaces to the TSF.

Application notes

316 The ADV_FSP.*.2E elements within this family define a requirement that the
evaluator determine that the functional specification is an accurate and complete
instantiation of the TOE security functional requirements. This provides a direct
correspondence between the TOE security functional requirements and the
functional specification, in addition to the pairwise correspondences required by the
ADV_RCR family. It is expected that the evaluator will use the evidence provided
in ADV_RCR as an input to making this determination, and the requirement for
completeness is intended to be relative to the level of abstraction of the functional
specification.

317 For ADV_FSP.1.3C, it is intended that sufficient information is provided in the
functional specification to understand how the TOE security functional
requirements have been addressed, and to enable the specification of tests which
reflect the TOE security functional requirements in the ST. It is not necessarily the
case that such testing will cover all possible return values and error messages which
could be generated at the interface, but the information provided should make clear
the results of using an interface in the case of success and the most common
instances of failure.

318 ADV_FSP.2.3C introduces a requirement for a complete presentation of the
functional interface. This will provide the necessary detail for supporting both
thorough testing of the TOE and the assessment of vulnerabilities.

319 In the context of the level of formality of the functional specification, informal,
semiformal and formal are considered to be hierarchical in nature. Thus,
ADV_FSP.1.1C and ADV_FSP.2.1C may also be met with either a semiformal or
formal functional specification, provided that it is supported by informal,
explanatory text where appropriate. In addition, ADV_FSP.3.1C may also be met
with a formal functional specification.

10 - Class ADV: Development Functional specification (ADV_FSP)

Page 96 of 208 Version 2.1 August 1999

ADV_FSP.1 Informal functional specification

Dependencies:

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

Content and presentation of evidence elements:

ADV_FSP.1.1C The functional specification shall describe the TSF and its external interfaces
using an informal style.

ADV_FSP.1.2C The functional specification shall be internally consistent.

ADV_FSP.1.3C The functional specification shall describe the purpose and method of use of all
external TSF interfaces, providing details of effects, exceptions and error
messages, as appropriate.

ADV_FSP.1.4C The functional specification shall completely represent the TSF.

Evaluator action elements:

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_FSP.1.2E The evaluator shall determine that the functional specification is an accurate
and complete instantiation of the TOE security functional requirements.

ADV_FSP.2 Fully defined external interfaces

Dependencies:

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.2.1D The developer shall provide a functional specification.

Content and presentation of evidence elements:

ADV_FSP.2.1C The functional specification shall describe the TSF and its external interfaces using
an informal style.

ADV_FSP.2.2C The functional specification shall be internally consistent.

ADV_FSP.2.3C The functional specification shall describe the purpose and method of use of all
external TSF interfaces, providing complete details of all effects, exceptions and
error messages.

Functional specification (ADV_FSP) 10 - Class ADV: Development

August 1999 Version 2.1 Page 97 of 208

ADV_FSP.2.4C The functional specification shall completely represent the TSF.

ADV_FSP.2.5C The functional specification shall include rationale that the TSF is completely
represented.

Evaluator action elements:

ADV_FSP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.2.2E The evaluator shall determine that the functional specification is an accurate and
complete instantiation of the TOE security functional requirements.

ADV_FSP.3 Semiformal functional specification

Dependencies:

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.3.1D The developer shall provide a functional specification.

Content and presentation of evidence elements:

ADV_FSP.3.1C The functional specification shall describe the TSF and its external interfaces using
a semiformal style, supported by informal, explanatory text where
appropriate.

ADV_FSP.3.2C The functional specification shall be internally consistent.

ADV_FSP.3.3C The functional specification shall describe the purpose and method of use of all
external TSF interfaces, providing complete details of all effects, exceptions and
error messages.

ADV_FSP.3.4C The functional specification shall completely represent the TSF.

ADV_FSP.3.5C The functional specification shall include rationale that the TSF is completely
represented.

Evaluator action elements:

ADV_FSP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.3.2E The evaluator shall determine that the functional specification is an accurate and
complete instantiation of the TOE security functional requirements.

10 - Class ADV: Development Functional specification (ADV_FSP)

Page 98 of 208 Version 2.1 August 1999

ADV_FSP.4 Formal functional specification

Dependencies:

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_FSP.4.1D The developer shall provide a functional specification.

Content and presentation of evidence elements:

ADV_FSP.4.1C The functional specification shall describe the TSF and its external interfaces using
a formal style, supported by informal, explanatory text where appropriate.

ADV_FSP.4.2C The functional specification shall be internally consistent.

ADV_FSP.4.3C The functional specification shall describe the purpose and method of use of all
external TSF interfaces, providing complete details of all effects, exceptions and
error messages.

ADV_FSP.4.4C The functional specification shall completely represent the TSF.

ADV_FSP.4.5C The functional specification shall include rationale that the TSF is completely
represented.

Evaluator action elements:

ADV_FSP.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_FSP.4.2E The evaluator shall determine that the functional specification is an accurate and
complete instantiation of the TOE security functional requirements.

High-level design (ADV_HLD) 10 - Class ADV: Development

August 1999 Version 2.1 Page 99 of 208

10.2 High-level design (ADV_HLD)
ADV_HLD High-level design

Objectives

320 The high-level design of a TOE provides a description of the TSF in terms of major
structural units (i.e. subsystems) and relates these units to the functions that they
provide. The high-level design requirements are intended to provide assurance that
the TOE provides an architecture appropriate to implement the TOE security
functional requirements.

321 The high-level design refines the functional specification into subsystems. For each
subsystem of the TSF, the high-level design describes its purpose and function, and
identifies the security functions contained in the subsystem. The interrelationships
of all subsystems are also defined in the high-level design. These interrelationships
will be represented as external interfaces for data flow, control flow, etc., as
appropriate.

Component levelling

322 The components in this family are levelled on the basis of the degree of formalism
required of the high-level design, and on the degree of detail required for the
interface specifications.

Application notes

323 The developer is expected to describe the design of the TSF in terms of subsystems.
The term “subsystem” is used here to express the idea of decomposing the TSF into
a relatively small number of parts. While the developer is not required to actually
have “subsystems”, the developer is expected to represent a similar level of
decomposition. For example, a design may be similarly decomposed using “layers”,
“domains”, or “servers”.

324 The term “security functionality” is used to represent the set of operations that a
subsystem performs in contribution to security functions implemented by the TOE.
This distinction is made because design constructs, such as subsystems and
modules, do not necessarily relate to specific security functions. While a given
subsystem may correspond directly to a security function, or even multiple security
functions, it is also possible that many subsystems must be combined to implement
a single security function.

325 The term “TSP-enforcing subsystem” refers to a subsystem that contributes to the
enforcement of the TSP, either directly or indirectly.

326 The ADV_HLD.*.2E elements within this family define a requirement that the
evaluator determine that the high-level design is an accurate and complete
instantiation of the TOE security functional requirements. This provides a direct
correspondence between the TOE security functional requirements and the high-
level design, in addition to the pairwise correspondences required by the
ADV_RCR family. It is expected that the evaluator will use the evidence provided

10 - Class ADV: Development High-level design (ADV_HLD)

Page 100 of 208 Version 2.1 August 1999

in ADV_RCR as an input to making this determination, and the requirement for
completeness is intended to be relative to the level of abstraction of the high-level
design.

327 ADV_HLD.3.8C introduces a requirement for a complete presentation for the
interfaces to the subsystems. This will provide the necessary detail for supporting
both thorough testing of the TOE (using components from ATE_DPT), and the
assessment of vulnerabilities.

328 In the context of the level of formality of the high-level design, informal,
semiformal and formal are considered to be hierarchical in nature. Thus,
ADV_HLD.1.1C and ADV_HLD.2.1C may also be met with either a semiformal
or formal high-level design, and ADV_HLD.3.1C and ADV_HLD.4.1C may also
be met with a formal high-level design.

ADV_HLD.1 Descriptive high-level design

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_HLD.1.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.1.1C The presentation of the high-level design shall be informal.

ADV_HLD.1.2C The high-level design shall be internally consistent.

ADV_HLD.1.3C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.1.4C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.1.5C The high-level design shall identify any underlying hardware, firmware, and/
or software required by the TSF with a presentation of the functions provided
by the supporting protection mechanisms implemented in that hardware,
firmware, or software.

ADV_HLD.1.6C The high-level design shall identify all interfaces to the subsystems of the TSF.

ADV_HLD.1.7C The high-level design shall identify which of the interfaces to the subsystems of
the TSF are externally visible.

High-level design (ADV_HLD) 10 - Class ADV: Development

August 1999 Version 2.1 Page 101 of 208

Evaluator action elements:

ADV_HLD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.1.2E The evaluator shall determine that the high-level design is an accurate and
complete instantiation of the TOE security functional requirements.

ADV_HLD.2 Security enforcing high-level design

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_HLD.2.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.2.1C The presentation of the high-level design shall be informal.

ADV_HLD.2.2C The high-level design shall be internally consistent.

ADV_HLD.2.3C The high-level design shall describe the structure of the TSF in terms of subsystems.

ADV_HLD.2.4C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.2.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.2.6C The high-level design shall identify all interfaces to the subsystems of the TSF.

ADV_HLD.2.7C The high-level design shall identify which of the interfaces to the subsystems of the
TSF are externally visible.

ADV_HLD.2.8C The high-level design shall describe the purpose and method of use of all
interfaces to the subsystems of the TSF, providing details of effects, exceptions
and error messages, as appropriate.

ADV_HLD.2.9C The high-level design shall describe the separation of the TOE into TSP-
enforcing and other subsystems.

10 - Class ADV: Development High-level design (ADV_HLD)

Page 102 of 208 Version 2.1 August 1999

Evaluator action elements:

ADV_HLD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.2.2E The evaluator shall determine that the high-level design is an accurate and complete
instantiation of the TOE security functional requirements.

ADV_HLD.3 Semiformal high-level design

Dependencies:

ADV_FSP.3 Semiformal functional specification

ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements:

ADV_HLD.3.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.3.1C The presentation of the high-level design shall be semiformal.

ADV_HLD.3.2C The high-level design shall be internally consistent.

ADV_HLD.3.3C The high-level design shall describe the structure of the TSF in terms of subsystems.

ADV_HLD.3.4C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.3.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.3.6C The high-level design shall identify all interfaces to the subsystems of the TSF.

ADV_HLD.3.7C The high-level design shall identify which of the interfaces to the subsystems of the
TSF are externally visible.

ADV_HLD.3.8C The high-level design shall describe the purpose and method of use of all interfaces
to the subsystems of the TSF, providing complete details of all effects, exceptions
and error messages.

ADV_HLD.3.9C The high-level design shall describe the separation of the TOE into TSP-enforcing
and other subsystems.

High-level design (ADV_HLD) 10 - Class ADV: Development

August 1999 Version 2.1 Page 103 of 208

Evaluator action elements:

ADV_HLD.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.3.2E The evaluator shall determine that the high-level design is an accurate and complete
instantiation of the TOE security functional requirements.

ADV_HLD.4 Semiformal high-level explanation

Dependencies:

ADV_FSP.3 Semiformal functional specification

ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements:

ADV_HLD.4.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.4.1C The presentation of the high-level design shall be semiformal.

ADV_HLD.4.2C The high-level design shall be internally consistent.

ADV_HLD.4.3C The high-level design shall describe the structure of the TSF in terms of subsystems.

ADV_HLD.4.4C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.4.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.4.6C The high-level design shall identify all interfaces to the subsystems of the TSF.

ADV_HLD.4.7C The high-level design shall identify which of the interfaces to the subsystems of the
TSF are externally visible.

ADV_HLD.4.8C The high-level design shall describe the purpose and method of use of all interfaces
to the subsystems of the TSF, providing complete details of all effects, exceptions
and error messages.

ADV_HLD.4.9C The high-level design shall describe the separation of the TOE into TSP-enforcing
and other subsystems.

ADV_HLD.4.10C The high-level design shall justify that the identified means of achieving
separation, including any protection mechanisms, are sufficient to ensure a

10 - Class ADV: Development High-level design (ADV_HLD)

Page 104 of 208 Version 2.1 August 1999

clear and effective separation of TSP-enforcing from non-TSP-enforcing
functions.

ADV_HLD.4.11C The high-level design shall justify that the TSF mechanisms are sufficient to
implement the security functions identified in the high-level design.

Evaluator action elements:

ADV_HLD.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.4.2E The evaluator shall determine that the high-level design is an accurate and complete
instantiation of the TOE security functional requirements.

ADV_HLD.5 Formal high-level design

Dependencies:

ADV_FSP.4 Formal functional specification

ADV_RCR.3 Formal correspondence demonstration

Developer action elements:

ADV_HLD.5.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.5.1C The presentation of the high-level design shall be formal.

ADV_HLD.5.2C The high-level design shall be internally consistent.

ADV_HLD.5.3C The high-level design shall describe the structure of the TSF in terms of subsystems.

ADV_HLD.5.4C The high-level design shall describe the security functionality provided by each
subsystem of the TSF.

ADV_HLD.5.5C The high-level design shall identify any underlying hardware, firmware, and/or
software required by the TSF with a presentation of the functions provided by the
supporting protection mechanisms implemented in that hardware, firmware, or
software.

ADV_HLD.5.6C The high-level design shall identify all interfaces to the subsystems of the TSF.

ADV_HLD.5.7C The high-level design shall identify which of the interfaces to the subsystems of the
TSF are externally visible.

ADV_HLD.5.8C The high-level design shall describe the purpose and method of use of all interfaces
to the subsystems of the TSF, providing complete details of all effects, exceptions
and error messages.

High-level design (ADV_HLD) 10 - Class ADV: Development

August 1999 Version 2.1 Page 105 of 208

ADV_HLD.5.9C The high-level design shall describe the separation of the TOE into TSP-enforcing
and other subsystems.

ADV_HLD.5.10C The high-level design shall justify that the identified means of achieving separation,
including any protection mechanisms, are sufficient to ensure a clear and effective
separation of TSP-enforcing from non-TSP-enforcing functions.

ADV_HLD.5.11C The high-level design shall justify that the TSF mechanisms are sufficient to
implement the security functions identified in the high-level design.

Evaluator action elements:

ADV_HLD.5.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_HLD.5.2E The evaluator shall determine that the high-level design is an accurate and complete
instantiation of the TOE security functional requirements.

10 - Class ADV: Development Implementation representation (ADV_IMP)

Page 106 of 208 Version 2.1 August 1999

10.3 Implementation representation (ADV_IMP)
ADV_IMP Implementation representation

Objectives

329 The description of the implementation representation in the form of source code,
firmware, hardware drawings, etc. captures the detailed internal workings of the
TSF in support of analysis.

Component levelling

330 The components in this family are levelled on the basis of the completeness and
structure of the implementation representation provided.

Application notes

331 The implementation representation is used to express the notion of the least abstract
representation of the TSF, specifically the one that is used to create the TSF itself
without further design refinement. Source code that is then compiled or a hardware
drawing that is used to build the actual hardware are examples of parts of an
implementation representation.

332 It is possible that evaluators may use the implementation representation to directly
support other evaluation activities (e.g. vulnerability analysis, test coverage
analysis, or identification of additional evaluator tests). It is expected that PP/ST
authors will select a component that requires that the implementation is complete
and comprehensive enough to address the needs of all other requirements included
in the PP/ST.

ADV_IMP.1 Subset of the implementation of the TSF

Application notes

333 ADV_IMP.1.1D requires that the developer provide the implementation
representation for a subset of the TSF. The intention is that access to at least a
portion of the TSF will provide the evaluator with an opportunity to examine the
implementation representation for those portions of the TOE where such an
examination can add significantly to the understanding of, and assurance in, the
mechanisms employed. Provision of a sample of the implementation representation
will also allow the evaluator to sample the traceability evidence to gain assurance
in the approach taken for refinement, and to assess the presentation of the
implementation representation itself.

334 ADV_IMP.1.2E element defines a requirement that the evaluator determine that the
least abstract TSF representation is an accurate and complete instantiation of the
TOE security functional requirements. This provides a direct correspondence
between the TOE security functional requirements and the least abstract TSF
representation, in addition to the pairwise correspondences required by the
ADV_RCR family. It is expected that the evaluator will use the evidence provided
in ADV_RCR as an input to making this determination. The least abstract TSF

Implementation representation (ADV_IMP) 10 - Class ADV: Development

August 1999 Version 2.1 Page 107 of 208

representation for this component is an aggregate of the implementation
representation that is provided and that portion of the low-level design for which no
corresponding implementation representation is provided.

Dependencies:

ADV_LLD.1 Descriptive low-level design

ADV_RCR.1 Informal correspondence demonstration

ALC_TAT.1 Well-defined development tools

Developer action elements:

ADV_IMP.1.1D The developer shall provide the implementation representation for a selected
subset of the TSF.

Content and presentation of evidence elements:

ADV_IMP.1.1C The implementation representation shall unambiguously define the TSF to a
level of detail such that the TSF can be generated without further design
decisions.

ADV_IMP.1.2C The implementation representation shall be internally consistent.

Evaluator action elements:

ADV_IMP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_IMP.1.2E The evaluator shall determine that the least abstract TSF representation
provided is an accurate and complete instantiation of the TOE security
functional requirements.

ADV_IMP.2 Implementation of the TSF

Application notes

335 The ADV_IMP.2.2E element defines a requirement that the evaluator determine
that the implementation representation is an accurate and complete instantiation of
the TOE security functional requirements. This provides a direct correspondence
between the TOE security functional requirements and the implementation
representation, in addition to the pairwise correspondences required by the
ADV_RCR family. It is expected that the evaluator will use the evidence provided
in ADV_RCR as an input to making this determination.

Dependencies:

ADV_LLD.1 Descriptive low-level design

ADV_RCR.1 Informal correspondence demonstration

ALC_TAT.1 Well-defined development tools

10 - Class ADV: Development Implementation representation (ADV_IMP)

Page 108 of 208 Version 2.1 August 1999

Developer action elements:

ADV_IMP.2.1D The developer shall provide the implementation representation for the entire TSF.

Content and presentation of evidence elements:

ADV_IMP.2.1C The implementation representation shall unambiguously define the TSF to a level
of detail such that the TSF can be generated without further design decisions.

ADV_IMP.2.2C The implementation representation shall be internally consistent.

ADV_IMP.2.3C The implementation representation shall describe the relationships between
all portions of the implementation.

Evaluator action elements:

ADV_IMP.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_IMP.2.2E The evaluator shall determine that the implementation representation is an
accurate and complete instantiation of the TOE security functional requirements.

ADV_IMP.3 Structured implementation of the TSF

Application notes

336 The ADV_IMP.3.2E element defines a requirement that the evaluator determine
that the implementation representation is an accurate and complete instantiation of
the TOE security functional requirements. This provides a direct correspondence
between the TOE security functional requirements and the implementation
representation, in addition to the pairwise correspondences required by the
ADV_RCR family. It is expected that the evaluator will use the evidence provided
in ADV_RCR as an input to making this determination.

Dependencies:

ADV_INT.1 Modularity

ADV_LLD.1 Descriptive low-level design

ADV_RCR.1 Informal correspondence demonstration

ALC_TAT.1 Well-defined development tools

Developer action elements:

ADV_IMP.3.1D The developer shall provide the implementation representation for the entire TSF.

Content and presentation of evidence elements:

ADV_IMP.3.1C The implementation representation shall unambiguously define the TSF to a level
of detail such that the TSF can be generated without further design decisions.

Implementation representation (ADV_IMP) 10 - Class ADV: Development

August 1999 Version 2.1 Page 109 of 208

ADV_IMP.3.2C The implementation representation shall be internally consistent.

ADV_IMP.3.3C The implementation representation shall describe the relationships between all
portions of the implementation.

ADV_IMP.3.4C The implementation representation shall be structured into small and
comprehensible sections.

Evaluator action elements:

ADV_IMP.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_IMP.3.2E The evaluator shall determine that the implementation representation is an accurate
and complete instantiation of the TOE security functional requirements.

10 - Class ADV: Development TSF internals (ADV_INT)

Page 110 of 208 Version 2.1 August 1999

10.4 TSF internals (ADV_INT)
ADV_INT TSF internals

Objectives

337 This family addresses the internal structure of the TSF. Requirements are presented
for modularity, layering (to separate levels of abstraction and minimise circular
dependencies), minimisation of the complexity of policy enforcement mechanisms,
and the minimisation of the amount of non-TSP-enforcing functionality within the
TSF — thus resulting in a TSF that is simple enough to be analysed.

338 Modular design reduces the interdependence between elements of the TSF and thus
reduces the risk that a change or error in one module will have effects throughout
the TOE. Thus, a modular design provides the basis for determining the scope of
interaction with other elements of the TSF, provides for increased assurance that
unexpected effects do not occur, and also provides the basis for designing and
evaluating test suites.

339 The use of layering and of simpler designs for the TSP-enforcing functionality
reduces the complexity of the TSF. This in turn enables a better understanding of
the TSF, providing more assurance that the TOE security functional requirements
are accurately and completely instantiated in the implementation.

340 Minimising the amount of functionality in the TSF that does not enforce the TSP,
reduces the possibility of flaws in the TSF. In combination with modularity and
layering, it allows the evaluator to focus only on that functionality which is
necessary for TSP enforcement.

341 Design complexity minimisation contributes to the assurance that the code is
understood — the less complex the code in the TSF, the greater the likelihood that
the design of the TSF is comprehensible. Design complexity minimisation is a key
characteristic of a reference validation mechanism.

Component levelling

342 The components in this family are levelled on the basis of the amount of structure
and minimisation required.

Application notes

343 The term “portions of the TSF” is used to represent parts of the TSF with a varying
granularity based on the available TSF representations. The functional specification
allows identification in terms of interfaces, the high-level design allows
identification in terms of subsystems, the low-level design allows identification in
terms of modules, and the implementation representation allows identification in
terms of implementation units.

344 The ADV_INT.2.5C and ADV_INT.3.5C elements address minimisation of mutual
interactions between layers. Nevertheless, it is still permissible to have mutual
interactions between layers, but in such cases the developer is required to

TSF internals (ADV_INT) 10 - Class ADV: Development

August 1999 Version 2.1 Page 111 of 208

demonstrate that these mutual interactions are necessary and cannot reasonably be
avoided.

345 ADV_INT.2.6C introduces a reference monitor concept by requiring the
minimisation of complexity of the portions of the TSF that enforce the access
control and/or information flow control policies identified in the TSP.
ADV_INT.3.6C further develops the reference monitor concept by requiring
minimisation of the complexity of the entire TSF.

346 Several of the elements within the components for this family refer to the
architectural description. The architectural description is at a similar level of
abstraction to the low-level design, in that it is concerned with the modules of the
TSF. Whereas the low-level design describes the design of the modules of the TSF,
the purpose of the architectural description is to provide evidence of modularity,
layering, and minimisation of complexity of the TSF, as applicable. Both the low-
level design and the implementation representation are required to be in compliance
with the architectural description, to provide assurance that these TSF
representations possess the required modularity, layering, and minimisation of
complexity.

ADV_INT.1 Modularity

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

Developer action elements:

ADV_INT.1.1D The developer shall design and structure the TSF in a modular fashion that
avoids unnecessary interactions between the modules of the design.

ADV_INT.1.2D The developer shall provide an architectural description.

Content and presentation of evidence elements:

ADV_INT.1.1C The architectural description shall identify the modules of the TSF.

ADV_INT.1.2C The architectural description shall describe the purpose, interface,
parameters, and effects of each module of the TSF.

ADV_INT.1.3C The architectural description shall describe how the TSF design provides for
largely independent modules that avoid unnecessary interactions.

Evaluator action elements:

ADV_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

10 - Class ADV: Development TSF internals (ADV_INT)

Page 112 of 208 Version 2.1 August 1999

ADV_INT.1.2E The evaluator shall determine that both the low-level design and the
implementation representation are in compliance with the architectural
description.

ADV_INT.2 Reduction of complexity

Application notes

347 This component introduces a reference monitor concept by requiring the
minimisation of complexity of the portions of the TSF that enforce the access
control and/or information flow control policies identified in the TSP.

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

Developer action elements:

ADV_INT.2.1D The developer shall design and structure the TSF in a modular fashion that avoids
unnecessary interactions between the modules of the design.

ADV_INT.2.2D The developer shall provide an architectural description.

ADV_INT.2.3D The developer shall design and structure the TSF in a layered fashion that
minimises mutual interactions between the layers of the design.

ADV_INT.2.4D The developer shall design and structure the TSF in such a way that minimises
the complexity of the portions of the TSF that enforce any access control and/
or information flow control policies.

Content and presentation of evidence elements:

ADV_INT.2.1C The architectural description shall identify the modules of the TSF and shall
specify which portions of the TSF enforce the access control and/or
information flow control policies.

ADV_INT.2.2C The architectural description shall describe the purpose, interface, parameters, and
effects of each module of the TSF.

ADV_INT.2.3C The architectural description shall describe how the TSF design provides for largely
independent modules that avoid unnecessary interactions.

ADV_INT.2.4C The architectural description shall describe the layering architecture.

ADV_INT.2.5C The architectural description shall show that mutual interactions have been
minimised, and justify those that remain.

TSF internals (ADV_INT) 10 - Class ADV: Development

August 1999 Version 2.1 Page 113 of 208

ADV_INT.2.6C The architectural description shall describe how the portions of the TSF that
enforce any access control and/or information flow control policies have been
structured to minimise complexity.

Evaluator action elements:

ADV_INT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_INT.2.2E The evaluator shall determine that both the low-level design and the
implementation representation are in compliance with the architectural description.

ADV_INT.3 Minimisation of complexity

Application notes

348 This component requires that the reference monitor property “simple enough to be
analysed” is fully addressed. When this component is combined with the functional
requirements FPT_RVM.1 and FPT_SEP.3, the reference monitor concept would
be fully realised.

Dependencies:

ADV_IMP.2 Implementation of the TSF

ADV_LLD.1 Descriptive low-level design

Developer action elements:

ADV_INT.3.1D The developer shall design and structure the TSF in a modular fashion that avoids
unnecessary interactions between the modules of the design.

ADV_INT.3.2D The developer shall provide an architectural description.

ADV_INT.3.3D The developer shall design and structure the TSF in a layered fashion that
minimises mutual interactions between the layers of the design.

ADV_INT.3.4D The developer shall design and structure the TSF in such a way that minimises the
complexity of the entire TSF.

ADV_INT.3.5D The developer shall design and structure the portions of the TSF that enforce
any access control and/or information flow control policies such that they are
simple enough to be analysed.

ADV_INT.3.6D The developer shall ensure that functions whose objectives are not relevant for
the TSF are excluded from the TSF modules.

10 - Class ADV: Development TSF internals (ADV_INT)

Page 114 of 208 Version 2.1 August 1999

Content and presentation of evidence elements:

ADV_INT.3.1C The architectural description shall identify the modules of the TSF and shall specify
which portions of the TSF enforce the access control and/or information flow
control policies.

ADV_INT.3.2C The architectural description shall describe the purpose, interface, parameters, and
side-effects of each module of the TSF.

ADV_INT.3.3C The architectural description shall describe how the TSF design provides for largely
independent modules that avoid unnecessary interactions.

ADV_INT.3.4C The architectural description shall describe the layering architecture.

ADV_INT.3.5C The architectural description shall show that mutual interactions have been
minimised, and justify those that remain.

ADV_INT.3.6C The architectural description shall describe how the entire TSF has been structured
to minimise complexity.

ADV_INT.3.7C The architectural description shall justify the inclusion of any non-TSP-
enforcing modules in the TSF.

Evaluator action elements:

ADV_INT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_INT.3.2E The evaluator shall determine that both the low-level design and the
implementation representation are in compliance with the architectural description.

ADV_INT.3.3E The evaluator shall confirm that the portions of the TSF that enforce any
access control and/or information flow control policies are simple enough to be
analysed.

Low-level design (ADV_LLD) 10 - Class ADV: Development

August 1999 Version 2.1 Page 115 of 208

10.5 Low-level design (ADV_LLD)
ADV_LLD Low-level design

Objectives

349 The low-level design of a TOE provides a description of the internal workings of
the TSF in terms of modules and their interrelationships and dependencies. The
low-level design provides assurance that the TSF subsystems have been correctly
and effectively refined.

350 For each module of the TSF, the low-level design describes its purpose, function,
interfaces, dependencies, and the implementation of any TSP-enforcing functions.

Component levelling

351 The components in this family are levelled on the basis of the degree of formalism
required of the low-level design, and on the degree of detail required for the
interface specifications.

Application notes

352 The term “TSP-enforcing module” refers to any module that must be relied upon
for correct enforcement of the TSP.

353 The term “security functionality” is used to represent the set of operations that a
module performs in contribution to security functions implemented by the TOE.
This distinction is made because modules do not necessarily relate to specific
security functions. While a given module may correspond directly to a security
function, or even multiple security functions, it is also possible that many modules
must be combined to implement a single security function.

354 The ADV_LLD.*.6C elements require that the low-level design describe how each
TSP-enforcing function is provided. The intent of this requirement is that the low-
level design provide a description of how each module is expected to be
implemented from a design perspective.

355 The ADV_LLD.*.2E elements within this family define a requirement that the
evaluator determine that the low-level design is an accurate and complete
instantiation of the TOE security functional requirements. This provides a direct
correspondence between the TOE security functional requirements and the low-
level design, in addition to the pairwise correspondences required by the
ADV_RCR family. It is expected that the evaluator will use the evidence provided
in ADV_RCR as an input to making this determination, and the requirement for
completeness is intended to be relative to the level of abstraction of the low-level
design.

356 ADV_LLD.2.9C introduces a requirement for a complete presentation for the
interfaces to the modules. This will provide the necessary detail for supporting both
thorough testing of the TOE (using components from ATE_DPT), and the
assessment of vulnerabilities.

10 - Class ADV: Development Low-level design (ADV_LLD)

Page 116 of 208 Version 2.1 August 1999

357 In the context of the level of formality of the low-level design, informal, semiformal
and formal are considered to be hierarchical in nature. Thus, ADV_LLD.1.1C may
also be met with either a semiformal or formal low-level design, and
ADV_LLD.2.1C may also be met with a formal low-level design.

ADV_LLD.1 Descriptive low-level design

Dependencies:

ADV_HLD.2 Security enforcing high-level design

ADV_RCR.1 Informal correspondence demonstration

Developer action elements:

ADV_LLD.1.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.1.1C The presentation of the low-level design shall be informal.

ADV_LLD.1.2C The low-level design shall be internally consistent.

ADV_LLD.1.3C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.1.4C The low-level design shall describe the purpose of each module.

ADV_LLD.1.5C The low-level design shall define the interrelationships between the modules in
terms of provided security functionality and dependencies on other modules.

ADV_LLD.1.6C The low-level design shall describe how each TSP-enforcing function is
provided.

ADV_LLD.1.7C The low-level design shall identify all interfaces to the modules of the TSF.

ADV_LLD.1.8C The low-level design shall identify which of the interfaces to the modules of the
TSF are externally visible.

ADV_LLD.1.9C The low-level design shall describe the purpose and method of use of all
interfaces to the modules of the TSF, providing details of effects, exceptions
and error messages, as appropriate.

ADV_LLD.1.10C The low-level design shall describe the separation of the TOE into TSP-
enforcing and other modules.

Evaluator action elements:

ADV_LLD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Low-level design (ADV_LLD) 10 - Class ADV: Development

August 1999 Version 2.1 Page 117 of 208

ADV_LLD.1.2E The evaluator shall determine that the low-level design is an accurate and
complete instantiation of the TOE security functional requirements.

ADV_LLD.2 Semiformal low-level design

Dependencies:

ADV_HLD.3 Semiformal high-level design

ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements:

ADV_LLD.2.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.2.1C The presentation of the low-level design shall be semiformal.

ADV_LLD.2.2C The low-level design shall be internally consistent.

ADV_LLD.2.3C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.2.4C The low-level design shall describe the purpose of each module.

ADV_LLD.2.5C The low-level design shall define the interrelationships between the modules in
terms of provided security functionality and dependencies on other modules.

ADV_LLD.2.6C The low-level design shall describe how each TSP-enforcing function is provided.

ADV_LLD.2.7C The low-level design shall identify all interfaces to the modules of the TSF.

ADV_LLD.2.8C The low-level design shall identify which of the interfaces to the modules of the
TSF are externally visible.

ADV_LLD.2.9C The low-level design shall describe the purpose and method of use of all interfaces
to the modules of the TSF, providing complete details of all effects, exceptions and
error messages.

ADV_LLD.2.10C The low-level design shall describe the separation of the TOE into TSP-enforcing
and other modules.

Evaluator action elements:

ADV_LLD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_LLD.2.2E The evaluator shall determine that the low-level design is an accurate and complete
instantiation of the TOE security functional requirements.

10 - Class ADV: Development Low-level design (ADV_LLD)

Page 118 of 208 Version 2.1 August 1999

ADV_LLD.3 Formal low-level design

Dependencies:

ADV_HLD.5 Formal high-level design

ADV_RCR.3 Formal correspondence demonstration

Developer action elements:

ADV_LLD.3.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements:

ADV_LLD.3.1C The presentation of the low-level design shall be formal.

ADV_LLD.3.2C The low-level design shall be internally consistent.

ADV_LLD.3.3C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.3.4C The low-level design shall describe the purpose of each module.

ADV_LLD.3.5C The low-level design shall define the interrelationships between the modules in
terms of provided security functionality and dependencies on other modules.

ADV_LLD.3.6C The low-level design shall describe how each TSP-enforcing function is provided.

ADV_LLD.3.7C The low-level design shall identify all interfaces to the modules of the TSF.

ADV_LLD.3.8C The low-level design shall identify which of the interfaces to the modules of the
TSF are externally visible.

ADV_LLD.3.9C The low-level design shall describe the purpose and method of use of all interfaces
to the modules of the TSF, providing complete details of all effects, exceptions and
error messages.

ADV_LLD.3.10C The low-level design shall describe the separation of the TOE into TSP-enforcing
and other modules.

Evaluator action elements:

ADV_LLD.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_LLD.3.2E The evaluator shall determine that the low-level design is an accurate and complete
instantiation of the TOE security functional requirements.

Representation correspondence (ADV_RCR) 10 - Class ADV: Development

August 1999 Version 2.1 Page 119 of 208

10.6 Representation correspondence (ADV_RCR)
ADV_RCR Representation correspondence

Objectives

358 The correspondence between the various TSF representations (i.e. TOE summary
specification, functional specification, high-level design, low-level design,
implementation representation) addresses the correct and complete instantiation of
the requirements to the least abstract TSF representation provided. This conclusion
is achieved by step-wise refinement and the cumulative results of correspondence
determinations between all adjacent abstractions of representation.

Component levelling

359 The components in this family are levelled on the basis of the required level of
formality of the correspondence between the various TSF representations.

Application notes

360 The developer must demonstrate to the evaluator that the most detailed, or least
abstract, TSF representation provided is an accurate, consistent, and complete
instantiation of the functions expressed as functional requirements in the ST. This
is accomplished by showing correspondence between adjacent representations at a
commensurate level of rigour.

361 This family of requirements is not intended to address correspondence relating to
the TSP model or the TSP. Rather, as shown in Figure 10.2, it is intended to address
correspondence between various TSF representations (i.e. the TOE summary
specification, functional specification, high-level design, low-level design, and
implementation representation) that are provided.

362 The ADV_RCR.*.1C elements refer to “all relevant security functionality” in
defining the scope of what must be refined between an adjacent pair of TSF
representations. For the refinements between the TOE summary specification and
the functional specification, this element requires only that the TOE security
functions in the TOE summary specification be refined in the functional
specification, and does not require that the functional specification contain any
details regarding assurance measures (which are presented in the TOE summary
specification). Where the implementation representation is only provided for a
subset of the TSF (as in ADV_IMP.1), the required refinements between the low-
level design and the implementation representation are limited to the security
functionality that is presented in the implementation representation. In all other
cases, this element requires that all parts of the more abstract TSF representation be
refined in the less abstract TSF representation.

363 In the context of the level of formality for correspondence between adjacent TSF
representations, informal, semiformal and formal are considered to be hierarchical
in nature. Thus, ADV_RCR.2.2C and ADV_RCR.3.2C may be met with a formal
proof of correspondence, and in the absence of any requirements on its level of

10 - Class ADV: Development Representation correspondence (ADV_RCR)

Page 120 of 208 Version 2.1 August 1999

formality, a demonstration of correspondence may be informal, semiformal or
formal.

ADV_RCR.1 Informal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.1.1D The developer shall provide an analysis of correspondence between all
adjacent pairs of TSF representations that are provided.

Content and presentation of evidence elements:

ADV_RCR.1.1C For each adjacent pair of provided TSF representations, the analysis shall
demonstrate that all relevant security functionality of the more abstract TSF
representation is correctly and completely refined in the less abstract TSF
representation.

Evaluator action elements:

ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_RCR.2 Semiformal correspondence demonstration

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.2.1D The developer shall provide an analysis of correspondence between all adjacent
pairs of TSF representations that are provided.

Content and presentation of evidence elements:

ADV_RCR.2.1C For each adjacent pair of provided TSF representations, the analysis shall
demonstrate that all relevant security functionality of the more abstract TSF
representation is correctly and completely refined in the less abstract TSF
representation.

ADV_RCR.2.2C For each adjacent pair of provided TSF representations, where portions of
both representations are at least semiformally specified, the demonstration of
correspondence between those portions of the representations shall be
semiformal.

Representation correspondence (ADV_RCR) 10 - Class ADV: Development

August 1999 Version 2.1 Page 121 of 208

Evaluator action elements:

ADV_RCR.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.3 Formal correspondence demonstration

Application notes

364 The developer must either demonstrate or prove correspondence, as described in the
requirements below, commensurate with the level of rigour of presentation style.
For example, correspondence must be proven when corresponding representations
are formally specified.

Dependencies:

No dependencies.

Developer action elements:

ADV_RCR.3.1D The developer shall provide an analysis of correspondence between all adjacent
pairs of TSF representations that are provided.

ADV_RCR.3.2D For those corresponding portions of representations that are formally
specified, the developer shall prove that correspondence.

Content and presentation of evidence elements:

ADV_RCR.3.1C For each adjacent pair of provided TSF representations, the analysis shall prove or
demonstrate that all relevant security functionality of the more abstract TSF
representation is correctly and completely refined in the less abstract TSF
representation.

ADV_RCR.3.2C For each adjacent pair of provided TSF representations, where portions of one
representation are semiformally specified and the other at least semiformally
specified, the demonstration of correspondence between those portions of the
representations shall be semiformal.

ADV_RCR.3.3C For each adjacent pair of provided TSF representations, where portions of
both representations are formally specified, the proof of correspondence
between those portions of the representations shall be formal.

Evaluator action elements:

ADV_RCR.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_RCR.3.2E The evaluator shall determine the accuracy of the proofs of correspondence by
selectively verifying the formal analysis.

10 - Class ADV: Development Security policy modeling (ADV_SPM)

Page 122 of 208 Version 2.1 August 1999

10.7 Security policy modeling (ADV_SPM)
ADV_SPM Security policy modeling

Objectives

365 It is the objective of this family to provide additional assurance that the security
functions in the functional specification enforce the policies in the TSP. This is
accomplished via the development of a security policy model that is based on a
subset of the policies of the TSP, and establishing a correspondence between the
functional specification, the security policy model, and these policies of the TSP.

Component levelling

366 The components in this family are levelled on the basis of the degree of formality
required of the TSP model, and the degree of formality required of the
correspondence between the TSP model and the functional specification.

Application notes

367 While a TSP may include any policies, TSP models have traditionally represented
only subsets of those policies, because modeling certain policies is currently
beyond the state of the art. The current state of the art determines the policies that
can be modeled, and the PP/ST author should identify specific functions and
associated policies that can, and thus are required to be, modeled. At the very least,
access control and information flow control policies are required to be modeled (if
they are part of the TSP) since they are within the state of the art.

368 For each of the components within this family, there is a requirement to describe the
rules and characteristics of applicable policies of the TSP in the TSP model and to
ensure that the TSP model satisfies the corresponding policies of the TSP. The
“rules” and “characteristics” of a TSP model are intended to allow flexibility in the
type of model that may be developed (e.g. state transition, non-interference). For
example, rules may be represented as “properties” (e.g. simple security property)
and characteristics may be represented as definitions such as “initial state”, “secure
state”, “subjects” and “objects”.

369 In the context of the level of formality of the TSP model and the correspondence
between the TSP model and the functional specification, informal, semiformal and
formal are considered to be hierarchical in nature. Thus, ADV_SPM.1.1C may also
be met with either a semiformal or formal TSP model, and ADV_SPM.2.1C may
also be met with a formal TSP model. Furthermore, ADV_SPM.2.5C and
ADV_SPM.3.5C may be met with a formal proof of correspondence. Finally, in the
absence of any requirements on its level of formality, a demonstration of
correspondence may be informal, semiformal or formal.

ADV_SPM.1 Informal TOE security policy model

Dependencies:

ADV_FSP.1 Informal functional specification

Security policy modeling (ADV_SPM) 10 - Class ADV: Development

August 1999 Version 2.1 Page 123 of 208

Developer action elements:

ADV_SPM.1.1D The developer shall provide a TSP model.

ADV_SPM.1.2D The developer shall demonstrate correspondence between the functional
specification and the TSP model.

Content and presentation of evidence elements:

ADV_SPM.1.1C The TSP model shall be informal.

ADV_SPM.1.2C The TSP model shall describe the rules and characteristics of all policies of the
TSP that can be modeled.

ADV_SPM.1.3C The TSP model shall include a rationale that demonstrates that it is consistent
and complete with respect to all policies of the TSP that can be modeled.

ADV_SPM.1.4C The demonstration of correspondence between the TSP model and the
functional specification shall show that all of the security functions in the
functional specification are consistent and complete with respect to the TSP
model.

Evaluator action elements:

ADV_SPM.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_SPM.2 Semiformal TOE security policy model

Dependencies:

ADV_FSP.1 Informal functional specification

Developer action elements:

ADV_SPM.2.1D The developer shall provide a TSP model.

ADV_SPM.2.2D The developer shall demonstrate correspondence between the functional
specification and the TSP model.

Content and presentation of evidence elements:

ADV_SPM.2.1C The TSP model shall be semiformal.

ADV_SPM.2.2C The TSP model shall describe the rules and characteristics of all policies of the TSP
that can be modeled.

ADV_SPM.2.3C The TSP model shall include a rationale that demonstrates that it is consistent and
complete with respect to all policies of the TSP that can be modeled.

10 - Class ADV: Development Security policy modeling (ADV_SPM)

Page 124 of 208 Version 2.1 August 1999

ADV_SPM.2.4C The demonstration of correspondence between the TSP model and the functional
specification shall show that all of the security functions in the functional
specification are consistent and complete with respect to the TSP model.

ADV_SPM.2.5C Where the functional specification is at least semiformal, the demonstration of
correspondence between the TSP model and the functional specification shall
be semiformal.

Evaluator action elements:

ADV_SPM.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ADV_SPM.3 Formal TOE security policy model

Dependencies:

ADV_FSP.1 Informal functional specification

Developer action elements:

ADV_SPM.3.1D The developer shall provide a TSP model.

ADV_SPM.3.2D The developer shall demonstrate or prove, as appropriate, correspondence
between the functional specification and the TSP model.

Content and presentation of evidence elements:

ADV_SPM.3.1C The TSP model shall be formal.

ADV_SPM.3.2C The TSP model shall describe the rules and characteristics of all policies of the TSP
that can be modeled.

ADV_SPM.3.3C The TSP model shall include a rationale that demonstrates that it is consistent and
complete with respect to all policies of the TSP that can be modeled.

ADV_SPM.3.4C The demonstration of correspondence between the TSP model and the functional
specification shall show that all of the security functions in the functional
specification are consistent and complete with respect to the TSP model.

ADV_SPM.3.5C Where the functional specification is semiformal, the demonstration of
correspondence between the TSP model and the functional specification shall be
semiformal.

ADV_SPM.3.6C Where the functional specification is formal, the proof of correspondence
between the TSP model and the functional specification shall be formal.

Security policy modeling (ADV_SPM) 10 - Class ADV: Development

August 1999 Version 2.1 Page 125 of 208

Evaluator action elements:

ADV_SPM.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

10 - Class ADV: Development Security policy modeling (ADV_SPM)

Page 126 of 208 Version 2.1 August 1999

132Part 3: Security assurance requirements

August 1999 Version 2.1 Page 127 of 208

11 Class AGD: Guidance documents

370 The guidance documents class provides the requirements for user and administrator
guidance documentation. For the secure administration and use of the TOE it is
necessary to describe all relevant aspects for the secure application of the TOE.

371 Figure 11.1 shows the families within this class, and the hierarchy of components
within the families.

 Class AGD: Guidance documents

AGD_ADM Administrator guidance 1

AGD_USR User guidance 1

Figure 11.1 - Guidance documents class decomposition

11 - Class AGD: Guidance documents Part 3: Security assurance requirements

Page 128 of 208 Version 2.1 August 1999

11.1 Administrator guidance (AGD_ADM)
AGD_ADM Administrator guidance

Objectives

372 Administrator guidance refers to written material that is intended to be used by
those persons responsible for configuring, maintaining, and administering the TOE
in a correct manner for maximum security. Because the secure operation of the TOE
is dependent upon the correct performance of the TSF, persons responsible for
performing these functions are trusted by the TSF. Administrator guidance is
intended to help administrators understand the security functions provided by the
TOE, including both those functions that require the administrator to perform
security-critical actions and those functions that provide security-critical
information.

Component levelling

373 This family contains only one component.

Application notes

374 The requirements AGD_ADM.1.3C and AGD_ADM.1.7C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the administrator guidance.

375 The concept of secure values, as employed in AGD_ADM.1.5C, has relevance
where an administrator has control over security parameters. Guidance needs to be
provided on secure and insecure settings for such parameters. This concept is
related to the use of the component FMT_MSA.2 from CC Part 2.

AGD_ADM.1Administrator guidance

Dependencies:

ADV_FSP.1 Informal functional specification

Developer action elements:

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements:

AGD_ADM.1.1C The administrator guidance shall describe the administrative functions and
interfaces available to the administrator of the TOE.

AGD_ADM.1.2C The administrator guidance shall describe how to administer the TOE in a
secure manner.

Part 3: Security assurance requirements 11 - Class AGD: Guidance documents

August 1999 Version 2.1 Page 129 of 208

AGD_ADM.1.3C The administrator guidance shall contain warnings about functions and
privileges that should be controlled in a secure processing environment.

AGD_ADM.1.4C The administrator guidance shall describe all assumptions regarding user
behaviour that are relevant to secure operation of the TOE.

AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the
control of the administrator, indicating secure values as appropriate.

AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event
relative to the administrative functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall be consistent with all other documentation
supplied for evaluation.

AGD_ADM.1.8C The administrator guidance shall describe all security requirements for the IT
environment that are relevant to the administrator.

Evaluator action elements:

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

11 - Class AGD: Guidance documents Part 3: Security assurance requirements

Page 130 of 208 Version 2.1 August 1999

11.2 User guidance (AGD_USR)
AGD_USR User guidance

Objectives

376 User guidance refers to material that is intended to be used by non-administrative
human users of the TOE, and by others (e.g. programmers) using the TOE’s
external interfaces. User guidance describes the security functions provided by the
TSF and provides instructions and guidelines, including warnings, for its secure
use.

377 The user guidance provides a basis for assumptions about the use of the TOE and a
measure of confidence that non-malicious users, application providers and others
exercising the external interfaces of the TOE will understand the secure operation
of the TOE and will use it as intended.

Component levelling

378 This family contains only one component.

Application notes

379 The requirements AGD_USR.1.3.C and AGD_USR.1.5C encompass the aspect
that any warnings to the users of a TOE with regard to the TOE security
environment and the security objectives described in the PP/ST are appropriately
covered in the user guidance.

380 In many cases it may be appropriate that guidance is provided in separate
documents: one for human users, and one for application programmers and/or hard-
ware designers using software or hardware interfaces.

AGD_USR.1 User guidance

Dependencies:

ADV_FSP.1 Informal functional specification

Developer action elements:

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:

AGD_USR.1.1C The user guidance shall describe the functions and interfaces available to the
non-administrative users of the TOE.

AGD_USR.1.2C The user guidance shall describe the use of user-accessible security functions
provided by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about user-accessible functions and
privileges that should be controlled in a secure processing environment.

Part 3: Security assurance requirements 11 - Class AGD: Guidance documents

August 1999 Version 2.1 Page 131 of 208

AGD_USR.1.4C The user guidance shall clearly present all user responsibilities necessary for
secure operation of the TOE, including those related to assumptions regarding
user behaviour found in the statement of TOE security environment.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation supplied
for evaluation.

AGD_USR.1.6C The user guidance shall describe all security requirements for the IT
environment that are relevant to the user.

Evaluator action elements:

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

11 - Class AGD: Guidance documents Part 3: Security assurance requirements

Page 132 of 208 Version 2.1 August 1999

146Part 3: Security assurance requirements

August 1999 Version 2.1 Page 133 of 208

12 Class ALC: Life cycle support

381 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during its development and maintenance.
Confidence in the correspondence between the TOE security requirements and the
TOE is greater if security analysis and the production of the evidence are done on a
regular basis as an integral part of the development and maintenance activities.

382 Figure 12.1 shows the families within this class, and the hierarchy of components
within the families.

 Class ALC: Life cycle support

ALC_DVS Development security 1 2

ALC_FLR Flaw remediation 1 2 3

ALC_LCD Life cycle definition 1 2 3

ALC_TAT Tools and techniques 1 2 3

Figure 12.1 -Life-cycle support class decomposition

12 - Class ALC: Life cycle support Development security (ALC_DVS)

Page 134 of 208 Version 2.1 August 1999

12.1 Development security (ALC_DVS)
ALC_DVS Development security

Objectives

383 Development security is concerned with physical, procedural, personnel, and other
security measures that may be used in the development environment to protect the
TOE. It includes the physical security of the development location and any
procedures used to select development staff.

Component levelling

384 The components in this family are levelled on the basis of whether justification of
the sufficiency of the security measures is required.

Application notes

385 This family deals with measures to remove or reduce threats existing at the
developer’s site. Conversely, threats to be countered at the TOE user’s site are
normally covered in the security environment subclause of a PP or ST.

386 The evaluator should determine whether there is a need for visiting the developer’s
site in order to confirm that the requirements of this family are met.

387 It is recognised that confidentiality may not always be an issue for the protection of
the TOE in its development environment. The use of the word “necessary” allows
for the selection of appropriate safeguards.

ALC_DVS.1 Identification of security measures

Dependencies:

No dependencies.

Developer action elements:

ALC_DVS.1.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.1.1C The development security documentation shall describe all the physical,
procedural, personnel, and other security measures that are necessary to
protect the confidentiality and integrity of the TOE design and
implementation in its development environment.

ALC_DVS.1.2C The development security documentation shall provide evidence that these
security measures are followed during the development and maintenance of
the TOE.

Development security (ALC_DVS) 12 - Class ALC: Life cycle support

August 1999 Version 2.1 Page 135 of 208

Evaluator action elements:

ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_DVS.1.2E The evaluator shall confirm that the security measures are being applied.

ALC_DVS.2 Sufficiency of security measures

Dependencies:

No dependencies.

Developer action elements:

ALC_DVS.2.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:

ALC_DVS.2.1C The development security documentation shall describe all the physical,
procedural, personnel, and other security measures that are necessary to protect the
confidentiality and integrity of the TOE design and implementation in its
development environment.

ALC_DVS.2.2C The development security documentation shall provide evidence that these security
measures are followed during the development and maintenance of the TOE.

ALC_DVS.2.3C The evidence shall justify that the security measures provide the necessary
level of protection to maintain the confidentiality and integrity of the TOE.

Evaluator action elements:

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_DVS.2.2E The evaluator shall confirm that the security measures are being applied.

12 - Class ALC: Life cycle support Flaw remediation (ALC_FLR)

Page 136 of 208 Version 2.1 August 1999

12.2 Flaw remediation (ALC_FLR)
ALC_FLR Flaw remediation

Objectives

388 Flaw remediation requires that discovered security flaws be tracked and corrected
by the developer. Although future compliance with flaw remediation procedures
cannot be determined at the time of the TOE evaluation, it is possible to evaluate
the policies and procedures that a developer has in place to track and correct flaws,
and to distribute the flaw information and corrections.

Component levelling

389 The components in this family are levelled on the basis of the increasing extent in
scope of the flaw remediation procedures and the rigour of the flaw remediation
policies.

Application notes

390 This family provides assurance that the TOE will be maintained and supported in
the future, requiring the TOE developer to track and correct flaws in the TOE.
Additionally, requirements are included for the distribution of flaw corrections.
However, this family does not impose evaluation requirements beyond the current
evaluation.

391 The flaw remediation procedures should describe the methods for dealing with all
types of flaws encountered. Some flaws may not be fixable immediately. There may
be some occasions where a flaw cannot be fixed and other (e.g. procedural)
measures must be taken. The documentation provided should cover the procedures
for providing the operational sites with fixes, and providing information on flaws
where fixes are delayed (and what to do in the interim) or when fixes are not
possible.

ALC_FLR.1 Basic flaw remediation

Dependencies:

No dependencies.

Developer action elements:

ALC_FLR.1.1D The developer shall document the flaw remediation procedures.

Content and presentation of evidence elements:

ALC_FLR.1.1C The flaw remediation procedures documentation shall describe the procedures
used to track all reported security flaws in each release of the TOE.

ALC_FLR.1.2C The flaw remediation procedures shall require that a description of the nature
and effect of each security flaw be provided, as well as the status of finding a
correction to that flaw.

Flaw remediation (ALC_FLR) 12 - Class ALC: Life cycle support

August 1999 Version 2.1 Page 137 of 208

ALC_FLR.1.3C The flaw remediation procedures shall require that corrective actions be
identified for each of the security flaws.

ALC_FLR.1.4C The flaw remediation procedures documentation shall describe the methods
used to provide flaw information, corrections and guidance on corrective
actions to TOE users.

Evaluator action elements:

ALC_FLR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_FLR.2 Flaw reporting procedures

Dependencies:

No dependencies.

Developer action elements:

ALC_FLR.2.1D The developer shall document the flaw remediation procedures.

ALC_FLR.2.2D The developer shall establish a procedure for accepting and acting upon user
reports of security flaws and requests for corrections to those flaws.

Content and presentation of evidence elements:

ALC_FLR.2.1C The flaw remediation procedures documentation shall describe the procedures used
to track all reported security flaws in each release of the TOE.

ALC_FLR.2.2C The flaw remediation procedures shall require that a description of the nature and
effect of each security flaw be provided, as well as the status of finding a correction
to that flaw.

ALC_FLR.2.3C The flaw remediation procedures shall require that corrective actions be identified
for each of the security flaws.

ALC_FLR.2.4C The flaw remediation procedures documentation shall describe the methods used to
provide flaw information, corrections and guidance on corrective actions to TOE
users.

ALC_FLR.2.5C The procedures for processing reported security flaws shall ensure that any
reported flaws are corrected and the correction issued to TOE users.

ALC_FLR.2.6C The procedures for processing reported security flaws shall provide
safeguards that any corrections to these security flaws do not introduce any
new flaws.

12 - Class ALC: Life cycle support Flaw remediation (ALC_FLR)

Page 138 of 208 Version 2.1 August 1999

Evaluator action elements:

ALC_FLR.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_FLR.3 Systematic flaw remediation

Dependencies:

No dependencies.

Developer action elements:

ALC_FLR.3.1D The developer shall document the flaw remediation procedures.

ALC_FLR.3.2D The developer shall establish a procedure for accepting and acting upon user reports
of security flaws and requests for corrections to those flaws.

ALC_FLR.3.3D The developer shall designate one or more specific points of contact for user
reports and inquiries about security issues involving the TOE.

Content and presentation of evidence elements:

ALC_FLR.3.1C The flaw remediation procedures documentation shall describe the procedures used
to track all reported security flaws in each release of the TOE.

ALC_FLR.3.2C The flaw remediation procedures shall require that a description of the nature and
effect of each security flaw be provided, as well as the status of finding a correction
to that flaw.

ALC_FLR.3.3C The flaw remediation procedures shall require that corrective actions be identified
for each of the security flaws.

ALC_FLR.3.4C The flaw remediation procedures documentation shall describe the methods used to
provide flaw information, corrections and guidance on corrective actions to TOE
users.

ALC_FLR.3.5C The procedures for processing reported security flaws shall ensure that any reported
flaws are corrected and the correction issued to TOE users.

ALC_FLR.3.6C The procedures for processing reported security flaws shall provide safeguards that
any corrections to these security flaws do not introduce any new flaws.

ALC_FLR.3.7C The flaw remediation procedures shall include a procedure requiring timely
responses for the automatic distribution of security flaw reports and the
associated corrections to registered users who might be affected by the security
flaw.

Flaw remediation (ALC_FLR) 12 - Class ALC: Life cycle support

August 1999 Version 2.1 Page 139 of 208

Evaluator action elements:

ALC_FLR.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

12 - Class ALC: Life cycle support Life cycle definition(ALC_LCD)

Page 140 of 208 Version 2.1 August 1999

12.3 Life cycle definition(ALC_LCD)
ALC_LCD Life cycle definition

Objectives

392 Poorly controlled development and maintenance of the TOE can result in a flawed
implementation of a TOE (or a TOE that does not meet all of its security
requirements). This, in turn, results in security violations. Therefore, it is important
that a model for the development and maintenance of a TOE be established as early
as possible in the TOE’s life-cycle.

393 Using a model for the development and maintenance of a TOE does not guarantee
that the TOE will be free of flaws, nor does it guarantee that the TOE will meet all
of its security functional requirements. It is possible that the model chosen will be
insufficient or inadequate and therefore no benefits in the quality of the TOE can be
observed. Using a life-cycle model that has been approved by some group of experts
(e.g. academic experts, standards bodies) improves the chances that the
development and maintenance models will contribute to the overall quality of the
TOE.

Component levelling

394 The components in this family are levelled on the basis of increasing requirements
for standardisation and measurability of the life-cycle model, and for compliance
with that model.

Application notes

395 A life-cycle model encompasses the procedures, tools and techniques used to
develop and maintain the TOE. Aspects of the process that may be covered by such
a model include design methods, review procedures, project management controls,
change control procedures, test methods and acceptance procedures. An effective
life-cycle model will address these aspects of the development and maintenance
process within an overall management structure that assigns responsibilities and
monitors progress.

396 Although life-cycle definition deals with the maintenance of the TOE and hence
with aspects becoming relevant after the completion of the evaluation, its
evaluation adds assurance through an analysis of the life-cycle information for the
TOE provided at the time of the evaluation.

397 A standardised life-cycle model is a model that has been approved by some group
of experts (e.g. academic experts, standards bodies).

398 A measurable life-cycle model is a model with arithmetic parameters and/or metrics
that measure TOE development properties (e.g. source code complexity metrics).

399 A life-cycle model provides for the necessary control over the development and
maintenance of the TOE, if the developer can supply information that shows that
the model appropriately minimises the danger of security violations in the TOE.

Life cycle definition(ALC_LCD) 12 - Class ALC: Life cycle support

August 1999 Version 2.1 Page 141 of 208

Information given in the ST about the intended environment of the TOE and about
the TOE's security objectives may be useful in defining the model for the portion of
the life-cycle after the delivery of the TOE.

ALC_LCD.1 Developer defined life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.1.1D The developer shall establish a life-cycle model to be used in the development
and maintenance of the TOE.

ALC_LCD.1.2D The developer shall provide life-cycle definition documentation.

Content and presentation of evidence elements:

ALC_LCD.1.1C The life-cycle definition documentation shall describe the model used to
develop and maintain the TOE.

ALC_LCD.1.2C The life-cycle model shall provide for the necessary control over the
development and maintenance of the TOE.

Evaluator action elements:

ALC_LCD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_LCD.2 Standardised life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the development and
maintenance of the TOE.

ALC_LCD.2.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.2.3D The developer shall use a standardised life-cycle model to develop and
maintain the TOE.

Content and presentation of evidence elements:

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model used to develop
and maintain the TOE.

12 - Class ALC: Life cycle support Life cycle definition(ALC_LCD)

Page 142 of 208 Version 2.1 August 1999

ALC_LCD.2.2C The life-cycle model shall provide for the necessary control over the development
and maintenance of the TOE.

ALC_LCD.2.3C The life-cycle definition documentation shall explain why the model was
chosen.

ALC_LCD.2.4C The life-cycle definition documentation shall explain how the model is used to
develop and maintain the TOE.

ALC_LCD.2.5C The life-cycle definition documentation shall demonstrate compliance with the
standardised life-cycle model.

Evaluator action elements:

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_LCD.3 Measurable life-cycle model

Dependencies:

No dependencies.

Developer action elements:

ALC_LCD.3.1D The developer shall establish a life-cycle model to be used in the development and
maintenance of the TOE.

ALC_LCD.3.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.3.3D The developer shall use a standardised and measurable life-cycle model to develop
and maintain the TOE.

ALC_LCD.3.4D The developer shall measure the TOE development using the standardised and
measurable life-cycle model.

Content and presentation of evidence elements:

ALC_LCD.3.1C The life-cycle definition documentation shall describe the model used to develop
and maintain the TOE, including the details of its arithmetic parameters and/or
metrics used to measure the TOE development against the model.

ALC_LCD.3.2C The life-cycle model shall provide for the necessary control over the development
and maintenance of the TOE.

ALC_LCD.3.3C The life-cycle definition documentation shall explain why the model was chosen.

ALC_LCD.3.4C The life-cycle definition documentation shall explain how the model is used to
develop and maintain the TOE.

Life cycle definition(ALC_LCD) 12 - Class ALC: Life cycle support

August 1999 Version 2.1 Page 143 of 208

ALC_LCD.3.5C The life-cycle definition documentation shall demonstrate compliance with the
standardised and measurable life-cycle model.

ALC_LCD.3.6C The life-cycle documentation shall provide the results of the measurements of
the TOE development using the standardised and measurable life-cycle model.

Evaluator action elements:

ALC_LCD.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

12 - Class ALC: Life cycle support Tools and techniques (ALC_TAT)

Page 144 of 208 Version 2.1 August 1999

12.4 Tools and techniques (ALC_TAT)
ALC_TAT Tools and techniques

Objectives

400 Tools and techniques is an aspect of selecting tools that are used to develop, analyse
and implement the TOE. It includes requirements to prevent ill-defined,
inconsistent or incorrect development tools from being used to develop the TOE.
This includes, but is not limited to, programming languages, documentation,
implementation standards, and other parts of the TOE such as supporting runtime
libraries.

Component levelling

401 The components in this family are levelled on the basis of increasing requirements
on the description and scope of the implementation standards and the
documentation of implementation- dependent options.

Application notes

402 There is a requirement for well-defined development tools. These are tools that
have been shown to be applicable without the need for intensive further
clarification. For example, programming languages and computer aided design
(CAD) systems that are based on an a standard published by standards bodies are
considered to be well-defined.

403 Tools and techniques distinguishes between the implementation standards applied
by the developer (ALC_TAT.2.3D) and the implementation standards for “all parts
of the TOE” (ALC_TAT.3.3D) that additionally includes third party software,
hardware, or firmware.

404 The requirement in ALC_TAT.1.2C is especially applicable to programming
languages so as to ensure that all statements in the source code have an
unambiguous meaning.

ALC_TAT.1 Well-defined development tools

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements:

ALC_TAT.1.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.1.2D The developer shall document the selected implementation-dependent options
of the development tools.

Content and presentation of evidence elements:

ALC_TAT.1.1C All development tools used for implementation shall be well-defined.

Tools and techniques (ALC_TAT) 12 - Class ALC: Life cycle support

August 1999 Version 2.1 Page 145 of 208

ALC_TAT.1.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

ALC_TAT.1.3C The documentation of the development tools shall unambiguously define the
meaning of all implementation-dependent options.

Evaluator action elements:

ALC_TAT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT.2 Compliance with implementation standards

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements:

ALC_TAT.2.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.2.2D The developer shall document the selected implementation-dependent options of
the development tools.

ALC_TAT.2.3D The developer shall describe the implementation standards to be applied.

Content and presentation of evidence elements:

ALC_TAT.2.1C All development tools used for implementation shall be well-defined.

ALC_TAT.2.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

ALC_TAT.2.3C The documentation of the development tools shall unambiguously define the
meaning of all implementation-dependent options.

Evaluator action elements:

ALC_TAT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT.2.2E The evaluator shall confirm that the implementation standards have been
applied.

ALC_TAT.3 Compliance with implementation standards - all parts

Dependencies:

ADV_IMP.1 Subset of the implementation of the TSF

12 - Class ALC: Life cycle support Tools and techniques (ALC_TAT)

Page 146 of 208 Version 2.1 August 1999

Developer action elements:

ALC_TAT.3.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.3.2D The developer shall document the selected implementation-dependent options of
the development tools.

ALC_TAT.3.3D The developer shall describe the implementation standards for all parts of the
TOE.

Content and presentation of evidence elements:

ALC_TAT.3.1C All development tools used for implementation shall be well-defined.

ALC_TAT.3.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

ALC_TAT.3.3C The documentation of the development tools shall unambiguously define the
meaning of all implementation-dependent options.

Evaluator action elements:

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have been applied.

163Part 3: Security assurance requirements

August 1999 Version 2.1 Page 147 of 208

13 Class ATE: Tests

405 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g. functional testing performed by evaluators)
(ATE_IND), and functional tests (ATE_FUN). Testing helps to establish that the
TOE security functional requirements are met. Testing provides assurance that the
TOE satisfies at least the TOE security functional requirements, although it cannot
establish that the TOE does no more than what was specified. Testing may also be
directed toward the internal structure of the TSF, such as the testing of subsystems
and modules against their specifications.

406 The aspects of coverage and depth have been separated from functional tests for
reasons of increased flexibility in applying the components of the families.
However, the requirements in these three families are intended to be applied
together.

407 The independent testing family has dependencies on the other families to provide
the necessary information to support the requirements, but is primarily concerned
with independent evaluator actions.

408 The emphasis in this class is on confirmation that the TSF operates according to its
specification. This will include both positive testing based on functional
requirements, and negative testing to check that undesirable behaviour is absent.
This class does not address penetration testing, which is directed toward finding
vulnerabilities that enable a user to violate the security policy. Penetration testing is
based upon an analysis of the TOE that specifically seeks to identify vulnerabilities
in the design and implementation of the TSF, and is addressed separately as an
aspect of vulnerability assessment in the class AVA.

13 - Class ATE: Tests

Page 148 of 208 Version 2.1 August 1999

409 Figure 13.1 shows the families within this class, and the hierarchy of components
within the families.

Class ATE Tests

ATE_COV Coverage 1 2 3

ATE_DPT Depth 1 2 3

ATE_FUN Functional tests 1 2

ATE_IND Independent testing 1 2 3

Figure 13.1 -Tests class decomposition

Coverage (ATE_COV) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 149 of 208

13.1 Coverage (ATE_COV)
ATE_COV Coverage

Objectives

410 This family addresses those aspects of testing that deal with completeness of test
coverage. That is, it addresses the extent to which the TSF is tested, and whether or
not the testing is sufficiently extensive to demonstrate that the TSF operates as
specified.

Component levelling

411 The components in this family are levelled on the basis of increasing rigour of
interface testing, and increasing rigour of the analysis of the sufficiency of the tests
to demonstrate that the TSF operates in accordance with its functional specification.

ATE_COV.1 Evidence of coverage

Objectives

412 In this component, the objective is to establish that the TSF has been tested against
its functional specification. This is to be achieved through an examination of
developer evidence of correspondence.

Application notes

413 While the testing objective is to cover the TSF, there is no requirement to provide
anything to verify this assertion other than an informal mapping of tests to the
functional specification and the testing data itself.

414 In this component the developer is required to show how the tests that have been
identified correspond to the TSF as described in the functional specification. This
can be achieved by a statement of correspondence, perhaps using a table. This
information is required to support the evaluator in planning the test programme for
the evaluation. At this level there is no requirement for complete coverage of every
aspect of the TSF by the developer, and the evaluator will need to take account of
any deficiencies in this area.

Dependencies:

ADV_FSP.1 Informal functional specification

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.1.1D The developer shall provide evidence of the test coverage.

13 - Class ATE: Tests Coverage (ATE_COV)

Page 150 of 208 Version 2.1 August 1999

Content and presentation of evidence elements:

ATE_COV.1.1C The evidence of the test coverage shall show the correspondence between the
tests identified in the test documentation and the TSF as described in the
functional specification.

Evaluator action elements:

ATE_COV.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_COV.2 Analysis of coverage

Objectives

415 In this component, the objective is to establish that the TSF has been tested against
its functional specification in a systematic manner. This is to be achieved through
an examination of developer analysis of correspondence.

Application notes

416 The developer is required to demonstrate that the tests which have been identified
include testing of all of the security functions as described in the functional
specification. The analysis should not only show the correspondence between tests
and security functions, but should provide also sufficient information for the
evaluator to determine how the functions have been exercised. This information can
be used in planning for additional evaluator tests. Although at this level the
developer has to demonstrate that each of the functions within the functional
specification has been tested, the amount of testing of each function need not be
exhaustive.

Dependencies:

ADV_FSP.1 Informal functional specification

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.2.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements:

ATE_COV.2.1C The analysis of the test coverage shall demonstrate the correspondence between
the tests identified in the test documentation and the TSF as described in the
functional specification.

ATE_COV.2.2C The analysis of the test coverage shall demonstrate that the correspondence
between the TSF as described in the functional specification and the tests
identified in the test documentation is complete.

Coverage (ATE_COV) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 151 of 208

Evaluator action elements:

ATE_COV.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_COV.3 Rigorous analysis of coverage

Objectives

417 In this component, the objective is to establish that the TSF has been tested against
its functional specification in a systematic and exhaustive manner. This is to be
achieved through an examination of developer analysis of correspondence.

Application notes

418 The developer is required to provide a convincing argument that the tests which
have been identified cover all security functions, and that the testing of each
security function is complete. There will remain little scope for the evaluator to
devise additional functional tests of the TSF interfaces based on the functional
specification, as they will have been exhaustively tested. Nevertheless, the
evaluator should strive to devise such tests.

Dependencies:

ADV_FSP.1 Informal functional specification

ATE_FUN.1 Functional testing

Developer action elements:

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements:

ATE_COV.3.1C The analysis of the test coverage shall demonstrate the correspondence between the
tests identified in the test documentation and the TSF as described in the functional
specification.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate that the correspondence between
the TSF as described in the functional specification and the tests identified in the
test documentation is complete.

ATE_COV.3.3C The analysis of the test coverage shall rigorously demonstrate that all external
interfaces of the TSF identified in the functional specification have been
completely tested.

Evaluator action elements:

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

13 - Class ATE: Tests Depth (ATE_DPT)

Page 152 of 208 Version 2.1 August 1999

13.2 Depth (ATE_DPT)
ATE_DPT Depth

Objectives

419 The components in this family deal with the level of detail to which the TSF is
tested. Testing of security functions is based upon increasing depth of information
derived from analysis of the representations.

420 The objective is to counter the risk of missing an error in the development of the
TOE. Additionally, the components of this family, especially as testing is more
concerned with the internal structure of the TSF, are more likely to discover any
malicious code that has been inserted.

421 Testing that exercises specific internal interfaces can provide assurance not only
that the TSF exhibits the desired external security behaviour, but also that this
behaviour stems from correctly operating internal mechanisms.

Component levelling

422 The components in this family are levelled on the basis of increasing detail provided
in the TSF representations, from the high-level design to the implementation
representation. This levelling reflects the TSF representations presented in the ADV
class.

Application notes

423 The specific amount and type of documentation and evidence will, in general, be
determined by the chosen component from ATE_FUN.

424 Testing at the level of the functional specification is addressed by ATE_COV.

425 The principle adopted within this family is that the level of testing be appropriate to
the level of assurance being sought. Where higher components are applied, the test
results will need to demonstrate that the implementation of the TSF is consistent
with its design. For example, the high-level design should describe each of the
subsystems and also describe the interfaces between these subsystems in sufficient
detail. Evidence of testing must show that the internal interfaces between
subsystems have been exercised. This may be achieved through testing via the
external interfaces of the TSF, or by testing of the subsystem interfaces in isolation,
perhaps employing a test harness. In cases where some aspects of an internal
interface cannot be tested via the external interfaces there should either be
justification that these aspects need not be tested, or the internal interface needs to
be tested directly. In the latter case the high-level design needs to be sufficiently
detailed in order to facilitate direct testing. The higher components in this family
aim to check the correct operation of internal interfaces that become visible as the
design becomes less abstract. When these components are applied it will be more
difficult to provide adequate evidence of the depth of testing using the TSF’s
external interfaces alone, and modular testing will usually be necessary.

Depth (ATE_DPT) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 153 of 208

ATE_DPT.1 Testing: high-level design

Objectives

426 The subsystems of a TSF provide a high-level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

Application notes

427 The developer is expected to describe the testing of the high-level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts.

Dependencies:

ADV_HLD.1 Descriptive high-level design

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.1.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.1.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TSF operates in
accordance with its high-level design.

Evaluator action elements:

ATE_DPT.1.2E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_DPT.2 Testing: low-level design

Objectives

428 The subsystems of a TSF provide a high-level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

429 The modules of a TSF provide a description of the internal workings of the TSF.
Testing at the level of the modules, in order to demonstrate the presence of any
flaws, provides assurance that the TSF modules have been correctly realised.

13 - Class ATE: Tests Depth (ATE_DPT)

Page 154 of 208 Version 2.1 August 1999

Application notes

430 The developer is expected to describe the testing of the high-level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts.

431 The developer is expected to describe the testing of the low-level design of the TSF
in terms of “modules”. The term “modules” is used to express the notion of
decomposing each of the “subsystems” of the TSF into a relatively small number of
parts.

Dependencies:

ADV_HLD.2 Security enforcing high-level design

ADV_LLD.1 Descriptive low-level design

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.2.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.2.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TSF operates in accordance
with its high-level design and low-level design.

Evaluator action elements:

ATE_DPT.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_DPT.3 Testing: implementation representation

Objectives

432 The subsystems of a TSF provide a high-level description of the internal workings
of the TSF. Testing at the level of the subsystems, in order to demonstrate the
presence of any flaws, provides assurance that the TSF subsystems have been
correctly realised.

433 The modules of a TSF provide a description of the internal workings of the TSF.
Testing at the level of the modules, in order to demonstrate the presence of any
flaws, provides assurance that the TSF modules have been correctly realised.

434 The implementation representation of a TSF provides a detailed description of the
internal workings of the TSF. Testing at the level of the implementation, in order to
demonstrate the presence of any flaws, provides assurance that the TSF
implementation has been correctly realised.

Depth (ATE_DPT) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 155 of 208

Application notes

435 The developer is expected to describe the testing of the high-level design of the TSF
in terms of “subsystems”. The term “subsystem” is used to express the notion of
decomposing the TSF into a relatively small number of parts.

436 The developer is expected to describe the testing of the low-level design of the TSF
in terms of “modules”. The term “modules” is used to express the notion of
decomposing each of the “subsystems” of the TSF into a relatively small number of
parts.

437 The implementation representation is the one which is used to generate the TSF
itself (e.g. source code which is then compiled).

Dependencies:

ADV_HLD.2 Security enforcing high-level design

ADV_IMP.2 Implementation of the TSF

ADV_LLD.1 Descriptive low-level design

ATE_FUN.1 Functional testing

Developer action elements:

ATE_DPT.3.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements:

ATE_DPT.3.1C The depth analysis shall demonstrate that the tests identified in the test
documentation are sufficient to demonstrate that the TSF operates in accordance
with its high-level design, low-level design and implementation representation.

Evaluator action elements:

ATE_DPT.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

13 - Class ATE: Tests Functional tests (ATE_FUN)

Page 156 of 208 Version 2.1 August 1999

13.3 Functional tests (ATE_FUN)
ATE_FUN Functional tests

Objectives

438 Functional testing performed by the developer establishes that the TSF exhibits the
properties necessary to satisfy the functional requirements of its PP/ST. Such
functional testing provides assurance that the TSF satisfies at least the security
functional requirements, although it cannot establish that the TSF does no more
than what was specified. The family “Functional tests” is focused on the type and
amount of documentation or support tools required, and what is to be demonstrated
through developer testing. Functional testing is not limited to positive confirmation
that the required security functions are provided, but may also include negative
testing to check for the absence of particular undesired behaviour (often based on
the inversion of functional requirements).

439 This family contributes to providing assurance that the likelihood of undiscovered
flaws is relatively small.

440 The families ATE_COV, ATE_DPT and ATE_FUN are used in combination to
define the evidence of testing to be supplied by a developer. Independent functional
testing by the evaluator is specified by ATE_IND.

Component levelling

441 This family contains two components, the higher requiring that ordering
dependencies are analysed.

Application notes

442 Procedures for performing tests are expected to provide instructions for using test
programs and test suites, including the test environment, test conditions, test data
parameters and values. The test procedures should also show how the test results
are derived from the test inputs.

443 This family specifies requirements for the presentation of all test plans, procedures
and results. Thus the quantity of information that must be presented will vary in
accordance with the use of ATE_COV and ATE_DPT.

444 Ordering dependencies are relevant when the successful execution of a particular
test depends upon the existence of a particular state. For example, this might require
that test A be executed immediately before test B, since the state resulting from the
successful execution of test A is a prerequisite for the successful execution of test
B. Thus, failure of test B could be related to a problem with the ordering
dependencies. In the above example, test B could fail because test C (rather than test
A) was executed immediately before it, or the failure of test B could be related to a
failure of test A.

Functional tests (ATE_FUN) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 157 of 208

ATE_FUN.1 Functional testing

Objectives

445 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

Dependencies:

No dependencies.

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions,
expected test results and actual test results.

ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the
goal of the tests to be performed.

ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and
describe the scenarios for testing each security function. These scenarios shall
include any ordering dependencies on the results of other tests.

ATE_FUN.1.4C The expected test results shall show the anticipated outputs from a successful
execution of the tests.

ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate
that each tested security function behaved as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_FUN.2 Ordered functional testing

Objectives

446 The objective is for the developer to demonstrate that all security functions perform
as specified. The developer is required to perform testing and to provide test
documentation.

13 - Class ATE: Tests Functional tests (ATE_FUN)

Page 158 of 208 Version 2.1 August 1999

447 In this component, an additional objective is to ensure that testing is structured such
as to avoid circular arguments about the correctness of the portions of the TSF being
tested.

Application notes

448 Although the test procedures may state pre-requisite initial test conditions in terms
of ordering of tests, they may not provide a rationale for the ordering. An analysis
of test ordering is an important factor in determining the adequacy of testing, as
there is a possibility of faults being concealed by the ordering of tests.

Dependencies:

No dependencies.

Developer action elements:

ATE_FUN.2.1D The developer shall test the TSF and document the results.

ATE_FUN.2.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.2.1C The test documentation shall consist of test plans, test procedure descriptions,
expected test results and actual test results.

ATE_FUN.2.2C The test plans shall identify the security functions to be tested and describe the goal
of the tests to be performed.

ATE_FUN.2.3C The test procedure descriptions shall identify the tests to be performed and describe
the scenarios for testing each security function. These scenarios shall include any
ordering dependencies on the results of other tests.

ATE_FUN.2.4C The expected test results shall show the anticipated outputs from a successful
execution of the tests.

ATE_FUN.2.5C The test results from the developer execution of the tests shall demonstrate that each
tested security function behaved as specified.

ATE_FUN.2.6C The test documentation shall include an analysis of the test procedure ordering
dependencies.

Evaluator action elements:

ATE_FUN.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

Independent testing (ATE_IND) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 159 of 208

13.4 Independent testing (ATE_IND)
ATE_IND Independent testing

Objectives

449 One objective is to demonstrate that the security functions perform as specified.

450 An additional objective is to counter the risk of an incorrect assessment of the test
outcomes on the part of the developer that results in the incorrect implementation
of the specifications, or overlooks code that is non-compliant with the
specifications.

Component levelling

451 Levelling is based upon the amount of test documentation, test support and the
amount of evaluator testing.

Application notes

452 The testing specified in this family can be supported by a party with specialised
knowledge other than the evaluator (e.g. an independent laboratory, an objective
consumer organisation). Testing requires an understanding of the TOE consistent
with the performance of other assurance activities, and the evaluator retains
responsibility for ensuring that the requirements of this family are properly
addressed when such support is used.

453 This family deals with the degree to which there is independent functional testing
of the TSF. Independent functional testing may take the form of repeating the
developer’s functional tests, in whole or in part. It may also take the form of the
augmentation of the developer’s functional tests, either to extend the scope or the
depth of the developer’s tests, or to test for obvious public domain security
weaknesses that could be applicable to the TOE. These activities are
complementary, and an appropriate mix must be planned for each TOE, which takes
into account the availability and coverage of test results, and the functional
complexity of the TSF. A test plan should be developed that is consistent with the
level of other assurance activities, and which, as greater assurance is required,
includes larger samples of repeated tests, and more independent positive and
negative functional tests by the evaluator.

454 Sampling of developer tests is intended to provide confirmation that the developer
has carried out his planned test programme on the TSF, and has correctly recorded
the results. The size of sample selected will be influenced by the detail and quality
of the developer’s functional test results. The evaluator will also need to consider
the scope for devising additional tests, and the relative benefit that may be gained
from effort in these two areas. It is recognised that repetition of all developer tests
may be feasible and desirable in some cases, but may be very arduous and less
productive in others. The highest component in this family should therefore be used
with caution. Sampling will address the whole range of test results available,
including those supplied to meet the requirements of both ATE_COV and
ATE_DPT.

13 - Class ATE: Tests Independent testing (ATE_IND)

Page 160 of 208 Version 2.1 August 1999

455 There is also a need to consider the different configurations of the TOE that are
included within the evaluation. The evaluator will need to assess the applicability
of the results provided, and to plan his own testing accordingly.

456 Independent functional testing is distinct from penetration testing, the latter being
based on an informed and systematic search for vulnerabilities in the design and/or
implementation. Penetration testing is specified using the family AVA_VLA.

457 The suitability of the TOE for testing is based on the access to the TOE, and the
supporting documentation and information required (including any test software or
tools) to run tests. The need for such support is addressed by the dependencies to
other assurance families.

458 Additionally, suitability of the TOE for testing may be based on other
considerations. For example, the version of the TOE submitted by the developer
may not be the final version.

459 References to a subset of the TSF are intended to allow the evaluator to design an
appropriate set of tests which is consistent with the objectives of the evaluation
being conducted.

ATE_IND.1 Independent testing - conformance

Objectives

460 In this component, the objective is to demonstrate that the security functions
perform as specified.

Application notes

461 This component does not address the use of developer test results. It is applicable
where such results are not available, and also in cases where the developer’s testing
is accepted without validation. The evaluator is required to devise and conduct tests
with the objective of confirming that the TOE security functional requirements are
met. The approach is to gain confidence in correct operation through representative
testing, rather than to conduct every possible test. The extent of testing to be
planned for this purpose is a methodology issue, and needs to be considered in the
context of a particular TOE and the balance of other evaluation activities.

Dependencies:

ADV_FSP.1 Informal functional specification

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

ATE_IND.1.1D The developer shall provide the TOE for testing.

Independent testing (ATE_IND) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 161 of 208

Content and presentation of evidence elements:

ATE_IND.1.1C The TOE shall be suitable for testing.

Evaluator action elements:

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test a subset of the TSF as appropriate to confirm that the
TOE operates as specified.

ATE_IND.2 Independent testing - sample

Objectives

462 The objective is to demonstrate that the security functions perform as specified.
Evaluator testing includes selecting and repeating a sample of the developer tests.

Application notes

463 The intent is that the developer should provide the evaluator with materials
necessary for the efficient reproduction of developer tests. This may include such
things as machine-readable test documentation, test programs, etc.

464 This component contains a requirement that the evaluator has available test results
from the developer to supplement the programme of testing. The evaluator will
repeat a sample of the developer’s tests to gain confidence in the results obtained.
Having established such confidence the evaluator will build upon the developer’s
testing by conducting additional tests that exercise the TOE in a different manner.
By using a platform of validated developer test results the evaluator is able to gain
confidence that the TOE operates correctly in a wider range of conditions than
would be possible purely using the developer’s own efforts, given a fixed level of
resource. Having gained confidence that the developer has tested the TOE, the
evaluator will also have more freedom, where appropriate, to concentrate testing in
areas where examination of documentation or specialist knowledge has raised
particular concerns.

Dependencies:

ADV_FSP.1 Informal functional specification

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

ATE_FUN.1 Functional testing

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

13 - Class ATE: Tests Independent testing (ATE_IND)

Page 162 of 208 Version 2.1 August 1999

Content and presentation of evidence elements:

ATE_IND.2.1C The TOE shall be suitable for testing.

ATE_IND.2.2C The developer shall provide an equivalent set of resources to those that were
used in the developer’s functional testing of the TSF.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.2.2E The evaluator shall test a subset of the TSF as appropriate to confirm that the TOE
operates as specified.

ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify
the developer test results.

ATE_IND.3 Independent testing - complete

Objectives

465 The objective is to demonstrate that all security functions perform as specified.
Evaluator testing includes repeating all of the developer tests.

Application notes

466 The intent is that the developer should provide the evaluator with materials
necessary for the efficient reproduction of developer tests. This may include such
things as machine-readable test documentation, test programs, etc.

467 In this component the evaluator must repeat all of the developer’s tests as part of the
programme of testing. As in the previous component the evaluator will also conduct
tests that aim to exercise the TOE in a different manner from that achieved by the
developer. In cases where developer testing has been exhaustive, there may remain
little scope for this.

Dependencies:

ADV_FSP.1 Informal functional specification

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

ATE_FUN.1 Functional testing

Developer action elements:

ATE_IND.3.1D The developer shall provide the TOE for testing.

Independent testing (ATE_IND) 13 - Class ATE: Tests

August 1999 Version 2.1 Page 163 of 208

Content and presentation of evidence elements:

ATE_IND.3.1C The TOE shall be suitable for testing.

ATE_IND.3.2C The developer shall provide an equivalent set of resources to those that were used
in the developer’s functional testing of the TSF.

Evaluator action elements:

ATE_IND.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

ATE_IND.3.2E The evaluator shall test a subset of the TSF as appropriate to confirm that the TOE
operates as specified.

ATE_IND.3.3E The evaluator shall execute all tests in the test documentation to verify the
developer test results.

182Part 3: Security assurance requirements

August 1999 Version 2.1 Page 164 of 208

14 Class AVA: Vulnerability assessment

468 The class addresses the existence of exploitable covert channels, the possibility of
misuse or incorrect configuration of the TOE, the possibility to defeat probabilistic
or permutational mechanisms, and the possibility of exploitable vulnerabilities
introduced in the development or the operation of the TOE.

469 Figure 14.1 shows the families within this class, and the hierarchy of components
within the families.

 Class AVA: Vulnerability assessment

AVA_CCA Covert channel analysis 1 2 3

AVA_MSU Misuse 1 2 3

AVA_SOF Strength of TOE security functions 1

AVA_VLAVulnerability analysis 1 2 3 4

Figure 14.1 -Vulnerability assessment class decomposition

Covert channel analysis (AVA_CCA) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 165 of 208

14.1 Covert channel analysis (AVA_CCA)
AVA_CCA Covert channel analysis

Objectives

470 Covert channel analysis is carried out to determine the existence and potential
capacity of unintended signalling channels (i.e. illicit information flows) that may
be exploited.

471 The assurance requirements address the threat that unintended and exploitable
signalling paths exist that may be exercised to violate the SFP.

Component levelling

472 The components are levelled on increasing rigour of covert channel analysis.

Application notes

473 Channel capacity estimations are based upon informal engineering measurements,
as well as actual test measurements.

474 Examples of assumptions upon which the covert channel analysis is based may
include processor speed, system or network configuration, memory size, and cache
size.

475 The selective validation of the covert channel analysis through testing allows the
evaluator the opportunity to verify any aspect of the covert channel analysis (e.g.
identification, capacity estimation, elimination, monitoring, and exploitation
scenarios). This does not impose a requirement to demonstrate the entire set of
covert channel analysis results.

476 If there are no information flow control SFPs in the ST, this family of assurance
requirements is no longer applicable, as this family applies only to information flow
control SFPs.

AVA_CCA.1 Covert channel analysis

Objectives

477 The objective is to identify covert channels that are identifiable, through an
informal search for covert channels.

Dependencies:

ADV_FSP.2 Fully defined external interfaces

ADV_IMP.2 Implementation of the TSF

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

14 - Class AVA: Vulnerability assessment Covert channel analysis (AVA_CCA)

Page 166 of 208 Version 2.1 August 1999

Developer action elements:

AVA_CCA.1.1D The developer shall conduct a search for covert channels for each information
flow control policy.

AVA_CCA.1.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements:

AVA_CCA.1.1C The analysis documentation shall identify covert channels and estimate their
capacity.

AVA_CCA.1.2C The analysis documentation shall describe the procedures used for
determining the existence of covert channels, and the information needed to
carry out the covert channel analysis.

AVA_CCA.1.3C The analysis documentation shall describe all assumptions made during the
covert channel analysis.

AVA_CCA.1.4C The analysis documentation shall describe the method used for estimating
channel capacity, based on worst case scenarios.

AVA_CCA.1.5C The analysis documentation shall describe the worst case exploitation scenario
for each identified covert channel.

Evaluator action elements:

AVA_CCA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_CCA.1.2E The evaluator shall confirm that the results of the covert channel analysis show
that the TOE meets its functional requirements.

AVA_CCA.1.3E The evaluator shall selectively validate the covert channel analysis through
testing.

AVA_CCA.2 Systematic covert channel analysis

Objectives

478 The objective is to identify covert channels that are identifiable, through a
systematic search for covert channels.

Application notes

479 Performing a covert channel analysis in a systematic way requires that the
developer identify covert channels in a structured and repeatable way, as opposed
to identifying covert channels in an ad-hoc fashion.

Covert channel analysis (AVA_CCA) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 167 of 208

Dependencies:

ADV_FSP.2 Fully defined external interfaces

ADV_IMP.2 Implementation of the TSF

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_CCA.2.1D The developer shall conduct a search for covert channels for each information flow
control policy.

AVA_CCA.2.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements:

AVA_CCA.2.1C The analysis documentation shall identify covert channels and estimate their
capacity.

AVA_CCA.2.2C The analysis documentation shall describe the procedures used for determining the
existence of covert channels, and the information needed to carry out the covert
channel analysis.

AVA_CCA.2.3C The analysis documentation shall describe all assumptions made during the covert
channel analysis.

AVA_CCA.2.4C The analysis documentation shall describe the method used for estimating channel
capacity, based on worst case scenarios.

AVA_CCA.2.5C The analysis documentation shall describe the worst case exploitation scenario for
each identified covert channel.

AVA_CCA.2.6C The analysis documentation shall provide evidence that the method used to
identify covert channels is systematic.

Evaluator action elements:

AVA_CCA.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_CCA.2.2E The evaluator shall confirm that the results of the covert channel analysis show that
the TOE meets its functional requirements.

AVA_CCA.2.3E The evaluator shall selectively validate the covert channel analysis through testing.

14 - Class AVA: Vulnerability assessment Covert channel analysis (AVA_CCA)

Page 168 of 208 Version 2.1 August 1999

AVA_CCA.3 Exhaustive covert channel analysis

Objectives

480 The objective is to identify covert channels that are identifiable, through an
exhaustive search for covert channels.

Application notes

481 Performing a covert channel analysis in an exhaustive way requires that additional
evidence be provided that the plan that was followed for identifying covert channels
is sufficient to ensure that all possible ways for covert channel exploration have
been exercised.

Dependencies:

ADV_FSP.2 Fully defined external interfaces

ADV_IMP.2 Implementation of the TSF

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_CCA.3.1D The developer shall conduct a search for covert channels for each information flow
control policy.

AVA_CCA.3.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements:

AVA_CCA.3.1C The analysis documentation shall identify covert channels and estimate their
capacity.

AVA_CCA.3.2C The analysis documentation shall describe the procedures used for determining the
existence of covert channels, and the information needed to carry out the covert
channel analysis.

AVA_CCA.3.3C The analysis documentation shall describe all assumptions made during the covert
channel analysis.

AVA_CCA.3.4C The analysis documentation shall describe the method used for estimating channel
capacity, based on worst case scenarios.

AVA_CCA.3.5C The analysis documentation shall describe the worst case exploitation scenario for
each identified covert channel.

AVA_CCA.3.6C The analysis documentation shall provide evidence that the method used to identify
covert channels is exhaustive.

Covert channel analysis (AVA_CCA) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 169 of 208

Evaluator action elements:

AVA_CCA.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_CCA.3.2E The evaluator shall confirm that the results of the covert channel analysis show that
the TOE meets its functional requirements.

AVA_CCA.3.3E The evaluator shall selectively validate the covert channel analysis through testing.

14 - Class AVA: Vulnerability assessment Misuse (AVA_MSU)

Page 170 of 208 Version 2.1 August 1999

14.2 Misuse (AVA_MSU)
AVA_MSU Misuse

Objectives

482 Misuse investigates whether the TOE can be configured or used in a manner that is
insecure but that an administrator or user of the TOE would reasonably believe to
be secure.

483 The objectives are:

a) to minimise the probability of configuring or installing the TOE in a way that is
insecure, without the user or administrator being able to detect it;

b) to minimise the risk of human or other errors in operation that may deactivate,
disable, or fail to activate security functions, resulting in an undetected insecure
state.

Component levelling

484 The components are levelled on the increasing evidence to be provided by the
developer and the increasing rigour of analysis.

Application notes

485 Conflicting, misleading, incomplete or unreasonable guidance may result in a user
of the TOE believing that the TOE is secure when it is not, and can result in
vulnerabilities.

486 An example of conflicting guidance would be two guidance instructions that imply
different outcomes when the same input is supplied.

487 An example of misleading guidance would be the description of a single guidance
instruction that could be parsed in more than one way, one of which may result in
an insecure state.

488 An example of incomplete guidance would be a list of significant physical security
requirements that omitted an important item, resulting in this item being overlooked
by the administrator who believed the list to be complete.

489 An example of unreasonable guidance would be a recommendation to follow a
procedure that imposed an unduly onerous administrative burden.

490 Guidance documentation is required. This may be contained in existing User or
Administration documentation, or may be provided separately. If provided
separately, the evaluator should confirm that the documentation is supplied with the
TOE.

Misuse (AVA_MSU) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 171 of 208

AVA_MSU.1 Examination of guidance

Objectives

491 The objective is to ensure that misleading, unreasonable and conflicting guidance
is absent from the guidance documentation, and that secure procedures for all
modes of operation have been addressed. Insecure states should be easy to detect.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

ADV_FSP.1 Informal functional specification

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.1.1D The developer shall provide guidance documentation.

Content and presentation of evidence elements:

AVA_MSU.1.1C The guidance documentation shall identify all possible modes of operation of
the TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AVA_MSU.1.2C The guidance documentation shall be complete, clear, consistent and
reasonable.

AVA_MSU.1.3C The guidance documentation shall list all assumptions about the intended
environment.

AVA_MSU.1.4C The guidance documentation shall list all requirements for external security
measures (including external procedural, physical and personnel controls).

Evaluator action elements:

AVA_MSU.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_MSU.1.2E The evaluator shall repeat all configuration and installation procedures to
confirm that the TOE can be configured and used securely using only the
supplied guidance documentation.

AVA_MSU.1.3E The evaluator shall determine that the use of the guidance documentation
allows all insecure states to be detected.

14 - Class AVA: Vulnerability assessment Misuse (AVA_MSU)

Page 172 of 208 Version 2.1 August 1999

AVA_MSU.2 Validation of analysis

Objectives

492 The objective is to ensure that misleading, unreasonable and conflicting guidance
is absent from the guidance documentation, and that secure procedures for all
modes of operation have been addressed. Insecure states should be easy to detect.
In this component, an analysis of the guidance documentation by the developer is
required to provide additional assurance that the objective has been met.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

ADV_FSP.1 Informal functional specification

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.2.1D The developer shall provide guidance documentation.

AVA_MSU.2.2D The developer shall document an analysis of the guidance documentation.

Content and presentation of evidence elements:

AVA_MSU.2.1C The guidance documentation shall identify all possible modes of operation of the
TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AVA_MSU.2.2C The guidance documentation shall be complete, clear, consistent and reasonable.

AVA_MSU.2.3C The guidance documentation shall list all assumptions about the intended
environment.

AVA_MSU.2.4C The guidance documentation shall list all requirements for external security
measures (including external procedural, physical and personnel controls).

AVA_MSU.2.5C The analysis documentation shall demonstrate that the guidance
documentation is complete.

Evaluator action elements:

AVA_MSU.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_MSU.2.2E The evaluator shall repeat all configuration and installation procedures, and other
procedures selectively, to confirm that the TOE can be configured and used
securely using only the supplied guidance documentation.

Misuse (AVA_MSU) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 173 of 208

AVA_MSU.2.3E The evaluator shall determine that the use of the guidance documentation allows all
insecure states to be detected.

AVA_MSU.2.4E The evaluator shall confirm that the analysis documentation shows that
guidance is provided for secure operation in all modes of operation of the TOE.

AVA_MSU.3 Analysis and testing for insecure states

Objectives

493 The objective is to ensure that misleading, unreasonable and conflicting guidance
is absent from the guidance documentation, and that secure procedures for all
modes of operation have been addressed. Insecure states should be easy to detect.
In this component, an analysis of the guidance documentation by the developer is
required to provide additional assurance that the objective has been met, and this
analysis is validated and confirmed through testing by the evaluator.

Application notes

494 In this component the evaluator is required to undertake testing to ensure that if and
when the TOE enters an insecure state this may easily be detected. This testing may
be considered as a specific aspect of penetration testing.

Dependencies:

ADO_IGS.1 Installation, generation, and start-up procedures

ADV_FSP.1 Informal functional specification

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_MSU.3.1D The developer shall provide guidance documentation.

AVA_MSU.3.2D The developer shall document an analysis of the guidance documentation.

Content and presentation of evidence elements:

AVA_MSU.3.1C The guidance documentation shall identify all\ possible modes of operation of the
TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AVA_MSU.3.2C The guidance documentation shall be complete, clear, consistent and reasonable.

AVA_MSU.3.3C The guidance documentation shall list all assumptions about the intended
environment.

AVA_MSU.3.4C The guidance documentation shall list all requirements for external security
measures (including external procedural, physical and personnel controls).

14 - Class AVA: Vulnerability assessment Misuse (AVA_MSU)

Page 174 of 208 Version 2.1 August 1999

AVA_MSU.3.5C The analysis documentation shall demonstrate that the guidance documentation is
complete.

Evaluator action elements:

AVA_MSU.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_MSU.3.2E The evaluator shall repeat all configuration and installation procedures, and other
procedures selectively, to confirm that the TOE can be configured and used
securely using only the supplied guidance documentation.

AVA_MSU.3.3E The evaluator shall determine that the use of the guidance documentation allows all
insecure states to be detected.

AVA_MSU.3.4E The evaluator shall confirm that the analysis documentation shows that guidance is
provided for secure operation in all modes of operation of the TOE.

AVA_MSU.3.5E The evaluator shall perform independent testing to determine that an
administrator or user, with an understanding of the guidance documentation,
would reasonably be able to determine if the TOE is configured and operating
in a manner that is insecure.

Strength of TOE security functions (AVA_SOF) 14 - Class AVA: Vulnerability

August 1999 Version 2.1 Page 175 of 208

14.3 Strength of TOE security functions (AVA_SOF)
AVA_SOF Strength of TOE security functions

Objectives

495 Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it
may still be possible to defeat it because there is a vulnerability in the concept of its
underlying security mechanisms. For those functions a qualification of their
security behaviour can be made using the results of a quantitative or statistical
analysis of the security behaviour of these mechanisms and the effort required to
overcome them. The qualification is made in the form of a strength of TOE security
function claim.

Component levelling

496 There is only one component in this family.

Application notes

497 Security functions are implemented by security mechanisms. For example, a
password mechanism can be used in the implementation of the identification and
authentication security function.

498 The strength of TOE security function evaluation is performed at the level of the
security mechanism, but its results provide knowledge about the ability of the
related security function to counter the identified threats.

499 The strength of TOE security function analysis should consider at least the contents
of all the TOE deliverables, including the ST, for the targeted evaluation assurance
level.

AVA_SOF.1 Strength of TOE security function evaluation

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_HLD.1 Descriptive high-level design

Developer action elements:

AVA_SOF.1.1D The developer shall perform a strength of TOE security function analysis for
each mechanism identified in the ST as having a strength of TOE security
function claim.

Content and presentation of evidence elements:

AVA_SOF.1.1C For each mechanism with a strength of TOE security function claim the
strength of TOE security function analysis shall show that it meets or exceeds
the minimum strength level defined in the PP/ST.

14 - Class AVA: Vulnerability assessment Strength of TOE security functions

Page 176 of 208 Version 2.1 August 1999

AVA_SOF.1.2C For each mechanism with a specific strength of TOE security function claim
the strength of TOE security function analysis shall show that it meets or
exceeds the specific strength of function metric defined in the PP/ST.

Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that the strength claims are correct.

Vulnerability analysis (AVA_VLA) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 177 of 208

14.4 Vulnerability analysis (AVA_VLA)
AVA_VLA Vulnerability analysis

Objectives

500 Vulnerability analysis is an assessment to determine whether vulnerabilities
identified, during the evaluation of the construction and anticipated operation of the
TOE or by other methods (e.g. by flaw hypotheses), could allow users to violate the
TSP.

501 Vulnerability analysis deals with the threats that a user will be able to discover flaws
that will allow unauthorised access to resources (e.g. data), allow the ability to
interfere with or alter the TSF, or interfere with the authorised capabilities of other
users.

Component levelling

502 Levelling is based on an increasing rigour of vulnerability analysis by the developer
and the evaluator.

Application notes

503 A vulnerability analysis is performed by the developer in order to ascertain the
presence of security vulnerabilities, and should consider at least the contents of all
the TOE deliverables including the ST for the targeted evaluation assurance level.
The developer is required to document the disposition of identified vulnerabilities
to allow the evaluator to make use of that information if it is found useful as a
support for the evaluator's independent vulnerability analysis.

504 The intent of the developer analysis is to confirm that no identified security
vulnerabilities can be exploited in the intended environment for the TOE and that
the TOE is resistant to obvious penetration attacks.

505 Obvious vulnerabilities are considered to be those that are open to exploitation that
requires a minimum of understanding of the TOE, skill, technical sophistication,
and resources. These might be suggested by the TSF interface description. Obvious
vulnerabilities include those in the public domain, details of which should be known
to a developer or available from an evaluation authority.

506 Performing a search for vulnerabilities in a systematic way requires that the
developer identify those vulnerabilities in a structured and repeatable way, as
opposed to identifying them in an ad-hoc fashion. The associated evidence that the
search for vulnerabilities was systematic should include identification of all TOE
documentation upon which the search for flaws was based.

507 Independent vulnerability analysis goes beyond the vulnerabilities identified by the
developer. The main intent of the evaluator analysis is to determine that the TOE is
resistant to penetration attacks performed by an attacker possessing a low (for
AVA_VLA.2), moderate (for AVA_VLA.3) or high (for AVA_VLA.4) attack
potential. To accomplish this intent, the evaluator first assesses the exploitability of

14 - Class AVA: Vulnerability assessment Vulnerability analysis (AVA_VLA)

Page 178 of 208 Version 2.1 August 1999

all identified vulnerabilities. This is accomplished by conducting penetration
testing. The evaluator should assume the role of an attacker with a low (for
AVA_VLA.2), moderate (for AVA_VLA.3) or high (for AVA_VLA.4) attack
potential when attempting to penetrate the TOE. Any exploitation of vulnerabilities
by such an attacker should be considered by the evaluator to be “obvious
penetration attacks” (with respect to the AVA_VLA.*.2C elements) in the context
of the components AVA_VLA.2 through AVA_VLA.4.

AVA_VLA.1 Developer vulnerability analysis

Objectives

508 A vulnerability analysis is performed by the developer to ascertain the presence of
obvious security vulnerabilities, and to confirm that they cannot be exploited in the
intended environment for the TOE.

Application notes

509 The evaluator should consider performing additional tests as a result of potential
exploitable vulnerabilities identified during other parts of the evaluation.

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_HLD.1 Descriptive high-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.1.1D The developer shall perform and document an analysis of the TOE
deliverables searching for obvious ways in which a user can violate the TSP.

AVA_VLA.1.2D The developer shall document the disposition of obvious vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.1.1C The documentation shall show, for all identified vulnerabilities, that the
vulnerability cannot be exploited in the intended environment for the TOE.

Evaluator action elements:

AVA_VLA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_VLA.1.2E The evaluator shall conduct penetration testing, building on the developer
vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

Vulnerability analysis (AVA_VLA) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 179 of 208

AVA_VLA.2 Independent vulnerability analysis

Objectives

510 A vulnerability analysis is performed by the developer to ascertain the presence of
security vulnerabilities, and to confirm that they cannot be exploited in the intended
environment for the TOE.

511 The evaluator performs independent penetration testing, supported by the
evaluator’s independent vulnerability analysis, to determine that the TOE is
resistant to penetration attacks performed by attackers possessing a low attack
potential.

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_HLD.2 Security enforcing high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.2.1D The developer shall perform and document an analysis of the TOE deliverables
searching for ways in which a user can violate the TSP.

AVA_VLA.2.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.2.1C The documentation shall show, for all identified vulnerabilities, that the
vulnerability cannot be exploited in the intended environment for the TOE.

AVA_VLA.2.2C The documentation shall justify that the TOE, with the identified
vulnerabilities, is resistant to obvious penetration attacks.

Evaluator action elements:

AVA_VLA.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_VLA.2.2E The evaluator shall conduct penetration testing, building on the developer
vulnerability analysis, to ensure the identified vulnerabilities have been addressed.

AVA_VLA.2.3E The evaluator shall perform an independent vulnerability analysis.

14 - Class AVA: Vulnerability assessment Vulnerability analysis (AVA_VLA)

Page 180 of 208 Version 2.1 August 1999

AVA_VLA.2.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of
additional identified vulnerabilities in the intended environment.

AVA_VLA.2.5E The evaluator shall determine that the TOE is resistant to penetration attacks
performed by an attacker possessing a low attack potential.

AVA_VLA.3 Moderately resistant

Objectives

512 A vulnerability analysis is performed by the developer to ascertain the presence of
security vulnerabilities, and to confirm that they cannot be exploited in the intended
environment for the TOE.

513 The evaluator performs independent penetration testing, supported by the
evaluator’s independent vulnerability analysis, to determine that the TOE is
resistant to penetration attacks performed by attackers possessing a moderate attack
potential.

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_HLD.2 Security enforcing high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.3.1D The developer shall perform and document an analysis of the TOE deliverables
searching for ways in which a user can violate the TSP.

AVA_VLA.3.2D The developer shall document the disposition of identified vulnerabilities.

Content and presentation of evidence elements:

AVA_VLA.3.1C The documentation shall show, for all identified vulnerabilities, that the
vulnerability cannot be exploited in the intended environment for the TOE.

AVA_VLA.3.2C The documentation shall justify that the TOE, with the identified vulnerabilities, is
resistant to obvious penetration attacks.

AVA_VLA.3.3C The evidence shall show that the search for vulnerabilities is systematic.

Vulnerability analysis (AVA_VLA) 14 - Class AVA: Vulnerability assessment

August 1999 Version 2.1 Page 181 of 208

Evaluator action elements:

AVA_VLA.3.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_VLA.3.2E The evaluator shall conduct penetration testing, building on the developer
vulnerability analysis, to ensure the identified vulnerabilities have been addressed.

AVA_VLA.3.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.3.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of additional
identified vulnerabilities in the intended environment.

AVA_VLA.3.5E The evaluator shall determine that the TOE is resistant to penetration attacks
performed by an attacker possessing a moderate attack potential.

AVA_VLA.4 Highly resistant

Objectives

514 A vulnerability analysis is performed by the developer to ascertain the presence of
security vulnerabilities, and to confirm that they cannot be exploited in the intended
environment for the TOE.

515 The evaluator performs independent penetration testing, supported by the
evaluator’s independent vulnerability analysis, to determine that the TOE is
resistant to penetration attacks performed by attackers possessing a high attack
potential.

Dependencies:

ADV_FSP.1 Informal functional specification

ADV_HLD.2 Security enforcing high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Developer action elements:

AVA_VLA.4.1D The developer shall perform and document an analysis of the TOE deliverables
searching for ways in which a user can violate the TSP.

AVA_VLA.4.2D The developer shall document the disposition of identified vulnerabilities.

14 - Class AVA: Vulnerability assessment Vulnerability analysis (AVA_VLA)

Page 182 of 208 Version 2.1 August 1999

Content and presentation of evidence elements:

AVA_VLA.4.1C The documentation shall show, for all identified vulnerabilities, that the
vulnerability cannot be exploited in the intended environment for the TOE.

AVA_VLA.4.2C The documentation shall justify that the TOE, with the identified vulnerabilities, is
resistant to obvious penetration attacks.

AVA_VLA.4.3C The evidence shall show that the search for vulnerabilities is systematic.

AVA_VLA.4.4C The analysis documentation shall provide a justification that the analysis
completely addresses the TOE deliverables.

Evaluator action elements:

AVA_VLA.4.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AVA_VLA.4.2E The evaluator shall conduct penetration testing, building on the developer
vulnerability analysis, to ensure the identified vulnerabilities have been addressed.

AVA_VLA.4.3E The evaluator shall perform an independent vulnerability analysis.

AVA_VLA.4.4E The evaluator shall perform independent penetration testing, based on the
independent vulnerability analysis, to determine the exploitability of additional
identified vulnerabilities in the intended environment.

AVA_VLA.4.5E The evaluator shall determine that the TOE is resistant to penetration attacks
performed by an attacker possessing a high attack potential.

192Part 3: Security assurance requirements Introduction

August 1999 Version 2.1 Page 183 of 208

15 Assurance maintenance paradigm

15.1 Introduction

516 This clause provides the discourse on an assurance maintenance paradigm that is
supported by the Maintenance of assurance class (AMA). As such it provides
helpful information to understand one possible approach to applying the AMA
requirements.

517 Maintenance of assurance is a concept intended to be applied after a TOE has been
evaluated and certified against the criteria in clauses 4-5 and 8-14. The maintenance
of assurance requirements are aimed at assuring that the TOE will continue to meet
its security target as changes are made to the TOE or its environment. Such changes
include the discovery of new threats or vulnerabilities, changes in user
requirements, the correction of bugs found in the certified TOE, and other updates
to the functionality provided.

518 One way to determine that assurance has been maintained is by a re-evaluation of
the TOE. The term ‘re-evaluation’ here refers to an evaluation of a new version of
the TOE that addresses all security relevant changes made to the certified version
of the TOE and re-uses previous evaluation results where these are still valid.
However, in many cases it is unlikely to be practical to perform a re-evaluation of
every new version of the TOE in order to ensure that assurance continues to be
maintained.

519 The main goal of class AMA is therefore to define a set of requirements which can
be applied to provide confidence that the assurance established in a TOE is being
maintained, without always requiring a formal re-evaluation of new versions of the
TOE. Class AMA does not remove entirely the need for re-evaluation. In some
cases, changes may be so significant that only a re-evaluation can be relied upon to
ensure that assurance has been maintained. The requirements of this class thus have
a secondary goal of supporting cost-effective re-evaluation of a TOE when this is
necessary.

520 It should be noted that it is possible to re-evaluate any new version of a TOE against
the criteria in clauses 4-5 and 8-14 without any of the AMA requirements having
been satisfied. However, class AMA includes requirements which can be used in
support of any such re-evaluation.

521 Maintenance developer and evaluator actions are intended to be applied after the
TOE has been evaluated and certified although, as described below, some
requirements can be applied at the time of the evaluation. For clarity, the following
terms are used in this paradigm description:

a) the certified version of the TOE refers to the version that has been evaluated
and certified;

15 - Assurance maintenance paradigm

Page 184 of 208 Version 2.1 August 1999

Assurance maintenance cycle

b) the current version of the TOE refers to a version that differs in some respect
from the certified version; this could be, for example:

- a new release of the TOE

- the certified version with patches applied to correct subsequently
discovered bugs

- the same basic version of the TOE, but on a different hardware or
software platform.

522 The developer and evaluator roles in this class are as described in CC Part 1.
However, it is not necessarily the case that the evaluator referred to in the
requirements of this class will be the same as that which evaluated the certified
version of the TOE.

523 In order to allow assurance to be maintained in a TOE without always requiring a
formal re-evaluation, the requirements in this class place an obligation on the
developer to maintain evidence that shows that the TOE continues to satisfy its
security target (e.g. evidence of developer testing).

15.2 Assurance maintenance cycle

524 This subclause describes one possible approach to the use of the assurance
maintenance families and components, intended to illustrate use of the concepts.
The example is modeled on an ‘assurance maintenance cycle’ that may be divided
into the following three phases:

a) the acceptance phase, at the start of a cycle, in which the developer’s plans
and procedures for assurance maintenance during the cycle are established
by the developer and independently validated by an evaluator;

b) the monitoring phase, in which the developer provides at one or more points
during the cycle evidence that the assurance in the TOE is being maintained
in accordance with the established plans and procedures, this evidence of
assurance maintenance being independently checked by an evaluator;

c) the re-evaluation phase, completing the cycle, in which an updated version
of the TOE is submitted for a re-evaluation based on the changes affecting
the TOE since the certified version.

525 The families within AMA address primarily the first two of these phases, while
providing support for the third. These phases are introduced here simply to help
describe the application of the assurance maintenance requirements. There is no
intention to mandate an assurance maintenance scheme which formally
incorporates these phases.

526 The assurance maintenance cycle is illustrated in Figure 15.1 below.

Assurance maintenance cycle

August 1999 Version 2.1 Page 185 of 208

15 - Assurance maintenance paradigm

527 In this example, a TOE can enter the monitoring phase only when the acceptance
phase has been successfully concluded (i.e. the developer’s plans and procedures
for assurance maintenance have been accepted). If the developer makes changes to
these plans or procedures during the monitoring phase then the TOE will need to re-
enter the acceptance phase to get the changes accepted.

528 During the monitoring phase the developer follows the assurance maintenance
plans and procedures, conducting an analysis of the security impact of changes
affecting the TOE (security impact analysis). At certain points during this phase, an
evaluator independently checks (by means of an audit) the developer’s work. The
developer is required to ensure that the plans and procedures are followed, and that
security impact analysis is performed correctly.

Figure 15.1 - Example assurance maintenance cycle

529 Therefore, once a TOE is in the monitoring phase, it becomes possible to have
confidence that the assurance in the TOE has been maintained for new versions of
the TOE produced by the developer.

530 A TOE that is subject to change would not continue in the monitoring phase for an
indefinite period: at some point a re-evaluation of the TOE would be necessary. The
decision as to when a re-evaluation would be required is dependent on cumulative
changes to the TOE as well as especially significant changes. For example, a large
number of minor changes could have an impact on assurance equivalent to that of
a major change. The developer’s assurance maintenance plan defines the scope of
the changes that may be made to the TOE during the monitoring phase (see
subclause 15.3.1 below).

TOE
Evaluation

TOE
Acceptance

TOE
Monitoring

TOE
Re-evaluation

15 - Assurance maintenance paradigm

Page 186 of 208 Version 2.1 August 1999

Assurance maintenance cycle

531 In a similar way, it would not possible to ‘uprate’ a TOE (i.e. increase the assurance
level) during the monitoring phase: this could only be achieved by means of an
evaluation of the TOE (making appropriate reuse of previous evaluation results).

532 The assurance maintenance status of the TOE will have to be reviewed if it is
discovered that the assurance maintenance procedures are not being followed, and
that as a result assurance in the TOE is undermined. In some cases the developer
may be required to submit the TOE for re-evaluation, and afterwards start a new
assurance maintenance cycle.

15.2.1 TOE acceptance

533 In the example, the TOE acceptance phase of the assurance maintenance cycle can
be refined into the following, which uses the assurance maintenance plan and TOE
component categorisation report families from the AMA class.

Figure 15.2 - Example TOE acceptance approach

Develop
Assurance
Maintenance
Plan

Assurance
Maintenance
Plan

Component
TOE

Categorisation

Develop TOE
Component

Report

AcceptedAccept
TOE into
Maintenance

Report

Assurance
Maintenance
Plan

Categorisation

Assurance maintenance cycle

August 1999 Version 2.1 Page 187 of 208

15 - Assurance maintenance paradigm

15.2.2 TOE monitoring

534 The TOE monitoring phase of the assurance maintenance cycle would be refined
into the following, which uses the Evidence of assurance maintenance and Security
impact analysis families of the AMA Class.

Figure 15.3 - Example TOE monitoring approach

15.2.3 Re-evaluation

535 The third phase of this example maintenance cycle is the re-evaluation phase, in
which the evaluator makes use of the impact analysis and evidence of assurance
maintenance to re-examine parts of the TOE, using the assurance components
applicable for the target assurance level.

Accepted
Component
TOE

Categorisation

Develop
Evidence of
Maintenance

Perform
Security
Impact
Analysis

Conduct
Assurance
Maintenance
Audit

Reapply
for TOE
Maintenance

Evidence
of
Assurance
Maintenance

Report

Assurance
Maintenance
Plan

Continue
in TOE
Maintenance

(fail audit)
(pass
audit)

15 - Assurance maintenance paradigm

Page 188 of 208 Version 2.1 August 1999

Assurance maintenance class and
families

536 Re-evaluation activities would be scheduled in the AM Plan, or could be required
in response to unforseen significant changes to the TOE or its environment for
which assurance maintenance activities were considered inappropriate.

15.3 Assurance maintenance class and families

537 To support assurance maintenance approaches the class AMA has been developed,
and comprises four families as shown in Table 15.1

15.3.1 Assurance maintenance plan

538 The AM Plan provides a clear identification of the baseline for assurance
maintenance, in terms of the evaluation results and the definition of the
categorisation of TOE components.

539 The Assurance Maintenance Plan (AM Plan) identifies the plans and procedures a
developer implements in order to ensure that the assurance that was established in
the certified TOE is maintained as changes are made to the TOE or its environment.
An AM Plan covers one assurance maintenance cycle.

540 The AM Plan defines the scope of changes that can be made to the TOE without
triggering a re-evaluation. The specific approach to be followed is scheme
dependent, but the following types of change are likely to be outside the scope of
the AM Plan and thus might only be addressed by means of a re-evaluation:

a) significant changes to the security target (i.e. significant changes to the
security environment, security objectives or security functional
requirements, or any increase in the assurance requirements);

b) significant changes to external TSF interfaces categorised as TSP-
enforcing;

c) (where the assurance requirements include ADV_HLD.1 or higher
components) significant changes to TSF subsystems categorised as TSP-
enforcing.

541 It should be noted that the approach to changes made under maintenance may be
influenced by any functions provided by the TOE that help support automated

Table 15.1 - Maintenance of assurance family breakdown and mapping

Assurance Class Assurance Family Abbreviated Name

Class AMA: Maintenance
of assurance

Assurance maintenance plan AMA_AMP
TOE component categorisation
report AMA_CAT

Evidence of assurance maintenance AMA_EVD
Security impact analysis AMA_SIA

Assurance maintenance class and
families

August 1999 Version 2.1 Page 189 of 208

15 - Assurance maintenance paradigm

validation of the security of the evaluated configuration. Such functions may
prevent inappropriate or damaging changes being applied to an operational TOE.

542 A more precise specification of the rules is outside the scope of the CC, not least
because the definition of what constitutes a significant change will be dependent on
the type of TOE evaluated, and on the content of the security target.

543 The AM Plan is required to define or reference the procedures that will be applied
to ensure that assurance in the TOE is maintained during the assurance maintenance
cycle. Four types of procedure are identified that should be applied:

a) configuration management procedures, controlling and recording changes
to the TOE in support of the developer’s security impact analysis, as well as
supporting documentation (including the AM Plan itself);

b) procedures to maintain ‘assurance evidence’ (i.e. the maintenance of
documentary evidence as required by the appropriate assurance
requirements), a key aspect of which is functional testing of the security
functions of the TOE, and the developer’s regression testing policy in
particular;

c) procedures governing the security impact analysis of changes affecting the
TOE (Note that this includes changes within the TOE environment, such as
new threats or attack methods that may need to be identified and tracked),
and the maintenance of the TOE component categorisation report as
changes are made;

d) flaw remediation procedures, covering the tracking and correction of
reported security flaws (as required by ALC_FLR.1).

544 The AM Plan is expected to remain valid until completion of the assurance
maintenance cycle (i.e. completion of the scheduled re-evaluation), after which a
new AM Plan will be required. The AM Plan is expected to be invalidated if the
developer does not follow the plan, or makes changes to the TOE that are outside
the scope of the plan, or has to make such changes in order for the TOE to remain
effective within its environment. An updated AM Plan should be re-submitted and
accepted before a TOE enters a new monitoring phase.

545 The AM Plan requires the developer to identify a developer security analyst whose
responsibility is to monitor the assurance maintenance process. The role may be
filled by more than one individual. The developer security analyst is required to be
familiar with the TOE, the evaluation results and applicable assurance requirements
as an essential prerequisite for fulfilling the role. The requirements do not specify
how this level of knowledge and experience should be gained; however, it is likely
that a prospective developer security analyst will have to undergo some form of
training programme to address any deficiencies in his or her knowledge and
experience. The developer security analyst needs to have sufficient authority within
the developer’s organisation to ensure that the requirements of the AM Plan and its
associated procedures are followed.

15 - Assurance maintenance paradigm

Page 190 of 208 Version 2.1 August 1999

Assurance maintenance class and
families

15.3.2 TOE component categorisation report

546 The aim of the TOE component categorisation report is to complement the AM Plan
by providing a categorisation of the components of a TOE (e.g. TSF subsystems)
according to their relevance to security. This categorisation acts as a focus for the
developer’s security impact analysis, and also for the subsequent re-evaluation of
the TOE.

547 The checking of the TOE component categorisation report occurs during the
acceptance phase; the evaluator checks are applied only in respect of the version of
the report for the certified version of the TOE. While the assurance maintenance
procedures identified in the AM Plan require the developer to update the TOE
component categorisation report as changes are made to the TOE, the evaluators are
not required to re-review the document; however, any such updates are likely to be
inspected during the monitoring phase.

548 The TOE component categorisation report covers all TSF representations for the
level of assurance being maintained. The TOE component categorisation report also
identifies:

a) any hardware, firmware or software components that are external to the
TOE (e.g. hardware or software platforms), and that satisfy IT security
requirements as defined in the ST;

b) any development tools that, if modified, will have an impact on the required
assurance that the TOE satisfies its ST.

549 The TOE component categorisation report also provides a description of the
approach used for the categorisation of TOE components. As a minimum, TOE
components are required to be categorised as either TSP-enforcing or non-TSP-
enforcing. The description of the categorisation scheme is intended to enable the
developer security analyst to decide the category to which any new TOE component
should be assigned, and also when to change the category of an existing TOE
component following changes to the TOE or its ST.

550 The initial categorisation of the components of the TOE will be based on evidence
provided by the developer in support of the evaluation of the TOE, independently
validated by the evaluators. Although maintenance of the document is the
responsibility of the developer security analyst, its initial contents may be based on
the results of the evaluation of the TOE.

551 It may be useful for the ST to include AMA_CAT.1 where there is a requirement
that assurance be maintained in future versions of the TOE. This applies
irrespective of whether assurance maintenance is to be achieved by application of
the requirements in this class, or by periodic re-evaluations of the TOE.

15.3.3 Evidence of assurance maintenance

552 Confidence needs to be established that the assurance in the TOE is being
maintained by the developer, in accordance with the AM Plan. This is achieved

Assurance maintenance class and
families

August 1999 Version 2.1 Page 191 of 208

15 - Assurance maintenance paradigm

through the provision of evidence that demonstrates that the assurance in the TOE
has been maintained, which is independently checked by an evaluator. This check
(termed an ‘AM audit’) would typically be applied periodically during the
monitoring phase of the TOE’s assurance maintenance cycle.

553 AM audits are conducted in accordance with the schedule defined in the AM Plan.
The developer and evaluator actions required by AMA_EVD.1 will therefore be
invoked one or more times during the monitoring phase of the assurance
maintenance cycle. The evaluators may need to visit the TOE development
environment to examine the required evidence, but other ways of performing the
checks are not precluded.

554 The developer is required to provide evidence that the assurance maintenance
procedures referred to in the AM Plan are being followed. This will include:

a) configuration management records;

b) documentation referenced by the security impact analysis, including the
current version of the TOE component categorisation report, and evidence
for all applicable assurance requirements such as design updates, test
documentation, new versions of guidance documents, and so on;

c) evidence of the tracking of security flaws.

555 The evaluator’s check of the developer’s security impact analysis (required by
AMA_SIA.1 on which AMA_EVD.1 depends) will act as a focus for the AM audit.
The AM audit will, in turn, provide corroboration of the developer’s analysis (and
hence confidence in the quality of the analysis), thereby serving to validate the
developer’s claim that assurance has been maintained in the current version of the
TOE.

556 An AM audit requires the evaluators to confirm that functional testing has been
performed on the current version of the TOE. This is highlighted as a separate check
because test documentation provides firm evidence that the TOE security functions
continue to operate as specified. The evaluators sample the test documentation to
confirm that the developer testing shows that the security functions operate as
specified, and that the coverage and depth of testing is commensurate with the level
of assurance being maintained.

15.3.4 Security impact analysis

557 The aim of the security impact analysis is to provide confidence that assurance has
been maintained in the TOE, through an analysis performed by the developer of the
security impact of all changes affecting the TOE since it was certified. These
requirements may be applied during a monitoring phase or a re-evaluation phase.

558 The developer’s security impact analysis is based on the TOE component
categorisation report: changes to TSP-enforcing TOE components may have an
impact on the assurance that the TOE continues to meet its ST following the

15 - Assurance maintenance paradigm

Page 192 of 208 Version 2.1 August 1999

Assurance maintenance class and
families

changes. All such changes therefore require an analysis of their security impact to
show that they do not undermine assurance in the TOE.

559 The components in this family may be used in support of either a subsequent AM
audit or a re-evaluation of the TOE.

560 For an AM audit, the evaluators’ review of the security impact analysis should act
as a focus for the subsequent audit activities, which should in turn provide
corroboration of the developer’s analysis.

561 The security impact analysis identifies the changes from the certified version of the
TOE, in terms of the TOE components which are either new, or which have been
modified. The evaluators check the accuracy of this information during either the
associated AM audit, or the associated re-evaluation of the TOE.

562 Provision of the security impact analysis in support of a re-evaluation should reduce
the level of evaluator effort needed to establish the required level of assurance in
the TOE. Application of AMA_SIA.2, which requires a full examination of the
security impact analysis, is likely to provide maximum benefit to the re-evaluation.
The precise detailed conditions under which an evaluation authority might wish the
security impact analysis to be used in practice in a re-evaluation are beyond the
scope of the CC.

203Part 3: Security assurance requirements

August 1999 Version 2.1 Page 193 of 208

16 Class AMA: Maintenance of assurance

563 The maintenance of assurance class provides requirements that are intended to be
applied after a TOE has been certified against the CC. These requirements are
aimed at assuring that the TOE will continue to meet its security target as changes
are made to the TOE or its environment. Such changes include the discovery of new
threats or vulnerabilities, changes in user requirements, and the correction of bugs
found in the certified TOE.

564 The class comprises four families, and the hierarchy of components within, as
shown in Figure 16.1:

 Class AMA: Maintenance of assurance

AMA_AMP Assurance maintenance plan 1

AMA_CAT TOE component categorisation report 1

AMA_EVD Evidence of assurance maintenance 1

AMA_SIA Security impact analysis 1 2

Figure 16.1 - Maintenance of assurance class decomposition

16 - Class AMA: Maintenance of
assurance

Page 194 of 208 Version 2.1 August 1999

Assurance maintenance plan (AMA_AMP)

16.1 Assurance maintenance plan (AMA_AMP)
AMA_AMP Assurance maintenance plan

Objectives

565 The Assurance Maintenance Plan (AM Plan) identifies the plans and procedures a
developer must implement in order to ensure that the assurance that was established
in the certified TOE is maintained as changes are made to the TOE or its
environment. The AM Plan is specific to the TOE, and is tailored to the developer’s
own practices and procedures.

Component levelling

566 This family contains only one component.

Application notes

567 An AM Plan covers one assurance maintenance cycle, this being the period from
the completion of the most recent evaluation of the TOE to the completion of the
next planned re-evaluation.

568 The requirements AMA_AMP.1.2C and AMA_AMP.1.3C serve to provide a clear
identification of the baseline for assurance maintenance, in terms of the evaluation
results and the definition of the categorisation of TOE components. The TOE
component categorisation report is subject to the requirements of the AMA_CAT
family, and provides the basis for the security impact analysis performed by the
developer security analyst.

569 The definition of the scope of changes covered by the plan, as required by
AMA_AMP.1.4C, should be in terms of the category of components of the TOE
that may be changed and the representational level at which changes can occur
(referencing the TOE component categorisation report where appropriate).

570 AMA_AMP.1.5C requires a description of the developer’s current plans for any
new releases of the TOE. These plans may be subject to change, and hence require
an update to the AM Plan. It should be noted, however, that in this context the term
new release does not, for example, include minor (‘unplanned’) releases of the TOE
to incorporate bug fixes.

571 AMA_AMP.1.6C requires a definition of the planned schedule for AM audits (see
the AMA_EVD family below) and the targeted re-evaluation of the TOE, together
with a justification of the proposed schedules. The schedules may be defined in
terms of elapsed time (e.g. annual AM audits), or they may be linked to specific new
releases of the TOE. The planned schedules should take into account the expected
changes to the TOE during the period, and also any elapsed period between the
evaluation of the TOE and the establishment of the AM Plan. In particular, any
changes outside the scope of the AM Plan will trigger a re-evaluation.

Assurance maintenance plan
(AMA_AMP)

August 1999 Version 2.1 Page 195 of 208

16 - Class AMA: Maintenance of
assurance

AMA_AMP.1Assurance maintenance plan

Dependencies:

ACM_CAP.2 Configuration items

ALC_FLR.1 Basic flaw remediation

AMA_CAT.1 TOE component categorisation report

Developer action elements:

AMA_AMP.1.1D The developer shall provide an AM Plan.

Content and presentation of evidence elements:

AMA_AMP.1.1C The AM Plan shall contain or reference a brief description of the TOE,
including the security functionality it provides.

AMA_AMP.1.2C The AM Plan shall identify the certified version of the TOE, and shall
reference the evaluation results.

AMA_AMP.1.3C The AM Plan shall reference the TOE component categorisation report for the
certified version of the TOE.

AMA_AMP.1.4C The AM Plan shall define the scope of changes to the TOE that are covered by
the plan.

AMA_AMP.1.5C The AM Plan shall describe the TOE life-cycle, and shall identify the current
plans for any new releases of the TOE, together with a brief description of any
planned changes that are likely to have a significant security impact.

AMA_AMP.1.6C The AM Plan shall describe the assurance maintenance cycle, stating and
justifying the planned schedule of AM audits and the target date of the next re-
evaluation of the TOE.

AMA_AMP.1.7C The AM Plan shall identify the individual(s) who will assume the role of
developer security analyst for the TOE.

AMA_AMP.1.8C The AM Plan shall describe how the developer security analyst role will ensure
that the procedures documented or referenced in the AM Plan are followed.

AMA_AMP.1.9C The AM Plan shall describe how the developer security analyst role will ensure
that all developer actions involved in the analysis of the security impact of
changes affecting the TOE are performed correctly.

AMA_AMP.1.10C The AM Plan shall justify why the identified developer security analyst(s) have
sufficient familiarity with the security target, functional specification and
(where appropriate) high-level design of the TOE, and with the evaluation
results and all applicable assurance requirements for the certified version of
the TOE.

16 - Class AMA: Maintenance of
assurance

Page 196 of 208 Version 2.1 August 1999

Assurance maintenance plan (AMA_AMP)

AMA_AMP.1.11C The AM Plan shall describe or reference the procedures to be applied to
maintain the assurance in the TOE, which as a minimum shall include the
procedures for configuration management, maintenance of assurance
evidence, performance of the analysis of the security impact of changes
affecting the TOE, and flaw remediation.

Evaluator action elements:

AMA_AMP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AMA_AMP.1.2E The evaluator shall confirm that the proposed schedules for AM audits and re-
evaluation of the TOE are acceptable and consistent with the proposed
changes to the TOE.

TOE component categorisation report
(AMA_CAT)

August 1999 Version 2.1 Page 197 of 208

16 - Class AMA: Maintenance of
assurance

16.2 TOE component categorisation report (AMA_CAT)
AMA_CAT TOE component categorisation report

Objectives

572 The aim of the TOE component categorisation report is to complement the AM Plan
by providing a categorisation of the components of a TOE (e.g. TSF subsystems)
according to their relevance to security. This categorisation acts as a focus for the
developer’s security impact analysis, and also for the subsequent re-evaluation of
the TOE.

Component levelling

573 This family contains only one component.

Application notes

574 The term “least abstract TSF representation” in AMA_CAT.1.1 refers to the least
abstract representation of the TSF that was provided for the level of assurance that
is being maintained. For example, if the TOE is to be maintained at an assurance
level of EAL3, then the least abstract TSF representation is the high-level design,
and the following TOE components must be categorised:

a) all external TSF interfaces identifiable in the functional specification;

b) all TSF subsystems identifiable in the high-level design.

575 While AMA_CAT requires at least two categories to be defined, it may be
appropriate (dependent on the type of TOE) to further subdivide the TSP-enforcing
category in order to help focus the developer’s security impact analysis. For
example, TSP-enforcing components could be categorised as either security critical
or security supporting where:

a) security critical TOE components are those which are directly responsible for the
enforcement of at least one IT security function defined in the security target;

b) security supporting TOE components are those which are not directly
responsible for the enforcement of any IT security function (and hence are not
security critical), but which are nonetheless relied upon to uphold the IT security
functions; this category may in turn include two distinct types of TOE component:

- those that provide services to security critical TOE components, and
hence are relied upon to function correctly;

- those that do not provide any such service, but which nonetheless
have to be trusted not to behave in a malicious manner (i.e.
introducing a vulnerability).

576 AMA_CAT.1.3C requires an identification of any development tools that, if
modified, will have an impact on the assurance that the TOE satisfies its security
target (e.g. the compiler used to create the object code).

16 - Class AMA: Maintenance of
assurance

Page 198 of 208 Version 2.1 August 1999

TOE component categorisation report
(AMA_CAT)

AMA_CAT.1 TOE component categorisation report

Dependencies:

ACM_CAP.2 Configuration items

Developer action elements:

AMA_CAT.1.1D The developer shall provide a TOE component categorisation report for the
certified version of the TOE.

Content and presentation of evidence elements:

AMA_CAT.1.1C The TOE component categorisation report shall categorise each component of
the TOE, identifiable in each TSF representation from the most abstract to the
least abstract, according to its relevance to security; as a minimum, TOE
components must be categorised as one of TSP-enforcing or non-TSP-
enforcing.

AMA_CAT.1.2C The TOE component categorisation report shall describe the categorisation
scheme used, so that it can be determined how to categorise new components
introduced into the TOE, and also when to re-categorise existing TOE
components following changes to the TOE or its security target.

AMA_CAT.1.3C The TOE component categorisation report shall identify any tools used in the
development environment that, if modified, will have an impact on the
assurance that the TOE satisfies its security target.

Evaluator action elements:

AMA_CAT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AMA_CAT.1.2E The evaluator shall confirm that the categorisation of TOE components and
tools, and the categorisation scheme used, are appropriate and consistent with
the evaluation results for the certified version.

Evidence of assurance maintenance
(AMA_EVD)

August 1999 Version 2.1 Page 199 of 208

16 - Class AMA: Maintenance of
assurance

16.3 Evidence of assurance maintenance (AMA_EVD)
AMA_EVD Evidence of assurance maintenance

Objectives

577 The aim of this family of requirements is to establish confidence that the assurance
in the TOE is being maintained by the developer, in accordance with the AM Plan.
This is achieved through the provision of evidence which demonstrates that the
assurance in the TOE has been maintained, which is independently checked by an
evaluator. This check, termed an ‘AM audit’, is periodically applied during the
lifetime of the AM Plan.

Component levelling

578 This family contains only one component.

Application notes

579 This family includes some evidence requirements that are similar to assurance
requirements defined in the ACM, ATE and AVA classes. However, the AM audit
does not require the evaluators to examine the evidence to the same extent as
required by the components in these classes; rather, it requires a sampling approach
to establish confidence that the assurance maintenance procedures are being
followed correctly.

580 As part of the AM audit, the evaluators check (by sampling) that the configuration
list and security impact analysis are consistent for the current version of the TOE,
in terms of their identification of the TOE components that have changed from the
certified version of the TOE.

581 AMA_EVD.1.3C requires the provision of evidence that the assurance maintenance
procedures in the AM Plan are being followed. This covers all procedures referred
to in AMA_AMP.1.11C, i.e. evidence of application of procedures relating to
configuration management, maintenance of assurance evidence, performance of
security impact analysis, and flaw remediation.

582 The evidence required in AMA_EVD.1.4C includes the provision of a list of
identified vulnerabilities in the current version of the TOE. This is highlighted as a
separate requirement because of the importance of ensuring, to a level consistent
with the original evaluation assurance requirements, that the current version
contains no security weakness that are exploitable within the TOE environment.
The list in AMA_EVD.1.4C should include vulnerabilities arising from:

a) the developer’s analysis required by AVA_VLA.1, or higher component (if
required for the certified version of the TOE);

b) any other reported security flaws handled by the flaw remediation procedures
required by ALC_FLR.1(or ALC_FLR.2 if required for the certified version of the
TOE).

16 - Class AMA: Maintenance of
assurance

Page 200 of 208 Version 2.1 August 1999

Evidence of assurance maintenance
(AMA_EVD)

583 AMA_EVD.1.5E requires the evaluators to confirm that functional testing has been
performed on the current version of the TOE, and that the coverage and depth of
testing is commensurate with the level of assurance being maintained. This check
is performed by sampling the test documentation for the current version of the TOE.

AMA_EVD.1 Evidence of maintenance process

Dependencies:

AMA_AMP.1 Assurance maintenance plan

AMA_SIA.1 Sampling of security impact analysis

Developer action elements:

AMA_EVD.1.1D The developer security analyst shall provide AM documentation for the
current version of the TOE.

Content and presentation of evidence elements:

AMA_EVD.1.1C The AM documentation shall include a configuration list and a list of identified
vulnerabilities in the TOE.

AMA_EVD.1.2C The configuration list shall describe the configuration items that comprise the
current version of the TOE.

AMA_EVD.1.3C The AM documentation shall provide evidence that the procedures
documented or referenced in the AM Plan are being followed.

AMA_EVD.1.4C The list of identified vulnerabilities in the current version of the TOE shall
show, for each vulnerability, that the vulnerability cannot be exploited in the
intended environment for the TOE.

Evaluator action elements:

AMA_EVD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AMA_EVD.1.2E The evaluator shall confirm that the procedures documented or referenced in
the AM Plan are being followed.

AMA_EVD.1.3E The evaluator shall confirm that the security impact analysis for the current
version of the TOE is consistent with the configuration list.

AMA_EVD.1.4E The evaluator shall confirm that all changes documented in the security
impact analysis for the current version of the TOE are within the scope of
changes covered by the AM Plan.

AMA_EVD.1.5E The evaluator shall confirm that functional testing has been performed on the
current version of the TOE, to a degree commensurate with the level of
assurance being maintained.

Security impact analysis (AMA_SIA)

August 1999 Version 2.1 Page 201 of 208

16 - Class AMA: Maintenance of
assurance

16.4 Security impact analysis (AMA_SIA)
AMA_SIA Security impact analysis

Objectives

584 The aim of the security impact analysis is to provide confidence that assurance has
been maintained in the TOE, through an analysis performed by the developer of the
security impact of all changes affecting the TOE since it was certified.

Component levelling

585 This family consists of two components, levelled according to the degree to which
an evaluator validates the developer’s security impact analysis.

Application notes

586 AMA_SIA.1 requires a sampling approach to validate the developer’s security
impact analysis. In some cases, AMA_SIA.2 may be preferred where a sampling
approach is not considered sufficient to establish confidence that assurance has
been maintained in the current version of the TOE, but where a formal re-evaluation
is not considered necessary.

587 Both components in this family require the security impact analysis to identify all
new and modified TOE components in the current version of the TOE (as compared
with the certified version). The accuracy of this information is checked during
either the associated AM audit (by sampling), or the associated re-evaluation of the
TOE when the configuration list is checked under ACM_CAP.

AMA_SIA.1 Sampling of security impact analysis

Dependencies:

AMA_CAT.1 TOE component categorisation report

Developer action elements:

AMA_SIA.1.1D The developer security analyst shall, for the current version of the TOE,
provide a security impact analysis that covers all changes affecting the TOE as
compared with the certified version.

Content and presentation of evidence elements:

AMA_SIA.1.1C The security impact analysis shall identify the certified TOE from which the
current version of the TOE was derived.

AMA_SIA.1.2C The security impact analysis shall identify all new and modified TOE
components that are categorised as TSP-enforcing.

AMA_SIA.1.3C The security impact analysis shall, for each change affecting the security target
or TSF representations, briefly describe the change and any effects it has on
lower representation levels.

16 - Class AMA: Maintenance of
assurance

Page 202 of 208 Version 2.1 August 1999

Security impact analysis (AMA_SIA)

AMA_SIA.1.4C The security impact analysis shall, for each change affecting the security target
or TSF representations, identify all IT security functions and all TOE
components categorised as TSP-enforcing that are affected by the change.

AMA_SIA.1.5C The security impact analysis shall, for each change which results in a
modification of the implementation representation of the TSF or the IT
environment, identify the test evidence that shows, to the required level of
assurance, that the TSF continues to be correctly implemented following the
change.

AMA_SIA.1.6C The security impact analysis shall, for each applicable assurance requirement
in the configuration management (ACM), life cycle support (ALC), delivery
and operation (ADO) and guidance documents (AGD) assurance classes,
identify any evaluation deliverables that have changed, and provide a brief
description of each change and its impact on assurance.

AMA_SIA.1.7C The security impact analysis shall, for each applicable assurance requirement
in the vulnerability assessment (AVA) assurance class, identify which
evaluation deliverables have changed and which have not, and give reasons for
the decision taken as to whether or not to update the deliverable.

Evaluator action elements:

AMA_SIA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AMA_SIA.1.2E The evaluator shall check, by sampling, that the security impact analysis
documents changes to an appropriate level of detail, together with appropriate
justifications that assurance has been maintained in the current version of the
TOE.

AMA_SIA.2 Examination of security impact analysis

Dependencies:

AMA_CAT.1 TOE component categorisation report

Developer action elements:

AMA_SIA.2.1D The developer security analyst shall, for the current version of the TOE, provide a
security impact analysis that covers all changes affecting the TOE as compared with
the certified version.

Content and presentation of evidence elements:

AMA_SIA.2.1C The security impact analysis shall identify the certified TOE from which the current
version of the TOE was derived.

AMA_SIA.2.2C The security impact analysis shall identify all new and modified TOE components
that are categorised as TSP-enforcing.

Security impact analysis (AMA_SIA)

August 1999 Version 2.1 Page 203 of 208

16 - Class AMA: Maintenance of
assurance

AMA_SIA.2.3C The security impact analysis shall, for each change affecting the security target or
TSF representations, briefly describe the change and any effects it has on lower
representation levels.

AMA_SIA.2.4C The security impact analysis shall, for each change affecting the security target or
TSF representations, identify all IT security functions and all TOE components
categorised as TSP-enforcing that are affected by the change.

AMA_SIA.2.5C The security impact analysis shall, for each change which results in a modification
of the implementation representation of the TSF or the IT environment, identify the
test evidence that shows, to the required level of assurance, that the TSF continues
to be correctly implemented following the change.

AMA_SIA.2.6C The security impact analysis shall, for each applicable assurance requirement in the
configuration management (ACM), life cycle support (ALC), delivery and
operation (ADO) and guidance documents (AGD) assurance classes, identify any
evaluation deliverables that have changed, and provide a brief description of each
change and its impact on assurance.

AMA_SIA.2.7C The security impact analysis shall, for each applicable assurance requirement in the
vulnerability assessment (AVA) assurance class, identify which evaluation
deliverables have changed and which have not, and give reasons for the decision
taken as to whether or not to update the deliverable.

Evaluator action elements:

AMA_SIA.2.1E The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

AMA_SIA.2.2E The evaluator shall check that the security impact analysis documents all changes
to an appropriate level of detail, together with appropriate justifications that
assurance has been maintained in the current version of the TOE.

206Part 3: Security assurance requirements

August 1999 Version 2.1 Page 204 of 208

Annex A
(informative)

Cross reference of assurance component
dependencies

588 The dependencies documented in the components of clauses 8-14 and clause 16, are
the direct dependencies between the assurance components. Table A.1 summarises
both the direct dependencies and the indirect dependencies. The indirect
dependencies are the cumulative result of iteratively including all the dependencies
of each component identified as being a dependency.

Table A.1 - Assurance component dependenciesa

Comp.
Names

A
U
T

C
A
P

S
C
P

D
E
L

I
G
S

F
S
P

H
L
D

I
M
P

I
N
T

L
L
D

R
C
R

S
P
M

A
D
M

U
S
R

D
V
S

F
L
R

L
C
D

T
A
T

C
O
V

D
P
T

F
U
N

I
N
D

C
C
A

M
S
U

S
O
F

V
L
A

 AUT.1-2 3 1 1
 CAP.1-2
 CAP.3-4 1 1
 CAP.5 1 2
 SCP.1-3 3 1
 DEL.1
 DEL.2-3 3 1 1
 IGS.1-2 1 1 1
 FSP.1-4 1
 HLD.1-2 1 1
 HLD.3-4 3 2
 HLD.5 4 3
 IMP.1-2 1 2 1 1 1
 IMP.3 1 2 1 1 1 1
 INT.1-2 1 2 1 1 1 1
 INT.3 1 2 2 1 1 1
 LLD.1 1 2 1
 LLD.2 3 3 2
 LLD.3 4 5 3
 RCR.1-3
 SPM.1-3 1 1
 ADM.1 1 1
 USR.1 1 1

August 1999 Version 2.1 Page 205 of 208

A - Cross reference of assurance
component dependencies

a. In Table A.1, the left column represents groupings of specific components (using
only the last three digits of the component name and an indicator of component
number or range of numbers). Each non-empty box in the table indicates a specific
component, identified by its name at the top of the column and the number in the
box, on which the component in the left column is dependent. Bold numbers
represent direct dependencies. Italicised numbers represent indirect dependencies.
Dark shading represents the intersection of a component with itself. Dependencies
from AMA components to assurance components are included in Table A.1, while
AMA internal dependencies are shown in Table A.2 below. There are no
dependencies from any non-AMA components to those in AMA, and so Table A.1
has no columns representing the AMA families.

 DVS.1-2
 FLR.1-3
 LCD.1-3
 TAT.1-3 1 2 1 1 1
 COV.1-3 1 1 1
 DPT.1 1 1 1 1
 DPT.2 1 2 1 1 1
 DPT.3 1 2 2 1 1 1 1
 FUN.1-2
 IND.1 1 1 1 1
 IND.2-3 1 1 1 1 1
 CCA.1-3 2 2 2 1 1 1 1 1
 MSU.1-3 1 1 1 1 1
 SOF.1 1 1 1
 VLA.1 1 1 1 1 1
 VLA.2-4 1 2 1 1 1 1 1 1
 AMP.1 2 1
 CAT.1 2
 EVD.1
 SIA.1-2

Table A.1 - Assurance component dependenciesa

Comp.
Names

A
U
T

C
A
P

S
C
P

D
E
L

I
G
S

F
S
P

H
L
D

I
M
P

I
N
T

L
L
D

R
C
R

S
P
M

A
D
M

U
S
R

D
V
S

F
L
R

L
C
D

T
A
T

C
O
V

D
P
T

F
U
N

I
N
D

C
C
A

M
S
U

S
O
F

V
L
A

A - Cross reference of assurance
component dependencies

Page 206 of 208 Version 2.1 August 1999

Table A.2 - AMA Internal Dependencies

AMA
Comp.
Names

A
M
P

C
A
T

E
V
D

S
I
A

AMP.1 1
CAT.1
EVD.1 1 1 1
SIA.1-2 1

208Part 3: Security assurance requirements

August 1999 Version 2.1 Page 207 of 208

Annex B
(informative)

Cross reference of EALs and assurance components

589 Table B.1 describes the relationship between the evaluation assurance levels and
the assurance classes, families and components.

Table B.1 - Evaluation assurance level summary

Assurance
Class

Assurance
Family

Assurance Components by
Evaluation Assurance Level

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

Configuration
 management

ACM_AUT 1 1 2 2
ACM_CAP 1 2 3 4 4 5 5
ACM_SCP 1 2 3 3 3

Delivery and
operation

ADO_DEL 1 1 2 2 2 3
ADO_IGS 1 1 1 1 1 1 1

Development

ADV_FSP 1 1 1 2 3 3 4
ADV_HLD 1 2 2 3 4 5
ADV_IMP 1 2 3 3
ADV_INT 1 2 3
ADV_LLD 1 1 2 2
ADV_RCR 1 1 1 1 2 2 3
ADV_SPM 1 3 3 3

Guidance
documents

AGD_ADM 1 1 1 1 1 1 1
AGD_USR 1 1 1 1 1 1 1

Life cycle
support

ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 2 2 3
ALC_TAT 1 2 3 3

Tests

ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 2 2 3
ATE_FUN 1 1 1 1 2 2
ATE_IND 1 2 2 2 2 2 3

Vulnerability
assessment

AVA_CCA 1 2 2
AVA_MSU 1 2 2 3 3
AVA_SOF 1 1 1 1 1 1
AVA_VLA 1 1 2 3 4 4

Annex B - EALs and components Part 3: Security assurance requirements

Page 208 of 208 Version 2.1 August 1999

