
CASL
(Custom Audit Scripting Language)
for Linux Red Hat 5.x

Programming Guide

Version 2.0

COPYRIGHT

Copyright © 1999 Networks Associates Technology, Inc. All Rights Reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into
any language in any form or by any means without the written permission of Networks Associates
Technology, Inc., or its suppliers or affiliate companies.

TRADEMARK ATTRIBUTIONS

ActiveHelp, Bomb Shelter, Building a World of Trust, CipherLink, Clean-Up, Cloaking, Compass 7,
CNX, CyberCop, CyberMedia, Data Security Letter, Discover, Distributed Sniffer System, Dr
Solomon’s, Enterprise Secure Cast, First Aid, ForceField, Gauntlet, GMT, Hunter, ISDN Tel/Scope, LM
1, LANGuru, Leading Help Desk Technology, Magic Solutions, MagicSpy, MagicTree, Magic
University, MagicWin, MagicWord, McAfee Associates, McAfee, MoneyMagic, More Power To You,
Multimedia Cloaking, NetCrypto, NetRoom, NetScan, Net Shield, NetShield, NetStalker, Net Tools,
NetOctopus, NetStalker, Network Associates, Network General, Network Uptime!, NetXRay, Nuts &
Bolts, PC Medic, PCNotary, PGP, PGP (Pretty Good Privacy), PocketScope, PowerTelnet, Pretty Good
Privacy, PrimeSupport, RecoverKey, RecoverKey-International, ReportMagic, RingFence, Router PM,
Safe & Sound, SalesMagic, SecureCast, Service Level Manager, ServiceMagic, Site Meter, Sniffer,
SniffMaster, SniffNet, Stalker, Statistical Information Retrieval (SIR), SupportMagic, T-POD,
TeleSniffer, TIS, TMach, TMeg, Trusted Mach, Trusted Mail, Total Network Visibility, Total Virus
Defense, Uninstaller, Virex, Virex-PC, Virus Forum, ViruScan, VirusScan, VShield, WebScan,
WebShield, WebSniffer, WebStalker WebWall,andZAC 2000are registered trademarks of Network
Associates and/or its affiliates in the US and/or other countries. All other registered and unregistered
trademarks in this document are the sole property of their respective owners.

LICENSE AGREEMENT

BEFORE YOU INSTALL, USE, OR MODIFY THIS SOFTWARE PRODUCT, CAREFULLY READ
THE TERMS AND CONDITIONS IN THE FILE "LICENSE.TXT" ACCOMPANYING THIS
DOCUMENT. IF THE FILE "LICENSE.TXT" IS MISSING, IT MAY BE OBTAINED FROM
NETWORK ASSOCIATES. NETWORK ASSOCIATES IS PERMITTING THE USE,
DISTRIBUTION, AND LIMITED MODIFICATION OF THIS SOFTWARE PRODUCT ON A
NON-COMMERCIAL BASIS SUBJECT TO ALL OF THE CONDITIONS IN THE FILE
"LICENSE.TXT." BY INSTALLING, USING, OR MODIFYING THE SOFTWARE PRODUCT,
YOU AND ANY SUBSEQUENT USER ARE AGREEING TO BE BOUND BY ALL OF THE TERMS
AND CONDITIONS IN THE FILE "LICENSE.TXT." IF YOU DO NOT AGREE TO ALL OF THOSE
TERMS AND CONDITIONS, DO NOT INSTALL, USE, OR MODIFY THIS SOFTWARE
PRODUCT.

CONTACT INFORMATION

Network Associates, Inc.
Web site:http://www.nai.com
CASL discussion list:casl@lists.nai.com

CASL Programming Guide i

Table of Contents
Chapter 1. Table of Contents . i

Preface . iii
CASL Overview . iii

System Requirements . iii

How to Use this Programming Guide . iii

Chapter 1. Installing CASL . 1-1
Introduction . 1-1

Installing the CASL Interpreter . 1-2

Summary . 1-3

Chapter 2. CASL Reference . 2-1
Introduction . 2-1

About CASL . 2-2

Programming With CASL . 2-3

Structuring CASL Programs . 2-3

Understanding an Example CASL Program . 2-4

CASL Reference . 2-10

Program Structure . 2-11

Lists . 2-18

Packet Headers . 2-21

Subroutines . 2-24

CASL Built-in Functions . 2-27

Network I/O Built-in Functions . 2-27

File I/O Built-in Functions . 2-29

MISC (Miscellaneous) Built-in Functions . 2-30

Summary . 2-32

Table of Contents

ii Table of Contents

CASL Programming Guide iii

Preface

This preface includes important information about CASL (custom audit scripting
language). We recommend that you read this preface thoroughly before using CASL.

CASL Overview
CASL is a high-level programming language designed to write programs (often called
scripts) that simulate low-level attacks or information gathering checks on networks.
To write programs that simulate an attack or information gathering check, you need to
write code that constructs packets and then sends those packets to a host on a network
just as an actual attack or information gathering check would. You can execute the
programs you create in CASL to determine if a network is vulnerable to the attack or
the information gathering check simulated by the programs. To write programs in
CASL you must have the CASL interpreter installed on your system.

System Requirements
There are minimum system requirements that must be met to install and use the CASL
interpreter. The minimum system requirements are as follows:

• Red Hat Linux operating system 5.x

• 133 MHz Pentium processor

• 32 MB of RAM

• 3 MB of free disk space

If your system does not meet the above-listed requirements, you need to upgrade the
system accordingly before installing CASL.

How to Use this Programming Guide
This Programming Guide includes two chapters.

Chapter 1, “Installing CASL,” includes step-by-step instructions for installing and
uninstalling the CASL interpreter.

Chapter 2, “CASL Reference,” provides a detailed explanation of the custom audit
scripting language (CASL) which you can use to write your own scripts using a text
editor and run them using the CASL interpreter. Chapter 2 includes a description of
CASL program structure and syntax, as well as a programming reference section.

iv Preface

1

CASL Programming Guide 1-1

1Installing CASL

Introduction
This chapter includes step-by-step instructions for installing (and uninstalling) the
CASL (custom audit scripting language) interpreter. The CASL interpreter lets you
write your own programs in a text editor that simulate attacks or information gathering
checks. CASL directories and files are stored as a single compressed archive file. This
chapter assumes that you already have the compressed archive file on your system.

There are minimum requirements that your system must meet before you can install
and use CASL. They are as follows:

• Red Hat Linux operating system 5.x

• 133 MHz Pentium processor

• 32 MB of RAM

• 3 MB of free disk space

If your system does not meet the above-listed requirements, you will need to upgrade
the system accordingly before installing the CASL interpreter.

Installing CASL

1-2 Chapter 1

Installing the CASL Interpreter
This section gives instructions for installing the CASL interpreter on your system.
Your CASL distribution is stored as a single compressed archive file with the
extension.tgz which you decompress and unpack using the Linuxtar command. By
default, thetar process will create the directorycasl-2.0in your current working
directory. This directory contains subdirectories and program files.

NOTE: You must have permission to write to the directory that you wish to
install CASL to.

To install the CASL interpreter, do the following:

1. Download the CASL distribution file (.tgz extension) to your computer. The
distribution file has the filenamecasl20.

2. To decompress and unpack the distribution file, type the following command:
tar zxvf [filename.tgz]

where[filename.tgz] is replaced by the filename (including the.tgz extension) of
the CASL distribution file.

The contents of the file will be extracted and a directory namedcasl-2.0with
subdirectories and program files will be created in your current working directory.

3. Set the environmental variable CASL_DIR to the directory where CASL is
installed.

If you wish to uninstall CASL, delete the directorycasl-2.0.

CASL Programming Guide 1-3

Installing CASL

Summary
This chapter included step-by-step instructions for installing the CASL interpreter. It
also included instructions for uninstalling the CASL interpreter in case you need to
remove it from your system. At this point, you are ready to use CASL. You can go to
Chapter 2, the reference manual for CASL. Chapter 2 includes a description of CASL
program structure and syntax, as well as a programming guide.

Installing CASL

1-4 Chapter 1

2

CASL Programming Guide 2-1

2CASL Reference

Introduction
This chapter is a guide to CASL (custom audit scripting language). CASL is a
high-level programming language. CASL lets you write programs in a text editor that
simulate attacks or information gathering checks, making CASL ideal for evaluating
network security. To write programs in CASL you must have the CASL interpreter
installed on your system. (See Chapter 1 for instructions on installing the CASL
interpreter.)

In this chapter, you will find information on the following topics:

• an explanation of CASL

• an introduction to the main elements of CASL programs, including an example
CASL program

• a reference section containing detailed descriptions of the elements you can use in
CASL programs

• a summary of the CASL built-in functions you can use in CASL programs

CASL is for expert use only. CASL requires high-level programming experience and
an understanding of TCP/IP protocol.

CASL Reference

2-2 Chapter 2

About CASL
CASL is a high-level programming language designed to write programs (often called
scripts) that simulate low-level attacks or information gathering checks on networks.
To write programs that simulate an attack or information gathering check, you need to
write code that constructs packets and then sends those packets to a host on a network
just as an actual attack or information gathering check would. You can execute the
programs you create in CASL to determine if a network is vulnerable to the attack or
the information gathering check simulated by the programs.

Writing programs to simulate low-level attacks on networks is difficult, if not
impossible, in most high-level programming languages. As an example, consider the
Tear Drop attack. Tear Drop sends two IP packet fragments to a host. The two IP
packet fragments overlap each other, which cause crashes on Windows NT and Linux
operating systems. Sending overlapping IP packet fragments is difficult in C and
impossible in COBOL. In CASL sending overlapping IP packet fragments is easy,
making CASL ideal for simulating attacks like Tear Drop.

Writing programs that are not operating system dependent is impossible in most
high-level programming languages. For instance, consider the information gathering
check TCP Stealth Port Scan. TCP Stealth Port Scan detects if a connection can be
made to a port on a host. (TCP Stealth Port Scan does not open the connection.) In C,
you need to write separate programs for different operating systems. For example, if
you want to execute TCP Stealth Port Scan on the Windows NT and Linux operating
systems, you write two programs—one for Windows NT and the other for Linux. In
CASL, you can write one program for TCP Stealth Port Scan and execute it on many
operating systems.

The next section, “Programming With CASL,” is designed to familiarize you with the
main elements of CASL programs. It also includes an example CASL program for
TCP Stealth Port Scan.

CASL Programming Guide 2-3

CASL Reference

Programming With CASL
This section is divided into two parts. The first part, “Structuring CASL Programs,”
introduces you to the main elements of CASL programs. The second part,
“Understanding an Example CASL Program,” includes an example CASL
program—TCP Stealth Port Scan. This part guides you through the elements you use
to create the TCP Stealth Port Scan program.

Structuring CASL Programs
You write CASL programs in a text editor. The main elements you use to write CASL
programs (or, scripts) include:

• statements

• variables

• comments

• packets

A CASL program consists of statements. Astatementis defined as an action, for
example calculating the value of2+2 or reading a UDP packet. A statement operates
on variables. Avariable can be:

• an ASCII character, which is represented in single quotes (e.g.’c’)

• a number, which is represented as either: 1) a positive or negative integer without
quotes; or 2) an integer in hexidecimal format with0X preceding the integer

• a string, which is represented as either: 1) a sequence of characters in double quotes
(e.g."hello,world!"); or 2) control sequences represented in backslash quoted
codes (e.g. new line is’\n’)

• a buffer, which holds a collection of data, generally input packets

• a list, which holds a collection of data, generally output packets

A CASL program supports comments that are ignored by the interpreter. Acomment
can be either a single line or multiple lines. A single line comment beings with"//". A
multiple line comment begins with"/*" and ends with"*/".

In a CASL program, you createpackets, which are units of protocol data, from scratch.
Or, you create packets using predefined packet templates included in CASL. Defining
a packet in CASL consists of selecting the desired protocol structure and then setting
data elements in the packet.

The subsequent section includes an example CASL program, TCP Stealth Port Scan,
which illustrates the main elements of a CASL program.

CASL Reference

2-4 Chapter 2

Understanding an Example CASL Program
This section guides you through an example CASL program for TCP Stealth Port
Scan. TCP Stealth Port Scan is an information gathering check. TCP Stealth Port Scan
requests a connection to a port on a host by sending a TCP SYN packet to the host. The
TCP Stealth Port Scan program then waits for a response to the TCP SYN packet. The
TCP response can be:

• an acknowledgment, indicating a service is listening and willing to accept a
connection for the port,

• a reset, indicating a service is not offered for the port, or

• nothing, indicating something, for example a firewall, is filtering out the
connection attempt

Note that the TCP Stealth Port Scan does not open a connection to a port, even when
a service is available on the port.

This is the TCP Stealth Port Scan program created in CASL.

#include "tcpip.casl"
#include "packets.casl"
for(i = 1; i < 1023; i = i + 1) {

OurSYN = copy SYN;
OurSYN.tcp_source = 10;
OurSYN.tcp_destination = i;
OurIP = copy TCPIP;
OurIP.ip_source = 127.0.0.1;
OurIP.ip_destination = 127.0.0.2;
OurPacket = [OurIP, OurSYN];
ip_output(OurPacket);
OurFilter = ["src host ", 127.0.0.2, " and tcp src port ", i];
ReadPacket = ip_input(2000, OurFilter);
if(!ReadPacket)

continue;
if(size(ReadPacket) < size(IP) + size(TCP))

continue;
ReadIP=extract ip from ReadPacket;
ReadTCP=extract tcp from ReadPacket;
if(ReadTCP.tcp_ack != 1

|| ReadTCP.tcp_syn != 1
|| ReadTCP.tcp_rst == 1)

continue;
print("Port", i, "Alive");

}

CASL Programming Guide 2-5

CASL Reference

NOTE: The key words in the TCP Stealth Port Scan program above are
described in detail in the section "CASL Reference" later in this chapter.

The sections below lead you through the steps you perform to create the TCP Stealth
Port Scan program in CASL.

Step One: Defining TCP/IP Packets
To set up a TCP Stealth Port Scan program, you need to create TCP/IP packets. TCP/IP
header defaults for TCP/IP packets are included in CASL. You enter the following
statement to access TCP/IP header defaults:

#include "tcpip.casl"
#include "packets.casl"

Step Two: Creating a TCP SYN Packet
Next, you need to create a TCP SYN packet, which is the packet that requests a
connection to a port on the destination host. You create a TCP SYN packet using a
predefined TCP packet header template, changing predefined parameters in the
template as appropriate. You enter the following statement to create a TCP SYN
packet using the template:

OurSYN = copy SYN;
OurSYN.tcp_source = 10;
OurSYN.tcp_destination = 2049;

The above statement assigns a source port of10 (an arbitrary number) and a
destination port of2049 (the TCP NFS port) to the TCP packet header for example
purposes only. You can change the source port and the destination port numbers as you
wish.

Step Three: Specifying a Destination Host for the TCP
SYN Packet
Now, you add an IP header to the TCP SYN packet header. In the IP header, you
specify the destination host for the TCP SYN packet. You enter the following
statement to add an IP header to the TCP SYN packet header:

IP= copy TCPIP;
OurIP.ip_source = 127.0.0.1;
OurIP.ip_destination = 127.0.0.2;

The above statement defines the source host as127.0.0.1 and the destination host as
127.0.0.1. The source host and destination host IP addresses are provided for example
only. If you write the TCP Stealth Port Scan in CASL, make sure that you enter IP
addresses appropriate for desired source and destination hosts.

CASL Reference

2-6 Chapter 2

Step Four: Combining TCP SYN and IP Headers
Next, you combine the TCP SYN and IP headers. There are two ways to combine TCP
SYN and IP headers. You can combine them using either: 1) a list variable or; 2) list
operators.

You enter the following statement to combine TCP SYN and IP headers using a list
variable:

PacketList = [OurIP, OurSYN];

The above statement creates a list called PacketList, with one operator for each
component in the list. The opening bracket starts the list and the closing bracket ends
the list. Individual values in the list are separated by a comma.

You enter the following statement to combine TCP SYN and IP headers using list
operators:

PacketList = PacketList push OurSYN;
PacketList = PacketList push OurIP;

The above statement creates a list called PacketList, with a separate operator for each
component in the list. TCP and IP headers are added to the list separately. (The last
element added (or, pushed) onto the list is the first element written to the list.)

Step Five: Outputting the TCP SYN Packet
Next, you instruct the program to output the TCP SYN packet onto a network by
entering the following statement:

ip_output(PacketList);

Step Six: Defining Port Connections
Most standard network services listen to reserved ports. Therefore, you want to
instruct TCP Stealth Port Scan to get information for reserved port nos. 1 through
1023. You get information about reserved ports by looping through the ports. You
enter the following statement to loop through reserved ports:

for (i = 1; i < 1023; i = i + 1) {
//

}

The for statement above is defined using three parameters, withi as the counter:

• The first parameter,i=1, tells the interpreter where to start counting.

• The second parameter,i < 1023, tells the interpreter how long to count.

• The third parameter,i = i + 1, tells the interpreter how far to move forward for each
step.

CASL Programming Guide 2-7

CASL Reference

Step Seven: Sending Connection Requests to Ports
You enter the following statement to send connection requests to reserved ports.

For (i = 1; i < 1023; i = i + 1) {
OurSYN = copy SYN;
OurSYN.tcp_source = 10;
OurSYN.tcp_destination = i;
OurIP = copy TCPIP;
OurIP.tcp_source = 127.0.0.1;
OurIP.tcp_destination = 127.0.0.2;
OurPacket = [OurIP, OurSYN];
ip_output(OurPacket);

}

Step Eight: Reading TCP Responses
You useip_input() routines to determine if a port on a destination host answered the
program’s connection requests.ip_input() routines specify the time (in milliseconds)
for attempting a connection.ip_input() routines also specify the packets types to be
read using atcp_dump filter.

You enter the following statement to read a response to a packet:

OurFilter = ["src host ", 127.0.0.2, " and tcp src port ", i];
wherei is equal to 103

ReadPacket = ip_input(2000, OurFilter);

If ip_input() does not read a packet successfully, it returns a value of zero. Each time
ip_input() is used, you must check if it reads a packet successfully by comparing the
returned value to0. You enter the following statement to compare values:

if(!ReadPacket)
continue;

In the above statement,continue tells the interpreter to move forward in the loop.
When the program reads a packet, it returns a complete IP packet.

Step Nine: Determining TCP Response Types
Next, you need to determine if the complete IP packet is a TCP SYN+ACK or a TCP
RST packet. If the IP packet is a TCP SYN+ACK packet, a service was listening and
willing to accept a connection for the port. If the packet is a TCP RST packet, a service
is not offered for the port. You can determine if the IP packet is a TCP SYN+ACK or
a TCP RST packet by looking at its packet size and packet header, as described below.

CASL Reference

2-8 Chapter 2

First, you check the size of the IP packet. The IP packet must be large enough to
contain a TCP and IP header. You enter the following statement to check the IP packet
size:

if(size(ReadPacket) < size(IP) + size(TCP))
continue;

The above statement tells the interpreter to move forward in the loop if the IP packet
is smaller in size than the sum of the sizes of the TCP and IP headers. If the IP packet
is large enough, the packet header can be extracted from the IP packet. You enter the
following statement to extract the packet header:

ReadIP = extract ip from ReadPacket;
ReadTCP = extract tcp from ReadPacket;

Each header in the above statement is extracted using theextract operator. Once the
packet headers are extracted, you look at the individual fields of the TCP header to
verify that they are set properly. The SYN and ACK fields should be set; the RST field
should not be set. Note that if the aforementioned fields are not set properly, the
connections to the port will be opened.

Enter the following statement to view TCP header fields:

if(ReadTCP.tcp_ack != 1 || ReadTCP.tcp_syn != 1 || ReadTCP.tcp_rst == 1)
continue;

where|| is a logical or and!= is not equal. The statement reads: If the ACK flag is not
set, or the SYN flag is not set, or the RST flag is set restart the loop for the next port.
If the programs proceeds in the loop after this statement, the packet is a TCP SYN +
ACK packet. This packet type indicates that a service was listening and willing to
accept a connection for the port.

Step Ten: Verifying an Open Port Connection
Theprint function notifies you if there is a port open for connection. You enter the
following statement to see if a port is open for connection:

print("Port", i, "Alive");

If i is 1022, Port 1022 Alive is printed.

Step Eleven: Evaluating the Completed Program
The program for TCP Stealth Port Scan is now complete.

#include "tcpip.casl"
#include "packets.casl"
for(i = 1; i < 1023; i = i + 1) {

OurSYN = copy SYN;
OurSYN.tcp_source = 10;

CASL Programming Guide 2-9

CASL Reference

OurSYN.tcp_destination = i;
OurIP = copy TCPIP;
OurIP.ip_source = 127.0.0.1;
OurIP.ip_destination = 127.0.0.2;
OurPacket = [OurIP, OurSYN];
ip_output(OurPacket);
OurFilter = ["src host ", 127.0.0.2, " and tcp src port ", i];
ReadPacket = ip_input(2000, OurFilter);
if(!ReadPacket)

continue;
if(size(ReadPacket) < size(IP) + size(TCP))

continue;
ReadIP=extract ip from ReadPacket
ReadTCP=extract tcp from ReadPacket
if(ReadTCP.tcp_ack != 1

|| ReadTCP.tcp_syn != 1
|| ReadTCP.tcp_rst == 1)

continue;
print("Port", i, "Alive");

}

You can write the above program in a text editor making changes where appropriate
(for example changing IP addresses) and then execute the program.

NOTE: Before testing CASL programs on critical networks, we recommend that
you test them on non-critical networks. CASL programs are most often attacks,
which means they can disrupt and disable networks.

The next section, "CASL Reference," includes detailed descriptions of all the elements
you can use in CASL programs.

CASL Reference

2-10 Chapter 2

CASL Reference
This section includes a description of each element you can use in a CASL program,
or script. It is divided into four main sections:

• program structure

• lists

• packet headers

• subroutines

You can skip straight to the section that describes the element you are interested in.

CASL Programming Guide 2-11

CASL Reference

Program Structure
This section includes definitions of elements related to CASL program structure. This
section is divided into four main parts:

• statements

• variables

• syntax

• control statements

Statements
CASL programs consist of statements. Statements consist of control constructs and
expressions. Control constructs are statements which define the flow of a program, for
example loops (while andfor) and conditionals (if). Expressions are sentences which
evaluate to a value. You can execute statements in global scope, which eliminates the
need for creating a program with routines. You do not need to use an entry point
main() function in CASL.

Variables
Statements operate on variables. Variables are dynamically typed, therefore they do
not have a declared type and do not need to be declared prior to use. You can assign
variables (described below) to expressions. There are five variable types—character,
integer, string, buffer, and list.

Characters

Characters are ASCII characters. Characters are represented in single quotes (e.g.’c’).

Integers (Numbers)

Integers (i.e. numbers) are represented as either: 1) positive or negative intergers
without quotes; or 2) integers in hexidecimal format when0X precedes the integer.
Note that floating point and decimal point numbers are not allowed in CASL.

Strings

Strings are any number of characters enclosed in double quotes, for instance"hello
world!" CASL treats strings as built-in types, not as arrays. (Perl and C treat strings as
arrays.)

CASL Reference

2-12 Chapter 2

You can define string literals, which may include adjacent string literals.String
literals are constant strings in a CASL source file, for example"hello world!"
Adjacent string literals are concentrated into a single string. For example,"foo" "bar"
is equivalent to the string"foobar". String literals can contain escape codes
representing non-ASCII characters. Escape codes include"\n" (newline),"\r" (carriage
return),"\t" (tab), and"\xNN" (the character represented by the ASCII hex code NN).

Buffers

Buffers are complex types, which can contain many pieces of information. Buffers
express pieces of information as bytes. Buffers generally hold packet structures and
input packets.

Lists

Like buffers, lists are complex types which can contain many pieces of information.
Lists are discrete series of variables. Lists generally hold output packets.

Syntax
The subsequent sections describe the syntax used to express elements.

Statements

CASL code consists of statements. Statements are terminated with a semicolon. They
are case sensitive and whitespace insensitive. Thus, you can indent and space CASL
programs as you wish.

You can use single statements or a collection of statements in CASL programs. Single
statements stand on their own. A collection of statements can be grouped together.
(When enclosed in curly braces, a collection of statements is treated as a single
statement.)

Comments are remarks in CASL source code that are ignored by the interpreter. A
comment can be either a single line or multiple lines. A single line comment beings
with "//". A multiple line comment begins with"/*" and ends with"*/".

Variables

Variables are the basic elements of CASL programs. You can use characters, integers,
strings, buffers, and/or lists as variables. Variables are assigned names. When you
assign a name to a variable, the name must: 1) start with a letter; and 2) consist of zero
or more trailing letters, numbers, or the underscore"_" character. Examples of valid
variable names include the following:foo, bar_baz, i, andz1. Examples of invalid
variables include1a anda@b.

CASL Programming Guide 2-13

CASL Reference

Variable Assignments

Variable names are not valid until they are assigned to by an assignment operator,=.
An assignment takes the value of the expression to the right of the= and assigns it to
the variable on the left. The variable assigned to does not need to exist beforehand. For
instance,i = c assigns the value of the variablec to i. In this example,c must exist
beforehand;i does not need to exist beforehand.

Increment and Decrement Operators

Increment operators add a value of one to a variable. Decrement operators subtract a
value of one to a variable. Both increment and decrement operators can be used with
either preincrement or postincrement options.Preincrement adds the value one to a
variable and then returns it for further expression evaluation.Postincrementsubtracts
the value one to a variable, however, it returns the original variable for further
expression evaluation.

Expressions for increment operators with preincrement and postincrement options are
++x andx++, respectively. Expressions for decrement operators with the preincrement
and postincrement options are--x andx--, respectively.

Math

CASL supports both standard mathematical operations and binary operations.
Standard mathematical operationsinclude addition, subtraction, multiplication, and
division, which are represented by+, -,*, /, and% (modulo division), respectively. For
example, if you want to increment a variablei by one, you use the statementi = i + 1.
Binary operations allow integers to be masked against one another to extract bit
patterns. Supported binary operations include:AND (&), OR (|),XOR (^), NOT (~),
and left/right shifts (<< and>>).

Comparison Operators

Comparison operators test the value of an expression. Comparison operators include:

• x > y, which reads x is greater than y

• x < y, which reads x is less than y

• x >= y, which reads x is greater than or equal to y

• x <= y, which reads x is less than or equal to y

• x == y, which reads x is exactly equal to y

• x != y, which reads x is not equal to y

Expressions

Expressions enclosed in parenthesis() are treated and evaluated as single expressions.
You can use parenthesis to clarify complicated expressions, which may be confusing
to the CASL interpreter. You can also use parenthesis to compare the value of an
assignment, for example:

CASL Reference

2-14 Chapter 2

if((i = 1) == 1)
print(i);

You can invert expressions for comparison with the! operator. Expressions preceded
by a! evaluate false if the expression value is nonzero. For instance, ifi is NOT 1 you
enter the following:

if(! (i == 1))
print(i);

Negation with! is most useful when comparing something to zero.!z evaluates true if
z is zero. You can combine these rules to see if a packet is read fromip_input() by
writing:

if(!(packet = ip_input(2000, filter))
print("didn't get a packet");

You do not need to compare an expression's value to> 0 to see if the expression is
nonzero, for exampleif(i > 0). If the expression evaluates nonzero, it evaluates true. If
the expressions is zero, it evaluates false. Consider the following statement:

if(i)
print(i);

else
print("i is zero");

The above statement prints the value ofi if i is not zero.

Control Statements
Control statements affect the flow of a program. Control statements are:

• loops, which cause a piece of code to be executed zero or more times, or

• conditionals, which cause a piece of code to be executed only if the condition is
satisfied

Control statements operate on other statements and are terminated with a semicolon.

Loops

There are two loops types in CASL–while andfor. while andfor are described in the
subsequent sections.

While

while statements represent loops that are not implicitly terminated.while loops
execute their bodies until their conditional arguments are satisfied.while loops are
written as follows:

while (conditional) statements

CASL Programming Guide 2-15

CASL Reference

In the above statement,conditional is an expression andstatements is either a
statement or a group of statements enclosed in curly braces. The following is an
example statement for awhile loop:

while(i > 0)
i = i - 1;

For

for statements represent loops that generally have implicit termination.for statements
consist of three parts: an initializer, a conditional, and an iterator.

• The initializer is intended to set up a counter or some other place holder variable
for the loop.

• Theconditional works the same way awhile conditional works; it is intended to
terminate the loop when the condition evaluates false.

• The iterator is intended to move the loop forward, typically advancing or
decrementing a counter.

The following is an example statement for afor loop:

for(i = 0; i < 10; i = i + 1)
print(i);

The above statement executesprint(i) ten times, starting withi equal to zero
(outputting0) and executing the last statement withi equal to9. The statement
terminates wheni evaluates to10. for(;;) is a legal statement representing an infinite
loop. Note that each part of afor statement is separated by a semicolon.

Loop Control

Control can be affected by either the loop terminator or the loop continue statements
in the body of a loop. Loops can be immediately terminated by executing thebreak
statement. Loops can be continued to the next iteration with thecontinue statement as
follows:

for(i = 0; 1; i = i + 1) {
if(i != 4)

continue;
if(i == 4)

break;
}

The above statement sets up an infinite loop. When the counter is a value besides4,
the loop moves forward. However if the counter reaches a value4, the loop terminates.
(Notecontinue in the above statement is redundant: It is meant for illustration
purposes only.)

CASL Reference

2-16 Chapter 2

Loop control statements are only valid within loops. If you are not in a loop, you
cannot execute abreak or continue. if conditionals are not loops and remember the
control statement affects the closest loop.

Consider the following statement:

for(;;)
while(1)

if(c == 1)
break;

In the above statement,continue affectswhile, not for. continue is valid in this
statement because it is executed while at least one loop is in effect.

Now, consider the statement:

if(1)
break;

The above statement is not valid because a loop is not present.

Conditionals

In CASL, conditional statements areif. When the conditional argument evaluates true,
if executes its body of statements. Consider the following statement:

if(i == 1) {
print(i);
print("done");

}

Wheni is equal to 1, the above statement executes code in the body of the conditional.

Code can also be executed when a loop evaluates false using anelse extension. The
body ofelse is executed whenif is false. For instance:

if(0)
print("foo");

else
print("bar");

The above statement prints the string"bar". (The0 conditional always evaluates false.)

if/else statements can be chained indefinitely usingelse if. For instance:

if(i == 1)
print("foo");

else if(i == 2)
print("bar");

else if(i < 4)

CASL Programming Guide 2-17

CASL Reference

print("baz");
else

print("quux");

The above statement prints"foo" if i is 1, "bar" if i is 2, "baz" if i is 3, and"quux" if i
is any other value.

Subroutine Calls

Subroutine calls divert control to code in the named subroutine. Subroutine calls pass
arguments to subroutines, affecting execution of subroutines. Subroutines return
values, which you can obtain by assigning subroutine call expressions to variables.

The syntax for a subroutine call is function(argument0, argument1, argumentN),
where function is the name of the function (e.g.,ip_input) and argumentX is the
argument at position X. For example iffoo is a function that takes as an argument a
value and has as a return value of the value plus one, the following statement prints a
value of two:

{
i = 1;
i = foo(i);
print(i);

}

CASL Reference

2-18 Chapter 2

Lists
This section describes elements relating to lists. Lists represent collections of data,
composed of individual variables. Lists can grow or shrink dynamically. You can use
lists to represent complicated strings and packets. You can also use lists as data
structures for CASL programs.

List Creation
There are two ways to create a list. You can create a list using a list comparison
operator. Or, you can create a list by creating a new list and then using a list operator
to assign an element to the list.

As mentioned above, you can create a list using the list composition operators [and].
The square brackets enclose a comma separated list of element. The following
statement creates a new list:

[foo, bar, baz, 1]

The above statement creates a list containing the variablesfoo, bar, baz, and1.

You can also create a new list using a list operator to assign an element to the list. More
specifically, you assign the name of the list to an expression with a list operator
operating on the name and then insert a new element. Consider the following
statement:

list = list push foo;

The above statement creates a new list calledlist which contains only the elementfoo.

Recursion
Lists can contain any variable, including other lists. Lists can nest indefinitely.
Routines that act on lists expand elements from lists in the order it encounters them.
For example:

["foo ", "bar ", ["baz ", "quux "], "zarkle"];

The above statement defines a string list that evaluates to the following:

"foo bar baz quux zarkle"

When stepping through a list with list operators, an element of a list that is itself a list
is returned as the entire list. It will not be returned as the first element of the list. The
same string list above is processed with the following statement:

{
list = ["foo ", "bar ", ["baz ", "quux "], "zarkle"];
x = pop list;
y = pop list;
z = pop list;

CASL Programming Guide 2-19

CASL Reference

print(z);
}

The above statement prints the string"baz quux" because the value ofz is equal to the
third element of the listlist.

List Operators
There are four list operators. They are as follows:

• head, which takes an element from the head of the list

• tail, which takes an element from the tail of the list

• prepend, which adds an element to the head of the list

• append, which adds an element to the tail of the list

Head andtail operate on a list, evaluating to the element removed from the list. The
following is an examplehead statement:

{
list = [foo, bar, baz];
x = head list;
print(x);

}

The above statement prints the value offoo, the first item (thehead) of the list.

NOTE: You can use thehead statement format to create atail statement. To
create atail statement, you simply replacehead with tail in thehead statement
format.

prepend andappend operate on a list and an element to add to that list. If the list
referred to doesn't already exist, it is created. An example of aprepend statement is:

{
list = [foo, bar];
list = list prepend baz;
print(list); // list is now [foo, bar, baz]

}

The above statement prints the values offoo, bar, andbaz.

NOTE: You can use the format of theprepend statement to create anappend
statement. To create anappend statement, you simply replaceprepend with
append in theprepend statement format.

CASL Reference

2-20 Chapter 2

The commonly used computer stack terms,push andpop, are aliases forprepend and
head, respectively.

List Control
You can use theforeach statement to step through each element in a list. Aforeach
statement has two parts:1) a binding name; and 2) a list to operate on. The binding
name is set to refer to each element in the list. The following is an example of a
foreach statement:

{
list = [foo, bar, baz];
foreach element [list] {

print(element);
}

}

The above statement prints the values offoo, bar, andbaz, in order. The looping
control statementscontinue andbreak function as they normally do.

NOTE: List expansion withinforeach is recursive. A list containing other lists
is expanded to all enlisted data elements.

CASL Programming Guide 2-21

CASL Reference

Packet Headers
This section describes elements related to packet headers. You can create a packet that
consists of a series of protocol headers, each with a fixed format. You can define fixed
format protocol headers with the protocol structure construct. The format lays out
bit-by-bit the order and the contents of a protocol structure.

Definition
Protocol structures are defined bydefine statements. Adefine statement creates a new
structure with a specified name. Thedefine statement consists of a curly-brace
enclosed definition. The definition is composed of field specifiers which dictate the
name, length, and order of the protocol fields. A basic protocol structure definition is
as follows:

define foo {
// contents here

}

The above statement creates a new structure namedfoo. However,foo is meaningless
since it does not define fields. Consider the statement below, whereip defines fields:

define ip {
ip_version: 4 bits;
ip_headerlen: 4 bits;
ip_tos: 8 bits;
ip_length: 16 bits;
ip_id: 16 bits;
ip_df: 1 bit;
ip_mf: 1 bit;
ip_offset: 14 bits;
ip_ttl: 8 bits;
ip_protocol: 8 bits;
ip_cksum: 16 bits;
ip_source: 32 bits;
ip_destination: 32 bits;

}

The above statement defines an IPv4 header. Each specifier enclosed in the curly
braces denotes a field of the structure. Each field consists of a name, a colon, and a
size. The name in a field can be any valid variable name. The size in a field can be
specified in terms of any number of bits, bytes, words, and dwords. Words are16 bit
quantities; dwords are 32 bit quantities. Protocol structure definitions can mix any
combination of sizes specified in bytes, bits, word, or dwords.

CASL Reference

2-22 Chapter 2

Instantiation
A new instance of a protocol structure is created by assigning its name to a variable
with the new operator. This creates a buffer large enough to hold the structure, with
all fields in the structure set to0. When you assign a buffer to another variable, the
buffer is copied. For example, consider the following statement:

{
x = new ip;
y = x;
z = y;

}

In the above statement,x, y, andz are all independent copies ofip structures.

Field Reference
Individual fields of a structure are referenced with the field reference operator. For
instance, ifx is anip structurex.ip_ttl refers to theip_ttl field of x.

Any number can be assigned to a protocol structure field. Numbers are packed in
Internet byte order into the field. Numbers will use as many bits as the field is large. It
is an unchecked error to try to fit a value in a field that is too large for the value. For
instance iffoo is a field that is 1 bit wide,x.foo = 4 results in undefined behavior.

Special Fields
Every buffer variable has four special fields which reference arbitrary locations within
the buffer. The fields are bits, bytes, words, and dwords. The fields are specified with
ranges corresponding to how many of units are referenced.

The syntax of a direct memory reference to a structure follows these examples:

• z.bits[x .. y], which reads bits x through y of the buffer z

• z.bytes[x ..], which reads bytes x through the end of buffer z

• z.word[x], which reads word x of buffer z

The above-listed statements evaluate to integer numbers. The statements can be
assigned to, for example:

z.bit[10] = 1;

The above statement sets the eleventh bit (counting from0) of the bufferz to 1.

Buffer Size
Buffers represent an arbitrary amount of data. You obtain buffer size using thesize
function.size evaluates to the size, in bytes, of its argument. Consider the following
statement:

CASL Programming Guide 2-23

CASL Reference

{
x = new ip;
print(size(x));

}

The above statement prints 20, which is the size (in bytes) of an IP header.

Variable Size Buffer

A variable size buffer is a structure that is defined without any fields. A variable size
buffer can only be accessed using special fields. A variable size buffer automatically
expands to fit new data.

Buffer Scale
You can define a default scale in a variable size buffer. A default scale is defined in
the definition usingscale. scale can be represented in bits, bytes, words, or dwords.
Whenscale is defined, you can access the associated special field in the buffer by
specifying the range. You do not need to include the field reference.

Structure Extraction
A buffer can contain several structures. You can obtain a structure from the buffer by
extracting data with theextract operator.Extract is specified as follows:

foo = extract bar from baz;

The above statement extracts abar structure from the bufferbaz, leaving the
remainingbytes in baz. To leave remainingbytes, write the following:

foo = extract z bytes from baz;

The above statement extractsz bytes from baz, leaving the remainingbytes.

CASL Reference

2-24 Chapter 2

Subroutines
This section describes elements related to subroutines.

Declaration
Subroutines are defined with theproc keyword. A subroutine takes a fixed number of
arguments and returns a value. Subroutines can be defined anywhere. They do not
require prototypes. To declare a new structure, you use theproc keyword as follows:

proc foo(arg1, arg2, argN) {
// statements

}

In the above statement,foo names the new function,argX specifies the name of the
argument at placeX, and the body of the function appears in curly braces. Within the
body of the function, the variables namedargX are replaced by the value of the
arguments passed at placeX. For instance, to declare a function calledfoo that takes
an argument namedx and adds1 to it you write the following:

proc foo(x) {
x = x + 1;
print(x);

}

Argument Passing
An argument specified in a function's declaration is called a formal argument. The
name of the argument is available to all the statements executed in the body of this
function. An argument passed to a function in a subroutine call is called a calling
argument. Its value is made available through the name of the corresponding formal
argument.

Argument passing in CASL is by value. (There is one exception, which is described
below.) Thus, the formal argument is bound to the VALUE of the calling argument not
the actual calling argument. Consider the following statement:

proc foo(x) {
x = x + 1;
print(x);

}

In the abovestatement foo, the addition of1 to the argumentx is never seen by the
caller of foo—it affects only the variablex within the functionfoo.

CASL Programming Guide 2-25

CASL Reference

The only exception to this argument is structure and list passing. References to lists
and structures are passed. Changes to lists and structures affect variables on the caller
side and variables in the body of the subroutine. Thus, it is easy to write routines that
set fields within structure headers or to change the order of packet lists.

Variable Argument Lists
CASL supports creating procedures that take a variable number of argument using the
list type. A variable argument function is defined as an argument that takes more
calling arguments than formal arguments. The final formal argument becomes a list of
all the extra calling arguments. Consider the following statement:

proc foo(x) {
...

}
foo(i, j, k);

The above statement defines a function calledfoo. foo can take a variable number of
arguments. The function call tofoo() specifies three arguments; the definition
specifies one argument. Therefore,x becomes a list containingi, j, andk.

Return Values
Subroutines end when either: 1) a curly brace is reached; or 2) a control reaches a
return statement. A return statement ends the execution of a subroutine and causes the
subroutine call to evaluate to the value specified as return argument. For instance, to
makefoo return the value it calculated change use the following statement:

proc foo(x) {
x = x + 1;
return(x);

}

In the above statement, a call tofoo will evaluate to the argument passed tofoo, plus1.

Any variable can be returned through the return statement. Multiple values are
returned from a function using list variable returns.

Scope
Scope is the space within which a variable is valid. When a program is executes within
a subroutine, any variable it defines is accessible only within execution of the
subroutine. The caller of the subroutine cannot access variables defined in the
subroutine.

Code that is not executing within a subroutine is in global scope. Variables defined in
global scope are accessible anywhere—even within subroutines. The following
statement illustrates this concept:

CASL Reference

2-26 Chapter 2

i = 1; // global
foo(i);

proc foo(x) {
x = x + 1; // local, "x" can only be accessed within "foo"
y = i; // "y" is local and can only be accessed within

// "foo," but "i" is global and can be accessed
// anywhere.

return(x);
}

CASL Programming Guide 2-27

CASL Reference

CASL Built-in Functions
The CASL interpreter includes built-in functions. Built-in functions are subroutines
that cannot be easily programmed in CASL. Therefore, the CASL interpreter includes
them as built-in functions. Built-in functions are divided into three categories: network
I/O, file I/O, and misc (miscellaneous).

Network I/O Built-in Functions
Network I/O functions include subroutines that can be used to read packets from the
network or to write packets to the network. Network I/O functions are described in
subsequent sections.

The IP Output Function
IP output writes a complete IP packet (including the IP header) to the network. IP
output in CASL is accomplished via theip_output() routine.ip_output() takes as an
argument a list of data elements that are expected to comprise an IP packet. A single
buffer variable can also be passed toip_output() for writing.

Sending a well formed IP packet involves some tricky issues, for instance checksum
and length calculation. The IP and transport headers require knowledge of the length
of the entire packet, the lengths of the individual headers, and the calculation of a
checksum over some of the headers and the data.

You can write CASL code to compute checksums and lengths. However, this code can
potentially be cumbersome and error-prone. Rather than requiring the implementation
of CASL-scripted checksum and length calculation, the CASL interpreter provides a
few shortcuts to solve these issues transparently. For the basic IP protocols (e.g. IP,
TCP, UDP, and ICMP), the CASL interpreter automatically calculates checksum
fields, packet lengths, and header lengths. The appropriate values are filled in before
the packet is written to the wire. The computed values do not affect the passed in data;
computed values only affect the packet written to the wire. In order to allow for
arbitrary packets (possibly with intentionally bad header values) to be sent, CASL does
not touch header fields it thinks have explicitly been filled in. For the basic IP
protocols, this means that CASL does not fill in values for fields that already have
nonzero values.

The IP Fixup Function
It is sometimes important to fill in the variable header fields of an IP datagram without
outputting it to the network. This is a common requirement of IP fragmentation code.
CASL supports this with theip_fixup() procedure.Ip_fixup() takes the same
arguments asip_output(). However, instead of outputting the packet to the network,
it returns a new packet. The new packet is a copy of the input with the appropriate
header fields filled in.

CASL Reference

2-28 Chapter 2

The IP Input Function
IP input reads a complete packet (starting with the IP header) from the wire. Packet
input in CASL is done using theip_input() routine.Ip_input takes as arguments a
timeout value, specified in milliseconds, and atcpdump filter. The timeout specifies
how long to wait for a packet before giving up and the filter defines which packets to
read. If the millisecond timer runs out before a packet is read,ip_input returns the
integer value0.

If a packet is read successfully within the allotted time, it is returned minus the
link-layer (Ethernet) header as a buffer. The size of the buffer can be queried with
size() to determine the length of the inputted packet.

The IP Filters Function
CASL allows the explicit setting of global filters that affect all reads by using the
ip_filter() routine.ip_filter takes as an argument atcpdump filter, through which all
packets read by CASL must successfully pass before being returned viaip_input.

On some computer architectures (notably 4.4BSD)ip_filter() also sets kernel packet
filters. Enabling a kernel packet filter prevents the CASL interpreter from reading
packets you specified not be read. This can be a major performance benefit, as it
prevents the CASL interpreter from needing to explicitly filter out spurious packets.

The IP Range Function
Ranges of IP addresses can be quickly parsed into a list of IP address using the
ip_range routing. The argument is a string describing a range of address and the return
value is a list of integers.

CASL Programming Guide 2-29

CASL Reference

File I/O Built-in Functions
The file I/O functions are subroutines which can be used to read and write to files. The
file I/O functions are described in the table below.

Table 2-1. File I/O built-in functions.

Function Description

open() Takes a filename as an argument, and returns a descriptor
number that can be used to manipulate that file. If the file
does not exist, it will be created; if it does, it will be
appended to. If the file cannot be opened, "0" is returned.

close() Takes a descriptor number as an argument, and closes the
associated file, flushing any pending output and preventing
further manipulation of the file.

read() Takes as arguments a descriptor number and a count of
bytes to read. It reads at most the specified number of bytes
from the file, and returns a buffer containing those bytes.
The number of bytes actually read by the file can be queried
with the "size()"command; if no data was read, "0" will be
returned.

write() Takes as arguments a descriptor and a data element (which
can be a list or a buffer, or any of the basic types) to write to
the file matching that descriptor. The number of bytes
written to the file is returned.

fgets() Takes as arguments a descriptor and a number representing
the maximum number of characters to read from a file. It
then reads at most that many characters, stopping when a
line terminator (the new line character) is found. It returns
the data read, or "0" if nothing was read.

rewind() Repositions the offset into the descriptor given as an
argument, so that it points to the beginning of the file. This
allows the same data to be read from the same file
descriptor twice.

fastforward() Repositions the offset into the descriptor given as an
argument, so that it points to the end of the file. This allows
recovery from rewind(), for further writing.

remove() Deletes the specified file from the system, returning "1" if
successful.

CASL Reference

2-30 Chapter 2

MISC (Miscellaneous) Built-in Functions
The misc (miscellaneous) built-in functions are described in the table below.

Table 2-2. Misc built-in functions.

seek() Repositions the offset into the descriptor give as an
argument, so that it points the offset referenced by the
second argument. A third argument can be given to specify
what the new offset is relative to. The possible values are as
follows. SEEK_SET to set the offset from the beginning of
the file.SEEK_CUR to set the offset relative to the current
offset.SEEK_END to set the offset value relative to the
end of the file. Note if the third argument is not given, the
default isSEEK_SET.

Function Description

print() Takes a list of data elements to write to standard output.
It writes each of these elements, separated by a space, to
standard output followed by a new line.

checksum() Takes a list of data elements to perform an Internet
checksum on. It returns an integer representing the
checksum of these elements.

timer_start() Starts a stopwatch timer in the CASL interpreter. It
returns a descriptor number, which can be used to
retrieve the amount of time that has elapsed since the
timer started.

timer_stop() Takes a descriptor number as an argument, stops the
stopwatch timer associated with the descriptor, and
returns the number of milliseconds that have elapsed
since the timer was started.

tobuf() Takes a list as an argument and returns a buffer
containing the ordered contents of that list.

atoi() Takes a string as an argument and returns the integer
represented by that string.

wait() Takes an integer as an argument, representing the
number of seconds for the interpreter to wait before
continuing.

CASL Programming Guide 2-31

CASL Reference

getip() Takes a string as an argument and returns a number
representing the IP address contained in that string.

putip() Takes a binary IP address as an argument and returns a
string representing that IP address.

getenv() Retrieves the specified environment variable
(represented as a string), returning it's value as a string
(or null if the variable is not set).

setenv() Changes the value of the environment variable specified
as it's first argument (a string) to the value represented
by it's second argument.

strep() Returns an ASCII string representation of an arbitrary
variable, useful for obtaining strings representing
integers.

exit() Exits the CASL interpreter, taking an optimal argument
of the exit code.

size() Returns the size in bytes of a buffer argument, or the
number of entries in a list argument.

rand() Returns a pseudo random number. If an optional
argument is given, the random number generated is
seeded with that number.

gettimeofday() Returns the time in milliseconds since midnight.

CASL Reference

2-32 Chapter 2

Summary
This chapter covered CASL. Specifically, this chapter:

• explained the benefits of writing programs in CASL

• introduced the main elements of a CASL program

• provided a reference section, which contains detailed descriptions of elements that
can be used in CASL programs

• included a summary of CASL built-in functions that can be used in CASL
programs

You can use the information provided in this chapter as reference material when
writing your own CASL programs.

	CASL (Custom Audit Scripting Language) Programming Guide
	Table of Contents
	Preface
	CASL Overview
	System Requirements
	How to Use this Programming Guide

	Chapter 1. Installing CASL
	Introduction
	Installing the CASL Interpreter
	Summary

	Chapter 2. CASL Reference
	Introduction
	About CASL
	Programming With CASL
	Structuring CASL Programs
	Understanding an Example CASL Program
	Step One: Defining TCP/IP Packets
	Step Two: Creating a TCP SYN Packet
	Step Three: Specifying a Destination Host for the TCP SYN Packet
	Step Four: Combining TCP SYN and IP Headers
	Step Five: Outputting the TCP SYN Packet
	Step Six: Defining Port Connections
	Step Seven: Sending Connection Requests to Ports
	Step Eight: Reading TCP Responses
	Step Nine: Determining TCP Response Types
	Step Ten: Verifying an Open Port Connection
	Step Eleven: Evaluating the Completed Program

	CASL Reference
	Program Structure
	Statements
	Variables
	Characters
	Integers (Numbers)
	Strings
	Buffers
	Lists

	Syntax
	Statements
	Variables
	Variable Assignments
	Increment and Decrement Operators
	Math
	Comparison Operators
	Expressions

	Control Statements
	Loops
	While
	For

	Loop Control
	Conditionals
	Subroutine Calls

	Lists
	List Creation
	Recursion
	List Operators
	List Control

	Packet Headers
	Definition
	Instantiation
	Field Reference
	Special Fields
	Buffer Size
	Buffer Scale
	Structure Extraction

	Subroutines
	Declaration
	Argument Passing
	Variable Argument Lists
	Return Values
	Scope

	CASL Built-in Functions
	Network I/O Built�in Functions
	The IP Output Function
	The IP Fixup Function
	The IP Input Function
	The IP Filters Function
	The IP Range Function

	File I/O Built�in Functions
	Table 2 -1. File I/O built�in functions.

	MISC (Miscellaneous) Built-in Functions
	Table 2 -2. Misc built�in functions.

	Summary

