
Protocol T50

“Five months later... So what?”

• 0000 – Once upon a time…

• 0001 – Introduction

• 0010 – Improvements

• 0011 – Protocols

• 0100 – Comparison

• 0101 – Demonstration

• 0110 – Conclusions

• 0111 – Questions and Answers

Agenda

0000 – Once upon a time…

Denial-of-Service

0001 – Introduction

Why Denial-of-Service?

• Is there anything more offensive than a
DoS, anyways?

– Bear in mind: DoS means “Stress
Testing” for this presentation.

• DoS tools are necessary weapons in a
cyber warfare…

• Attacks against the infrastructure are
more common than many people might
think, and, when they happen, people
will certainly be aware of.

• But, what are the real damages? What
are the real motivations? Image?
Revenge? Financial? Political?
Hacktivism?

• DoS attacks are significantly harmful,
because they violate one of the three key
concepts of security that are common to
risk management… Which one?

– Confidentiality

– Integrity

– Availability

T50 shows that some sort of performance enhancements, using an
ordinary Linux box and programming in user space, can be done.

T50 – The chaos maker

• Primarily, the tool was developed to
address my day-by-day needs, and I am
sharing with the community, because I
always need a tool to perform some “Stress
Testing” and that could be launched from
my notebook:

– I do not want to carry/rent/buy a Smartbits,
Avalanche, etc.

• The tool was designed to perform “Stress
Testing” on a variety of infrastructure
network devices (Version 2.45).

• The tool was re-designed to extend the
“Stress Testing” (Version 5.3), covering
some regular protocols (ICMP, IGMP, TCP
and UDP), some infrastructure specific
protocols (GRE, IPSec and RSVP) and
some routing protocols (RIP, EIGRP and
OSPF).

• This new version is focused on internal
infrastructure, allowing people to test the
availability of its resources.

• Interior Gateway Protocols (Distance Vector
Algorithm):

– Routing Information Protocol (RIP).
– Enhanced Interior Gateway Routing Protocol

(EIGRP).

• Interior Gateway Protocols (Link State
Algorithm):

– Open Shortest Path First (OSPF).

• Quality-of-Service Protocols:
– Resource ReSerVation Protocol (RSVP).

• Tunneling/Encapsulation Protocols:
– Generic Routing Encapsulation (GRE).

T50 – The chaos maker

#define EIGRP_DADDR_BUILD(foo, bar)\

(foo &= htonl(~(0xffffffff >> ((bar >> 3) * 8))))

#define EIGRP_DADDR_LENGTH(foo) \

(((foo >> 3) & 3) + (foo % 8 ? 1 : 0))

if(o.eigrp.type == EIGRP_TYPE_SOFTWARE ||

o.eigrp.type == EIGRP_TYPE_MULTICAST) goto eigrp_software;

#define TCPOLEN_PADDING(foo) \

((foo & 3) ? 4 - (foo & 3) : 0)

I did not review any third-party codes…
I found my own way to address some challenges!!!

0010 – Improvements

Also known as “New Features”

License

• Licensed under GNU General Public License version 2:

– Any piece of code cannot be integrated into proprietary
applications and appliances.

– There is an alternative license to do so.

• Free software and 100% Open Source:

– You may redistribute and/or modify it under the terms of GPL
version 2.

– Will always be available as an Open Source project to the
community.

• Recruiting new coders, hackers and developers to keep the
project and add new substantial improvements.

Classless Inter-Domain Routing (CIDR)

•CIDR specifies an IP address range using a combination of
an IP address and its associated network mask:

– 192.168.1.13/24 – 192.168.1.13/255.255.255.0

– 172.16.0.128/15 – 172.16.0.128/255.254.0.0

– 10.200.200.1/10 – 10.200.200.1/255.192.0.0

•CIDR for destination address is supported:

– Allows to simulate both Distributed Denial-of-Service and
Distributed Reflection Denial-of-Service in a controlled
environment.

– CIDR network mask supported:

• Minimum is “/8” (255.0.0.0).

• Maximum is“/30” (255.255.255.252).

Classless Inter-Domain Routing (CIDR)

unsigned int hostid = 0, counter = 0, rand_addr = 0;

in_addr_t netmask = INADDR_ANY, all_bits_on = 0xffffffff,

__1st_addr = INADDR_ANY, addresses[16777214] = INADDR_ANY;

struct iphdr *ip;

netmask = ~(all_bits_on >> bits);

hostid = (unsigned int) (pow(2, (32 - bits)) - 2);

__1st_addr = (ntohl(address) & netmask) + 1;

[...]

for(counter = 0 ; counter < hostid ; counter++)

addresses[counter] = htonl(__1st_addr++);

[...]

rand_daddr = (unsigned int) ((float)(hostid) * rand() / (RAND_MAX + 1.0));

ip->daddr = addresses[rand_daddr];

[...]

Classless Inter-Domain Routing (CIDR)

/255.255.255.0192.168.1.13192.168.1.13 /24

0xffffffff 11111111.11111111.11111111.11111111

0x000000ff

0xffffff00

00000000.00000000.00000000.11111111

11111111.11111111.11111111.00000000

0xc0a8010d 11000000.10101000.00000001.00001101

0xffffff00 11111111.11111111.11111111.00000000

&

0xc0a80100 11000000.10101000.00000001.00000000

NETWORK HOST

(2(32-24))-2 = (28)-2 = 256-2 = 254

• Version 2.45 (as of November 2010):

– Support for four protocols: ICMP, IGMPv1, TCP and UDP.

– Sends all of them sequentially, i.e., almost on the same time.

• Version 5.3 (as of today):

– Support for the previous four protocols: ICMP, IGMPv11, TCP1 and
UDP.

– Eleven (11) new protocols: IGMPv31, EGP2, RIPv1, RIPv2, DCCP1,
RSVP1, GRE3, IPSec (AH/ESP), EIGRP1 and OSPF1.

– Sends all of them sequentially, i.e., almost on the same time.

1 This protocol can be improved to cover additional advanced options.

2 This protocol demands more development efforts to cover advanced options.

3 Very first tool able to encapsulate the protocols within GRE packets.

Multi-protocol sequential injection

• Version 2.45 (as of November 2010):

– Support for four protocols: ICMP, IGMPv1, TCP and UDP.

– Sends all of them sequentially, i.e., almost on the same time.

• Version 5.3 (as of today):

– Support for the previous four protocols: ICMP, IGMPv11, TCP1 and
UDP.

– Eleven (11) new protocols: IGMPv31, EGP2, RIPv1, RIPv2, DCCP1,
RSVP1, GRE3, IPSec (AH/ESP), EIGRP1 and OSPF1.

– Sends all of them sequentially, i.e., almost on the same time.

1 This protocol can be improved to cover additional advanced options.

2 This protocol demands more development efforts to cover advanced options.

3 Very first tool able to encapsulate the protocols within GRE packets.

Multi-protocol sequential injection

socket_t fd; int flags, n = 1, len, * nptr = &n; fd_set wfds;

[...]

if((fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) == -1)

exit(EXIT_FAILURE);

if(setsockopt(fd, IPPROTO_IP, IP_HDRINCL, nptr, sizeof(n)) < 0)

exit(EXIT_FAILURE);

[...]

Multi-protocol sequential injection

struct t50{ int proto; void(*raw)(int, struct options); };

[...]

while(flood || threshold--){

[...]

if(protocol != IPPROTO_T50){

[...]

}else{

for(module = 0 ; module < modules ; module++){

protocol = t50[module].proto;

t50[module].raw(fd, options);

}

threshold -= (modules-1);

protocol = IPPROTO_T50;

}

[...]

Multi-protocol sequential injection

Checksum optimization

• The version 5.3 introduced a new technique to calculate the
checksum, consequentially, a new technique to build the
packet.

• This technique is MEMCPY(3)-free, and allows to build the
packet byte-by-byte – sometimes bit-by-bit.

• This technique is more flexible, specially when playing with
exotic protocol options – sometimes uses GOTO. For example:

– EIGRP IP Internal Routes TLV destination address.
– EIGRP IP External Routes TLV destination address.
– OSPF HELLO Message with multiple NEIGHBOR addresses.
– RSVP Object SCOPE Class with multiple SCOPE addresses.
– Etc…

Checksum optimization

unsigned int offset = 0;

unsigned char packet[packet_size], * checksum = NULL;

struct eigrp_hdr * eigrp;

[...]

offset = sizeof(struct eigrp_hdr);

checksum = (unsigned char *)eigrp + offset;

*((unsigned short *)checksum) = htons(length);

checksum += sizeof(unsigned short);

offset += sizeof(usigned short);

*((usigned int *)checksum) = htonl(auth_key_id));

checksum += sizeof(unsigned int);

offset += sizeof(usigned int);

[...]

eigrp->check = cksum((u_int16_t *)eigrp, offset);

[...]

Checksum optimization

packet_size = sizeof(ip) + sizeof(eigrp) + eigrp_hdr_len();

Checksum optimization

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓
Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓
Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

eigrp_hdr_len()

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

offset

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

p
a
c
k
e
t

1
s
t
s
t
e
p

↓

p
a
c
k
e
t

2
n
d
s
t
e
p

↓

Checksum optimization

Checksum optimization

RFC 1700, 1918 and 3330 improvements

[...]

switch(ntohl(daddr) & 0xff000000){

case 0x0a000000: /* Allowing 10/8 (RFC 1918). */

break;

case 0x7f000000: /* Allowing 127/8 (RFC 1700). */

break;

case 0xa9000000: /* Allowing 169.254/16 (RFC 3330). */

if(((ntohl(daddr) & 0xffff0000) != 0xa9fe00000))

return(FALSE);

break;

case 0xac000000: /* Allowing 172.16/12 (RFC 1918). */

if(((ntohl(daddr) & 0xffff0000) < 0xac100000) || \

((ntohl(daddr) & 0xffff0000) > 0xac1f0000))

return(FALSE);

break;

case 0xc0000000: /* Allowing 192.168/16 (RFC 1918). */

if((ntohl(daddr) & 0xffff0000) != 0xc0a80000)

return(FALSE);

break;

[...]

0011 – Protocols

IGMPv3
• Specific headers for specific types:

– Membership Query.

– Membership Report.

• Membership Query options:
– Max Resp code.

– Group Address.

– Suppress Router-processing Flag.

– Querier’s Robustness Variable (QRV).

– Querier’s Query Interval Code (QQIC).

– Number of Sources.

– Source Address(es).

• Membership Report options:
– Group Record Type.

– Group Record Multicast Address.

– Number of Sources.

– Source Address(es).

TCP
• Regular TCP options:

– Source Port and Destination Port, Sequence
Number (also known as ISN), Acknowledgment
Number, Data Offset, Window, Urgent Pointer
and TCP Flags (FIN, SYN, RST, PSH, ACK, URG,
ECE and CWR).

• Supported TCP Options:
– End of List (EOL), No Operation (NOP),

Maximum Segment Size (MSS), Windows Scale
(WSopt), Timestamp (TSopt), T/TCP Connection
Count (CC, CC.NEW and CC.ECHO), Selective
Acknowledgement (SACK), MD5 Signature
Option and the brand new TCP-AO
(Authentication Option – RFC 5925).

• TCP Authentication Option (as of June 2010):
– Type (HMAC-MD5).
– Key ID.
– Next Key ID.
– Authentication Data (RANDOM).

Protocols

RIP
• Regular RIPv1 and RIPv2 options:

– Command.

– Address Family Identifier.

– Router IP Address.

– Router Metric.

• Enhanced RIPv2 options:
– Routing Domain.

– Route Tag.

– Router Network Mask.

– Router Next Hop.

• RIPv2 Cryptographic Authentication:
– Type (HMAC-MD5).

– Key ID.

– Cryptographic Sequence Number.

– Authentication Data (RANDOM).

DCCP
• Specific headers for specific types:

– Request Packets

– Response Packet.

– Data Packets

– Acknowledgment Packet, Data-Ack Packet,
Synchronize Packet, Sync-Ack Packet, Close
Packet and Close Request Packet.

– Reset Packet.

• Regular DCCP options:
– Source Port and Destination Port.

– Data Offset.

– HC-Sender CCID (CCVal).

– Checksum Coverage (CsCov).

– Extended Sequence Numbers (x).

– Sequence Numbers (HIGH and LOW).

– Acknowledgment Numbers (HIGH and LOW).

– Service Code.

– Reset Code.

Protocols

RSVP
• Supported RSVP types:

– Path Message.
– Resv Message.
– Path Teardown Message.
– Resv Teardown Message.
– Path Error Message.
– Resv Error Messages
– Confirmation Message.

• Specific RSVP Objects for specific RSVP type:
– SESSION Class.
– RSVP_HOP Class.
– TIME_VALUES Class.
– ERROR_SPEC Class.
– SCOPE Class.
– STYLE Class.
– SENDER_TEMPLATE Class.
– SENDER_TSPEC Class.
– ADSPEC Class.
– RESV_CONFIRM Class.

Exotic protocols

• Regular RSVP options:
– Flags and Time to Live.

• SESSION Class options:
– Destination address, Protocol ID, Flags and

Destination Port.

• RSVP_HOP Class options:
– IP Next/Previous Hop (Neighbor) Address and

Logical Interface Handle.

• TIME_VALUES Class options:
– Refresh Period (Interval).

• ERROR_SPEC Class options:
– IP Error Node Address, Flags, Error Code and

Error Value.

• SCOPE Class options:
– Number of Address and IP Source Address(es).

• Etc… Up to 37 command line interface
switches.

EIGRP
• Supported EIGRP opcodes:

– Update Message.
– Request Message.
– Query Message.
– Reply Message.
– Hello Message.
– Acknowledgment Message.

• Specific EIGRP TLVs for specific EIGRP types:
– General Parameter TLV.
– Software Version TLV.
– Sequence TLV.
– Next Multicast Sequence TLV.
– IP Internal Routes TLV.
– IP External Routes TLV.

• EIGRP Cryptographic Authentication:
– Type (HMAC-MD5).
– Key-ID.
– Authentication Data (RANDOM).

Exotic protocols

• Regular EIGRP options:
– Opcode, Flags, Sequence Number,

Acknowledgment Number, Autonomous System
(AS) , Type and Length.

• General Parameter TLV options:
– K1, K2, K3, K4 and K5 Values and Hold Time

(Interval).

• Software Version TLV options:
– IOS Release Version and EIGRP Protocol

Release Version.

• IP Internal Routes TLV and IP External Routes
TLV options:

– IP Next Hop Address, Delay, Bandwidth,
Maximum Transmission Unit (MTU), Hop Count,
Load, Reliability, IP Source Address(es) and IP
Address Prefix (CIDR).

• Etc… Up to 33 command line interface
switches.

OSPF
• Supported OSPF type:

– Hello Packet.

– Database Description Packet.

– Query Message Packet.

– Link State Request Packet.

– Link State Update Packet.

– Link State Acknowledgment Packet.

• Specific LSA Header for specific LSA type:

– Router LSA Header.

– Network LSA Header.

– Summary IP Network LSA Header.

– Summary ASBR Header.

– AS External LSA Header. (ASBR).

– No-so-Stubby Area LSA Header (NSSA).

– Group Membership LSA Header (Multicast).

Exotic protocols

• OSPF Cryptographic Authentication:

– Type (HMAC-MD5).

– Key ID.

– Cryptographic Sequence Number.

– Authentication Data (RANDOM).

• Specific LLS Data Block for specific LLS TLV:

– Extended Options and Flags TLV.

– Cryptographic Authentication TLV.

• Regular OSPF options:

– Type, Router ID, Area ID and Options (Multi-
Topology or TOS-Based, External Routing
Capability, Multicast Capable, NSSA Supported,
LLS Data Block in Contained, Demand Circuits is
Supported, Opaque-LSA and Down Bit).

• Etc… Up to 54 command line interface
switches.

0100 – Comparison

Methodology

0101 – Demonstration

• Intel® Core™ 2 Duo P8400 (2.26 GHz)

• Memory 4GB RAM

• Ubuntu Desktop Linux 10.04 64-bit

• Intel® 82567LM Gigabit Controller

• 1 Gbps Network

• Cross-over Cable (CAT-5e)

• Intel® Core™ Duo T5600 (1.83 GHz)

• Memory 2GB RAM

• Microsoft Windows 7 32-bit

• Broadcom NetXtreme 57xx Gigabit Controller

• 1 Gbps Network

• Cross-over Cable (CAT-5e)

Video Codehttp://fnstenv.blogspot.com/

Dell Latitude E6400 Dell Latitude D620

T50: an Experimental Mixed Packet Injector

0110 – Conclusions

Conclusions

• Can be applied to any DoS:

– Peer-to-Peer Attacks

– Application Level Attacks

– Distributed Attacks

– Reflected Attacks

– Level-2 Attacks

– Degradation-of-Service Attacks

– DNS Amplifiers Attacks

• Is DoS and DDoS so 1990’s?

– Please, don’t be silly, again!!!

• Can be considered a cyber warfare’s
weapon?

– Yes, it can be considered like one.

• It is just a matter of time to things get
worse on the Internet.

• A DoS can be perpetrated overnight!

• What else?

An attacker does not even need multiples zombies.

0111 – Questions & Answers

Any questions?

