SAMHAIN (VERSION 1.4.1)
USER MANUAL

Rainer Wichmann
http://la-samhna.de

February 11, 2002



Contents

1 Functional summary 1
L1 Overview . . . . . . . . o 1
1.2 Installation Requirements & Environment . . . . . . .. .. .. ... ... 2
1.3 How toinvoke . . . . . . . . . .. 3

1.3.1 daemontooletal. . . . .. ... .. ... 4
1.4 Controlling the daemon . . . . . . . . .. .. ... oL 4
1.5 Signals . . . . . .. 5t
1.6 PIDfile . . . . . . . 5
1.7 Log file rotation . . . . . . . . ..o 6
1.8 Updating the file signature database . . .. .. ... ... ... ... ... 7
1.9 TImproving the signal-to-noise ratio . . . . . . . . . ... .. 7
1.10 Options & configuration file . . . . . . .. .. ... ... ... ... ... 7
1.11 Support (bug/problem reports) . . . . . . .. ... ... ... 7

2 Basic 9
2.1 Trusted users and trusted paths . . . . . ... ... ... ... ... ... 9
2.2 Hash function . . . . . . . . 9
2.3 Logging — severities, clases, thresholds, and facilities . . . . . . . . . .. .. 9

2.3.1 Severity levels . . . . . . ..o 10
Example . . . . . .o 11

3 Configuring logging facilities 12

3.1 Thresholds — Activating logging facilities . . . . . . ... .. ... ... .. 12
Example . . . . . . . 13

3.2 Configuration . . . . . . . . .. 14
321 E-mail . ... 14
Complete example . . . . . . ... ... 15

322 Logfile. . . . . . . 16
3.2.3 Logserver . . . . . .. 16
3.2.4 External facilities . . . . . . . ... o 16

3.3 Details of logging facilities . . . . . . . ... ... oL 16



3.3.1 Console . . . . . ..
3.3.2 Syslog . . ..
3.3.3  E-mail reports and their integrity . . . . . . ... ..o 0oL
3.3.4 The log file and its integrity . . . . . .. ... ..o
3.3.5 Thelogserver . . . . . . . . ...
3.3.6 SQL Database . . . . . . . . ...
3.4 Integrity of the executable . . . . . .. ... ...

samhain — The file monitor

4.1 Basic usage instructions . . . . . . ...
4.2 Filesignatures . . . . . . ...
4.3 Defining which files/directories to monitor . . . . . . ... ... ...
4.3.1 Monitoring policies . . . . . . .. ..o
4.3.2 File/directory specification . . . . . . .. ...
4.3.3 CAllexcept ... . . .
4.3.4 Dynamic database update (modified/disappeared/new files)
4.3.5 Recursion depth(s) . . . . .. .. ...
4.4 Timing file checks . . . . . . . . ..o
4.5 Initializing, updating, or checking . . . . . . .. .. ... ..o
4.6 The database . . . . . . . .
4.7  Checking the file system for SUID/SGID binaries . . . . .. ... .. ...
Configuration . . . . . . . . . ...
4.8 Detecting Kernel rootkits . . . . . . . .. .. o000
What is a kernel rootkit 7 . . . . . ...
How can samhain detect them ? . . . . . ... ... ... . ... ..
Configuration . . . . . . . . ...
4.9 Monitoring login/logout events . . . . . . . ... ... ...
4.10 Modules . . . . . . ..
4.11 Performance tuning . . . . . . . . ...

yule — The log server

5.1 General . . . .o

5.2 Client registry . . . . . . . . L

23
23
24
24
24
25
25
26
27
27
27
27
28
28
29
29
29
30
30
31
31



5.3 Enabling logging to the server . . . . . . . . . . ...

Example . . . . . ..
5.4 Database / configuration file download . . . . . . ... ... ... .. ...
5.4.1 Configuration file . . . . . ... .. ...
5.4.2 Database file . . . . .. ...
5.5 Server status information . . . . .. ..o
5.6 sysloglogging . . . . . . . .
5.7 Performance tuning . . . . . . ... ..o
5.8 Authentication protocol . . . . . . .. ...
5.8.1 Challenge-response . . . . . .. . . ... ... L
582 SRP . . .
5.9 Message transfer protocol . . . . . ..o
5.10 File transfer protocol . . . . . . . . ..o
6 Hooks for External Programs
6.1 Pipes . . . . .
6.2 System V message queue . . . . . . ...
6.3 Calling external programs . . . . . . . . .. ..o
6.3.1 Example setup for paging . . . . ... ...
7 Signed Configuration/Database File
8 Stealth mode
8.1 Hiding the executable . . . . . . . . .. ..o
8.2 Packing the executable . . . . . .. .. .. oo
9 Deployment to remote host
9.1 Usage Notes . . . . . . . . . e
10 Security Design
10.1 Usage . . . . . o o o
10.2 Design . . . . . .o

A Compilation options

42
42
42
42
44

45

47
47
48

50
52

54
o4
o4

56



A1 General . . . . 56

A.2 OpenPGP Signatures on Configuration/Database Files . . . . . . ... .. o7
A.3 Client/Server Connectivity . . . . . . . . ... ... 57
A4 Paths. . . . . . 58
Command line options 59
B.1 General . . . ... 59
B.2 samhain . . . ... 60
B3 yule . ... 61
The configuration file 61
C.1 General . . . . .. 61
Example . . . . . . .. 61

C.1.1 Conditionals . . . . . . . . . ... 62
Example . . . . . .o 62

C.2 Filestocheck . . . . . . . . . 62
C.3 Severity of events . . . . . . ... 63
C.4 Logging thresholds . . . . . . . . . . ... 63
C.5 Watching login/logout events . . . . . . . . . ... ... ... ... ..., 64
C.6 Checking for kernel module rootkits . . . . . . . . .. ... ... ... 64
C.7 Checking for SUID/SGID files . . . . . ... ... ... ... ... ..... 65
C.8 Database . . . . . . . . . 65
C.9 Miscellaneous . . . . . . . . . 65
C.10 External . . . . . . ..o 67
CA1 Clients . . . . . . . 67
CA2Endoffile . . . . . . . . o 68



Abstract

samhain is a data integrity / intrusion alert system that can be used on single hosts as
well as for large, UNIX-based networks.

samhain offers several features to support and facilitate centralized monitoring: samhain
can be used as a client/server system, with monitoring clients on individual hosts and a
central log server. Powerful conditionals allow to build a single configuration file for all
clients on the network. Clients may download the configuration file and the database of
file signatures from the log server.

This manual gives a detailed description of the samhain system. It is intended to be of
help for anyone wishing to use, test, or modify samhain .



1 Functional summary

samhain is a system to monitor the integrity of files. It has a number of features that are
intended to support and facilitate centralized monitoring in a network, although it can
also be used on single hosts.

In particular, samhain can optionally be used as a client/server system with monitoring
clients on individual hosts, and a central log server that collects the messages of all clients.

The configuration and database files for each client can be stored centrally and downloaded
by clients from the log server. Using conditionals (based on hostname, machine type, OS,
and OS release, all with regular expresions) a single configuration file for all hosts on the
network can be constructed.

The client (or standalone) part is called samhain , while the server is referred to as yule
. Both can run as daemon processes.

1.1 Overview

NOTE: This overview assumes that the database is already initialized (see Sect. 4.1).
On startup, samhain /yule will

1. If samhain is used as SUID application (note that SUID usage is neither necessary
nor recommended): set the effective user to some compiled-in default (e.g. nobody).

2. Parse the command line. Options given on the command line will override those in
the configuration file.

3. Check whether the path to the configuration file is trusted (see Sect. 2.1), determine
the checksum — or verify the signature — of the configuration file, then read in from
it:

e A list of files and directories to monitor, together with the specification of the
policies that should be applied, i.e. what kind of modifications will be allowed
or not. Wildcard patterns are supported.

e Instructions regarding the logging facilities to be used.
e Settings for the monitoring of login/logout events.
e Miscellaneous other settings, as described in the appendix.
4. Obtain the local hostname, and information on the real and effective user. Initialize

according to the specified options (e.g. disconnect from the parent process to become
a daemon).

5. (samhain only): Determine the checksum — or verify the signature — of the file
database.



6. Issue a startup message including user, time, and information on checksums — or
signature keys — of configuration file and database.

7. samhain : Enter a loop to check the files specified in the configuration file against
the database at regular intervals as defined in the configuration file.
yule : Enter a loop to wait for connections from clients.

8. samhain : If not running as daemon, exit after the first loop, else, exit on SIGTERM
or SIGQUIT (see Sect. 1.5).
yule : Exit on SIGTERM or SIGQUIT (see Sect. 1.5).

9. Issue an exit message including time and reason for exit.

1.2 Installation Requirements & Environment

samhain requires an ANSI C compiler and a POSIX operating system (or an emulation
of POSIX - according to a report from one customer, on Win 2K samhain builds and runs
in the (free) Cygwin environment). The installation procedure uses GNU autoconfigure
(all configuration options are listed in the appendix):

./configure [options]

make

make install (install standalone/client)
Cor -

make install-yule (install server)

Executables will be stripped upon installation. On Linux, the sstrip utility (copyright
1999 by Brian Raiter, under the GNU GPL) will be used to strip the executable even
more, to prevent debugging with the GNU gdb debugger.

The following files will be installed (the last four files listed are optional, and only compiled
and /or installed if the -—enable-network option (yule, yulerc.template, samhain_setpwd)
or the -—with-stealth option (samhain stealth) has been selected):

Original Installed to Purpose Mode
samhain.8 $(mandir) /man8/samhain.8 manpage 600
samhainrc.5 $(mandir) /man5/samhainrc.5 ~ manpage 600
samhainrc $(configdir) /samhainrc configure 600
samhain $(sbindir) /samhain executable 700
(state data) $(statedir) /samhain directory 700
(yule - log server)  $(sbindir)/yule executable 700
(yulerc.template) $(configdir) /yulerc configure 600
Helper apps (network):

(samhain_setpwd)  $(sbindir)/samhain_setpwd executable 700

2



(samhain _stealth)  $(sbindir)/samhain_stealth executable 700

samhain complies with the Filesystem Hierarchy Standard 2.2. By default, $(sbindir) =
/usr/local/sbin, $(mandir) = /usr/local/share/man, $(statedir) = /var/lib/samhain, and
$(configdir) = /ete.

The logfile will be written to /var/log/samhain_log, and the PID /lock file is /var/run/samhain.pid.

With --prefix=/usr, $(sbindir) = /usr/sbin and $(mandir) = /usr/share/man.

With —--prefix=/opt, $(sbindir) = /opt/samhain/bin, $(mandir) = /opt/samhain/man,
$(statedir) = /var/opt/samhain, $(configdir) = /etc/opt.

The logfile will be written to /var/opt/samhain/samhain_log, and the PID/lock file is
/var/opt /samhain /samhain.pid.

Else, $(sbindir) = $(prefix)/sbin, $(mandir) = $(prefix) /share/man, $(statedir) = $(pre-
fix)/var/lib/samhain, and $(configdir) = $(prefix)/etc.

The logfile will be written to $(prefix)/var/log/samhain_log, and the PID/lock file is
$(prefix)/var/run/samhain.pid.

The configuration file should be carefully checked before installation, especially with re-
spect to the (e-mail, log server, time server) addresses listed therein.

Installed files should be owned by root. The path to the configuration file must be write-
able by trusted users only (see Sect. 2.1).

If the ——with-stealth option is used, it is recommended to also use the option
--with-install-name in order to rename all installed files, as well as files created by
samhain , to some less suspicious name upon installation.

1.3 How to invoke

From the command line:

samhain -t init [more options] to initialize the database
samhain -t check [more options] to check against the database

By default, samhain will not become a daemon, but stay in the foreground. Daemon
mode must be set in the configuration file or on the command line.

Also by default, samhain will neither initialize its file system database mor check the
file system against it. The desired mode must be set in the configuration file or on the
command line.

A complete list of command line options is given in the appendix.

To start as daemon during the boot sequence:

For Linux, make will generate boot scripts for SuSE, RedHat, and Debian, and make
install-boot will figure out which of them to install, and where (if the correct distribu-
tion cannot be determined, none of them will be installed).



For any other system, you need to figure out by yourself how to start samhain during the
boot sequence.

1.3.1 daemontool et al.

samhain does not auto-background itself (to become a daemon) unless explicitely spec-
ified in the config file or on the command line. However, normally it runs in single-shot
mode if not used as daemon. To cause samhain to enter the main loop, you need to start
with the option -f or —-forever. Note that yule , the server, will always loop.

1.4 Controlling the daemon

As part of their boot concept, some systems have individual start/stop scripts for each
service (daemon). As a minimum, these scripts take either ’start’ or 'stop’ as argument,
sometimes also e.g. ’reload’ (to reload the configuration), 'restart’, or ’status’ (check
whether the daemon is running). While this is convenient, there are also a number of
problems:

e Some systems do not have such start/stop scripts.
e There is no standard for the location of these scripts.

e There is no standard for the arguments such a script may take, neither for their
interpretation (e.g.: on Linux distribution XYZ, do the start/stop scripts take 'sta-
tus’ as argument, and if, is the status reported by printing a message or by the exit
status 7)

To provide a portable interface for controlling the samhain daemon, the executable itself
can serve for this purpose (only if invoked by the superuser). The supported functions,
which must be given as first argument on the command line, are:

start Start samhain . Arguments after ’start’ are passed to the process. Daemon mode
will be enforced, as well as running in ’check” mode, irrespective of command line or config
file settings.

stop Stop the daemon. On Linux and Solaris, actually all running instances of samhain
are stopped, even if no pid file is available.

restart Stop and start.

reload Reload the configuration file.

status Check whether the daemon is running.

Success/failure is reported via the exit status as follows:
0 Success/Running. (On Linux/Solaris, stop will always be successful, on other systems
only if the pid file is found.)



1 Failure: could not send signal to daemon.

2 Failure: pid file not found (for status, this normally indicates that the daemon is not
running.

4 Failure: internal error.

1.5 Signals

On startup, all signals will be reset to their default. Then a signal handler will be installed
for all signals that (i) can be trapped by a process and (ii) whose default action would be
to stop, abort, or terminate the process, to allow for graceful termination,

For SIGSEGV, SIGILL, SIGBUS, and SIGFPE, a ’fast’ termination will occur, with only
minimal cleanup that may result in a stale lock/pid file being left.

If the operating system supports the siginfo_t parameter for the signal handling routine
(see man sigaction), the origin of the signal will be checked.

The following signals can be sent to the process to control it:

e SIGUSR1 Switch on maximally verbose output to the console.
e SIGUSR2 Return to previous console output mode.
e SIGTERM Terminate the process.

e SIGQUIT Terminate the server process after processing all currently pending requests
from clients. Terminate the client process after finishing the current task (from the
terminal, SIGQUIT usually is CRTL-backslash).

e SIGHUP Re-read the configuration file. Note that it is not possible to override
command-line options given at startup.

e SIGABRT Unlock the log file, wait three seconds, then proceed. At the next access,
the log file will be locked again and a fresh audit trail — with a fresh signature key
— will be started. This allows log rotation without splitting an audit trail. See
Sect. 3.3.4.

1.6 PID file

samhain generates a PID file if (a) it is run as a daemon process, or (b) if a log file
is written (i.e. logging to a local log file is enabled). In the latter case, the PID file
serves as a lock to make sure that only one samhain process can access the log file.
You can configure the path to the lock file at compile time, either explicitely using the
--with-lock-file=FILE option, or via the —-prefix=PREFIX option.



1.7 Log file rotation

After sending SIGABRT to the samhain daemon, it will first finish its current tast (this
may take some time), then unlock the log file (i.e. remove the lock file), wait three seconds,
then proceed. Thus, to rotate the log file, you should use something like the following
script:

if test -f /usr/local/var/log/.samhain_lock; then \
PIN=‘cat /usr/local/var/log/.samhain_lock‘; \
/bin/kill -ABRT $PIN; \

sleep 1; \
AA=0; \
while test "x$AA" != "x120"; do \

let "AA = $AA + 1"; \
if test -f /usr/local/var/log/.samhain_lock; then \
sleep 1; \
else \
break;
fi \
done; \
mv /usr/local/var/log/.samhain_log /usr/local/var/log/oldlog

If you use the "logrotate’ tool, you could use the following (untested):

/usr/local/var/log/.samhain_log {
size 100k
nocreate
compress
mail root@localhost
maillast

prerotate
if test -f /usr/local/var/log/.samhain_lock; then \
PIN=‘cat /usr/local/var/log/.samhain_lock‘; \
/bin/kill -ABRT $PIN; \

sleep 1; \
AA=0; \
while test "x$AA" = "x120"; do \

let "AA = $AA + 1"; \

if test -f /usr/local/var/log/.samhain_lock; then \
sleep 1; \

else \
break;



i\
done;
endscript

1.8 Updating the file signature database

The samhain daemon only reads the file signature database on startup (also see Sect. 4.3.4
on this). You can update the database while the daemon is running, as long as you don’t
interfere with its logging (i.e. you should run samhain -t update -l none to make sure the
log file is not accessed).

1.9 Improving the signal-to-noise ratio

To get a good signal-to-noise ratio (i.e. few false alerts), you need to know which files
should be checked, and which not (looking at the 'last modified’ timestamp may be helpful,
if in doubt).

To see how to set recursion depths, implement 'check all but xxx’ policies etc., have a
look at Sect. 4.3.1.

As samhain runs a a daemon, it is capable to 'remember’ all file system changes, thus
you won’t get bothered twice about the same problem.

1.10 Options & configuration file

All command line options, and all settings in the configuration file, are described in the
appendix.

1.11 Support (bug/problem reports)

If you have problems getting samhain to run, or think that you have encountered a bug,
you can visit the user forum at http://la-samhna.de/forum and ask there for help (rec-
ommended for questions of probably general interest), or send email to support@la-samhna.de.

Please be sure to provide relevant details, such as:

e your operating system, its release version, and the machine (uname -srm).

e the version of samhain that you are using, and the options that you have supplied
to configure.



e in case of problems it is usually very helpful if you compile samhain with the
configure option --enable-debug, and run it with the command line switches

-p debug -z 1. Please compress the output using gzip, and send it as attachment
to support@la-samhna.de



2 Basic

2.1 Trusted users and trusted paths

Trusted users are root and the effective user of the process (usually, the effective user
will be root herself). Additional trusted users can be defined in the configuration file (see
Sect. 3.2.2 for an example), or at compile time (see appendix for compile options).

A trusted path is a path with all elements writeable only by trusted users. samhain
requires the paths to the configuration and log file to be trusted paths, as well as the path
to the lock file that will be created to lock access to the log file.

Evidently, if the path to the configuration file itself is writeable by other users than root
and the effective user, these must be defined as trusted already at compile time. This is
especially the case on some systems where the root directory is owned by the user bin.

If a path element is group writeable, all group members must be trusted.

Please note: The list of group members in /etc/group may be incomplete or even
empty. samhain will check /etc/passwd (where each user has a GID field) in addition to
/etc/group to find all members of a group.

2.2 Hash function

A hash function is a one-way function H(foo) such that it is easy to compute H(foo) from
foo, yet infeasible to compute foo from H(foo).

One common usage of a hash function is the computation of checksums of files, such that
any modification of a file can be noticed, as its checksum will change.

For computing checksums of files, and also for some other purposes, samhain uses the
TIGER hash function developed by Ross Anderson and Eli Biham. The output of this
function is 192 bits long, and the function can be implemented efficiently on 32-bit and
64-bit machines. Technical details can be found at

http://www.cs.technion.ac.il/~ biham/Reports/Tiger/.

As of version 1.2.10, also the MD5 and SHA-1 hash functions are available. (You need to
set the option DigestAlgo=MDJ5 or DigestAlgo=SHA1 in the config file to enable this).
Note that MD5 is somewhat faster, but because of security concerns it is not recommended
anymore for new applications.

2.3 Logging — severities, clases, thresholds, and facilities

FEvents (e.g. unauthorized modifications of files monitored by samhain ) will generate
messages of some severity. These messages will be logged to all logging facilities, whose
threshold is equal to, or lower than, the severity of the message.



FEvents of related type are grouped into classes. For each logging facility, it is possible to
restrict logging to a subset of these classes (see Sect. 3.1). The available classes are:

AUD
RUN
STAMP
FIL

TCP
PANIC
ERR
ENET
EINPUT

System calls.

Normal run messages (e.g. startup, exit, ...)
Timestamps and alike.

Messages related to file integrity checking.
Messages from the client/server subsystem.
Fatal errors, leading to program termination.
Error messages (general).

Error messages (network).

Error messages (input, e.g. configuration file).

2.3.1 Severity levels

The following severity levels are defined:

none
debug
info
notice
warn
mark
err
crit
alert
inet

Not logged.

Debugging-level messages.

Informational message.

Normal conditions.

Warning conditions.

Timestamps.

Error conditions.

Critical conditions, including program startup/normal exit.
Fatal error, causing abnormal program termination.
Incoming messages from clients (server only).

Most events (e.g. timestamps, internal errors, program startup/exit) have fixed severities.
The following events have configurable severities:

e policy violations (for monitored files)

e access errors for files

e access errors for directories

e obscure file names (with non-printable characters)

e login/logout events (if samhain is configured to monitor them)

Severity levels for events (see Sect. 2.3.1) are set in the EventSeverity and (for lo-
gin/logout events) the Utmp sections of the configuration file.

10



Example In the configuration file, these can be set as follows:

[EventSeverityl]

##

# these are policies (see section 4.3.1)
i

SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=warn
SeverityIgnoreNone=crit
SeverityIgnoreAll=info

i

# these are access errors

7

SeverityFiles=err
SeverityDirs=err

7

# these are obscure file names
i

SeverityNames=info

i

# This is the section for login/logout monitoring
7

[Utmp]

SeverityLogin=notice
SeverityLogout=notice

# multiple logins by same user
SeverityLoginMulti=err

11



3 Configuring logging facilities

samhain supports the following facilities for logging:

e-mail samhain uses built-in SMTP code, rather than an external mailer
program. E-mails are signed to prevent forging.

syslog The system logging utility.

console If running as daemon, /dev/console is used, otherwise stderr.
/dev/console can be replaced by other devices.

log file Entries are signed to provide tamper-resistance.

log server samhain uses TCP/IP with strong authentication and
signed and encrypted messages.

external samhain can be configured to invoke external programs for logging.

SQL db Currently (1.4.3) samhain only supports mysql and postgresql.

Each of these logging facilities has to be activated by setting an appropriate threshold on
the messages to be logged by this facility.

In addition, some of these facilities require proper settings in the configuration file (see
next sections).

3.1 Thresholds — Activating logging facilities

Messages are only logged to a log facility if their severity is at least as high as the threshold
of that facility. Thresholds can be specified individually for each facility. A threshold of
‘none’ switches off the respective facility.

Thresholds are set in the Log section of the configuration file. For each threshold option
FacilitySeverity there is also a corresponding option FacilityClass to limit that facility to
messages within a given set of class. The argument must be a list of valid message classes,
separated by space or comma.

System calls: certain system calls (execve, utime, unlink, dup (+ dup2), chdir, open,
kill, exit (+ _exit), fork, setuid, setgid, pipe) can be logged (only to console and syslog).
You can determine the set of system calls to log via the option LogCalls=calll, call2,
.... By default, this is off (nothing is logged). The priority is notice (= LOG_NOTICE in
syslog), and the class is AUD.

12



Example

[Log]
i
# Threshold for E-mails (none = switched off)

##

MailSeverity=none

#
# Threshold for log file

i
LogSeverity=err
LogClass=RUN FIL STAMP

##
# Threshold for console

i
PrintSeverity=info

#
# Threshold for syslog (none = switched off)

i

SyslogSeverity=none

#
# Threshold for forwarding to the log server

7

ExportSeverity=crit

i

# Threshold for invoking an external program

##

ExternalSeverity=crit

i
# Threshold for logging to a SQL database

7

DatabaseSeverity=err

#
# System calls to log

#
LogCalls=open, kill

13



3.2 Configuration

Configuration options should be in the [Misc] section of the configuration file, except for
external facilities.

3.2.1 E-mail

Items that must be configured are:

Recipients address in the format
SetMailAddress=username@hostname

Up to eight addresses are possible, each one at most 63 characters long, each on a
seperate line in the configuration file

Caveat: usually not all hosts in a domain are configured to receive e-mail, but
rather there is often a dedicated mail exchanger. The host given in the e-mail
address must be willing to handle e-mail, otherwise you need the Mail relay / Mail
exchanger option (see below).

Hint: it is recommended to use numerical IP addresses instead of host names (to
avoid DNS lookups).

Relay host / Mail exchanger in the format
SetMailRelay=mail.some_domain.com

There are two cases where you need this option:

(1) Some sites don’t allow outbound e-mail connections from any arbitrary host.
If the recipient is offsite, and your site uses a mail relay host to route outbound
e-mails, you need to specify the relay host.

(2) Likewise, some hosts do not accept e-mails, in which case you have to use the
proper mail exchanger as relay. You can get the name of the mail exchanger for
host.some_domain.com with the command

nslookup -type=mx host.some_domain.com

Maximum interval in the format
SetMailTime=86400

You may want to set a maximum interval between any two consecutive e-mails, to
be sure that samhain is still "alive’.

Maximum pending in the format

SetMailNum=10

14



Messages can be queued to send several messages in one e-mail. You may want to
set the the maximum number of messages to queue. (Note: messages of highest
priority (alert) are always sent immediately.

Multiple recipients in the format
MailSingle=yes/no

If there are multiple recipients, whether to send a single mail with the recipient
list, or send multiple mails. If all recipients are on same domain, a single mail may
suffice, otherwise it depends on whether the mail server supports forwarding (for
security, most don’t).

Subject line in the format
MailSubject=string

Here, string may contain the placeholders %T, %H, and/or %M that will get re-
placed by the time, hostname, and message, respectively. The default subject line
is equivalent to ”%T %H”. This option may be useful if you want to send emails to
an email-to-sms gateway.

Complete example

[Misc]

#

# E-mail receipient (offsite in this case). Up to eight addresses,
# each one at most 63 characters long.

##
SetMailAddress=username@host.some_domain.com
#

# Need a relay host for outgoing mail.
#

SetMailRelay=relay.mydomain

#

# Number of pending mails.

#

SetMailNum=10

#

# Maximum time between e-mails.
# Want a message every day, just to be sure that the
# program still runs.

#
SetMailTime=86400

7

# To all recipients in a single mail.

15



MailSingle=yes

3.2.2 Log file

Trusted users in the format
TrustedUser=username

If some element in the path to the log file is writeable by someone else than root or
the effective user of the process, you have to include that user in the list of trusted
users (unless their UIDs are already compiled in).

3.2.3 Log server

Server address in the format
SetLogServer=my.server.address

You have to specify the server address, unless it is already compiled in. It is possible
to specify a second server that will be used as backup.

Hint: if you want to store the configuration file on the server, the server address
must be compiled in.

3.2.4 External facilities

samhain can invoke external scripts/programs for logging (i.e. to implement support for
pagers etc.). This is explained in detail in Sect. 6.

3.3 Details of logging facilities

This section discusses some details of the logging facilities offered by samhain Configuring

logging facilities (if required) is explained above. Activating logging facilities (by setting
an appropriate threshold) is explained in section 3.1 .

3.3.1 Console

Up to two console devices are supported, both of which may also be named pipes. If
running as daemon, samhain will use /dev/console for output, otherwise stdout. On
Linux, - PATH_-CONSOLEFE will be used instead of /dev/console, if it is defined in the file
paths.h.

16



You can override this at compile time, or in the configuration file with the SetConsole=device
option. Up to two console devices are supported, both of which may also be named pipes
(use the SetConsole option twice to set both devices).

3.3.2 Syslog

samhain will translate its own severities into syslog priorities as follows:

debug LOG_DEBUG
info LOG_INFO
notice LOG_NOTICE
warn LOG_WARNING
mark LOG_ERR

err LOG_ERR

crit LOG_CRIT

alert LOG_ALERT

Messages will be truncated to 1023 chars. By default, samhain will use the identity
'samhain’, the syslog facility LOG_AUTHPRIV, and will log its PID (process identification
number) in addition to the message.

The syslog facility can be modified via the directive SyslogFacility=LOG_zzz in the
[Misc] section of the configuration file.

3.3.3 E-mail reports and their integrity

The subject line contains timestamp and local hostname, which are repeated in the mes-
sage body. samhain uses its own built-in SMTP code rather than the system mailer,
because in case of temporary connection failures, the system mailer (e.g. sendmail)
would queue the message on disk, where it may become visible to unauthorized persons.

During temporary connection failures, messages are stored in memory. The maximum
number of stored messages is 128. samhain will re-try to mail every hour for at most 48
hours. In conformance with RFC 821, samhain will keep the responsibility for the message
delivery until the recipient’s mail server has confirmed receipt of the e-mail (except that,
as noted above, after 48 hours it will assume a permanent connection failure, i.e. e-mailing

will be switched off).

The body of the mail may consist of several messages that were pending on the internal
queue (see Sect. 3), followed by a signature that is computed from the message and a
key. The key is initialized with a random number, and for each e-mail iterated by a hash
chain.

17



The initial key is revealed in the first email sent (obviously, you have to believe that this
first e-mail is authentic). This initial key is not transmitted in cleartext, but encrypted
with a one-time pad (see Sect. 3.4).

The signature is followed by a unique identification string. This is used to identify seperate
audit trails (here, a trail is a sequence of e-mails from the same run of samhain ), and to
enumerate individual e-mails within a trail.

The mail thus looks like:

<--- MESSAGE ---->
first message
second message

<--- SIGNATURE ---->

signature
ID TRAIL_ID:hostname
<--- END ---->

To verify the integrity of an e-mail audit trail, a convenience function is provided:
samhain -M path_to_mailbox_file

The mailbox file may contain multiple and/or overlapping audit trails from different runs
of samhain and/or different clients (hosts).

CAVEAT: If you use a pre-compiled executable from some binary distribution, be sure
to read section 3.4 carefully.

3.3.4 The log file and its integrity

The log file is named samhain_log by default, and placed into

/usr/local/var/log by default (name and location can be configured at compile time).
If samhain has been compiled with the --enable-xml-log option, it will be written in
XML format. Note: if you have compiled for stealth (see Sect. 8), you won’t see much,
because if obfuscated, then both a 'normal’” and an XML logfile look, well ... obfuscated.
Use samhain -jL /path/to/logfile to view the logfile.

The log file is created if it does not exist, and locked by creating a lock file. By default,
the lock file is named samhain.pid and placed in

/usr/local/var/run (name and location can be configured at compile time). The lock
file contains the PID of the process that created it. Upon normal program termination,
the lock file is removed. Stale lock files are removed at startup if there is no process with
that PID.

18



The directory where the log and its lock file are located must be writeable only by trusted
users (see Sect. 2.1). This requirement refers to the complete path, i.e. all directories
therein. By default, only root and the effective user of the process are trusted.

Audit trails (sequences of messages from individual runs of samhain ) in the log file start
with a [SOF] marker. Each message is followed by a signature, that is formed by hashing
the message with a key.

The first key is generated at random, and sent by e-mail, encrypted with a one-time pad
as described in the previous section on e-mail. Further keys are generated by a hash chain
(i.e. the key is hashed to generate the next key). Thus, only by knowing the initial key
the integrity of the log file can be assured.

The mail with the key looks like:

signature
ID TRAIL_ID:hostname
<--— END ---->

To verify the log file’s integrity, a convenience function is provided:
samhain -L path_to_log_file

When encountering the start of an audit trail, you will then be asked for the key (as sent
to you by e-mail). You can then:

(i) hit return to skip signature verification,

(ii) enter the key (without the appended timestamp), or

(iii) enter the path to a file that contains the key (e.g. the mail box).

If you use option (iii), the path must be an absolute path (starting with a ’/’, not longer
than 48 chars. For each audit trail, the file must contain a two-line block with the
————— BEGIN LOGKEY----- line followed by the line (Key(48 chars)[timestamp]) from
the mail. Additional lines before/after any such two-line block are ignored (in particular,
if you collect all e-mails from samhain in a mailbox file, you can simply specify the path
to that mailbox file).

CAVEAT: If you use a pre-compiled executable from some binary distribution, be sure
to read section 3.4 carefully.

19



3.3.5 The log server

Details of the transmission protocols can be found in section 5. Configuring samhain for
logging to the log server is explained in section 3 (setting the IP address of the server)
and section 3.1 (activating the facility by setting an appropriate threshold).

During temporary connection failures, messages are stored in a FIFO queue in memory.
The maximum number of stored messages is 128. After a connection failure, samhain
will make the next attempt only after a deadtime that starts with 1 sec and doubles after
each unsuccessful attempt (max is 2048 sec). A re-connection attempt is actually only
made for the next message after the deadtime — you should send timestamps (i.e. set the
threshold to mark) to ensure re-connection attempts for failed connections.

It is possible to specify two log servers in the client configuration file. The first one will be
used by default (primary), and the second one as fallback in case of a connection failure
with the primary log server.

3.3.6 SQL Database

This facility requires that you use have compiled with the —with-zml-log option to for-
mat log messages in XML, and of course with the —with-database=mysql or the —with-
database=postgresql option.

If you are using the MessageHeader option for a user-defined message header, make sure
that the log messages are still valid XML, and that all the default entities are still present.

Currently (version 1.4.0) mysql and postgresql are supported. If the header file 'mysql.h’
("libpg-fe.h’) is not found during compilation (‘mysql.h: No such file or directory’), you
need to set the environment variable MYINC to -I/dir/where/mysql.h/is. If the library
libmysqlclient.a (libpg.a) is not found (’/usr/bin/ld: cannot find -lmysqlclient’), you need
to set the environment variable MYLIB to -L/dir/where/libmysqlclient.a/is.

Note: postgresql my fail with —enable-static. This is a postgresql bug.

By default, the database server is assumed to be on localhost, the db name is 'samhain’,

the db table is 'log’, and inserting is possible for any user without password. To cre-
ate the database/table with the required columns, the distribution includes a script
‘samhain.mysql.init’.

In the section [Database/ in the config file, you can modify the defaults via the following di-
rectives: SetDBName=db_name, SetDBTable=db_table, SetDBHost=db_host, SetDBUser=db_user,

SetDBPassword=db_password.
Note: for postgresql, db_host must be a numerical IP address.

There is a special (indexed) table field 'log_hash’, which is the MD5 checksum of (the
concatenation of) any fields registered with AddToDBHash=field. This might allow to find
unique rows faster. There is no default set of fields over which the MD5 hash is computed,
so by default the hash is equal for all rows.

20



Note: for security, you may want to set up a user/password for insertion into the db.
However, as the password is in cleartext in the config file (and the connection to the db
server is not encrypted), for remote logging this facility is less secure than samhain’s own
client /server system (you may want to run the db server on the log host and have the
server log to the db).

3.4 Integrity of the executable

Each executable contains a compiled-in key. By default, a random key is generated by the
configure script at compile time. To set a user-defined key, there is a configure option

--with-base=B1,B2
where B1,B2 should be two integers in the range 0...2147483647.

The key generated by configure is printed in the script’s output like:
checking base key setting .. collecting entropy... 1346535489 1086156122

Whenever you try to verify the integrity of e-mails or log file entries, this compiled-in key
is used (to be more specific: the signature key is encrypted with a one-time pad generated
from the message itself and the compiled-in key). As a result, if executable B is used to
verify the integrity of e-mails sent by executable A, integrity verification will fail if the
compiled-in keys of A and B do not match. This can be used to check the integrity of
A in a straightforward way (check e-mails on another host, using a different executable
compiled with the same key).

Obviously, this scheme can be broken, but it requires an intruder to disassemble/decompile
and analyze the existing samhain executable, rather than simply replace it with a pre-
compiled trojan.

However, if you use a precompiled samhain executable (e.g. from a binary distribution),
in principle a prospective intruder could easily obtain a copy of the executable and analyze
it in advance. This will enable her/him to generate fake audit trails and/or generate a
trojan for this particular binary distribution.

For this reason, it is possible for the user to add more key material into the binary
executable. This is done with the command:

samhain --add-key=key@/path/to/executable

This will read the file /path/to/executable, add the key key, which should not contain a ’@’
(because it has a special meaning, separating key from path), overwrite any key previously
set by this command, and write the new binary to the location /path/to/executable.out
(i.e. with .out appended).

Note that using a precompiled samhain executable from a binary package dis-
tribution is not recommended unless you add in key material as described
here.

21



Q.: Why not using public-key encryption, or ... (insert your favourite mechanism) ?

A.: Elementary logic shows that whatever method is used, the executable must know how
to sign the message, i.e. the signing key must be present in some form on the (untrusted)
machine guarded by the file checker, and thus is in principle available to the intruder. No
mechanism can avoid that. But you can raise the bar by making it very difficult to find
the signing key. Or you can try to hide the very existence of the file checker, which is also
supported by samhain (see Sect. 8).

22



4 samhain — The file monitor

The samhain monitor checks the integrity of files by comparing them against a database
of file signatures, and notify the user of inconsistencies. The level of logging is configurable,
and several logging facilities are provided.

samhain can be used as a client that forwards messages to the server part (yule ) of the
samhain system, or as a standalone program (for single hosts).

samhain monitor can be run as a background process (i.e. a daemon), or it can be started
at regular intervals by cron. It is recommended to run samhain as daemon and start it up
immediately at system boot. Using it with cron opens up a security hole, because in that
case the samhain program might be modified or replaced by a rogue program between
two consecutive invocations.

4.1 Basic usage instructions
To use samhain , the following steps must be followed:

1. The configuration file must be prepared (see Sect. 4.3, 2.3, and 4.9 for details).
e All files and directories that you want to monitor must be listed. Wildcard
patterns are supported.

e The policies for monitoring them (i.e. which modifications are allowed and
which not) must be chosen.

e The severity of a policy violation must be selected.

e The threshold level of logging must be defined.

e The logging facilities must be chosen.

e Eventually, the address of the e-mail recepient and/or the IP address of the log
server must be given.

2. The database must be initialized.

e If it already exists, it should be deleted (samhain will not overwrite, but ap-
pend), or update instead of init should be used.

e samhain must be run with the command line option

samhain -t it

3. Now start samhain in check mode. Either select this mode in the configuration file,
or use the command line option
samhain -t check [more options]
To run samhain as a background process, use the command line option
samhain -t check -D [more options]

23



4.2 File signatures

samhain works by generating a database of file signatures, and later comparing file against
that database to recognize file modifications and/or added/deleted files.

File signatures include:

e a 192-bit cryptographic checksum computed using the TIGER hash algorithm (al-
ternatively SHA-1 or MD5 can be used),

e the inode of the file,

e the type of the file,

e owner and group,

® access permissions,

e on Linux only: flags of the ext2 file system (see man chattr),
e the timestamps of the file,

e the file size,

e the number of hard links,

e minor and major device number (devices only)

e and the name of the linked file (if the file is a symbolic link).
Depending on the policy chosen for a particular file, only a subset of these may be checked
for modifications (see sect. 4.3.1).
4.3 Defining which files/directories to monitor

This section explains how to specify in the configuration file, which files or directories
should be monitored, and which monitoring policy should be used.

4.3.1 Monitoring policies

samhain offers several pre-defined monitoring policies. Each of these policies has its own
section in the configuration file. Placing a file in one of these sections will select the
respective policy for that file.

The available policies (section headings) are:

ReadOnly All modifications except access times will be reported for these files.

24



LogFiles Modifications of timestamps, file size, and signature will be ignored.

GrowingLogF'iles Modifications of timestamps, and signature will be ignored. Modifi-
cation of the file size will only be ignored if the file size has increased.

Attributes Only modifications of ownership and access permissions will be checked.

IgnoreAll No modifications will be reported. However, the ezistence of that file/directory
will still be checked.

IgnoreNone All modifications, including access time, but excluding ctime, will be re-
ported (checking atime and ctime would require to play with the system time ...).

User0 Initialized to: report all modifications.

Userl Initialized to: report all modifications.

Hint: Each policy can be modified in the config file section ”[Misc]” with entries like
RedefReadOnly=+XXX or -XXX, to add (+XXX) or remove (-XXX) a test XXX, where
XXX can be any of CHK (checksum), LNK (link), HLN (hardlink), INO (inode), USR
(user), GRP (group), MTM (mtime), ATM (atime), CTM (ctime), SIZ (size), RDEV
(device numbers) and/or MOD (file mode).

Note: that this must come before any file policies are used in the config file.

4.3.2 File/directory specification

Entries for files have the following syntax:
file=/full/path/to/the/file

Entries for directories have the following syntax:
dir=[recursion depth] /full/path/to/the/directory

The specification of a recursion depth is optional (see 4.3.5). (Note: Do not put the
recursion depth in brackets — they just indicate that this is an optional argument ...).

Wildcard patterns (**’, 77’ ’[...]") as in shell globbing are supported for paths. The leading
'/’ is mandatory.

4.3.3 ’All except ...

To exclude individual files from a directory, place them under the policy IgnoreAll. Note
that the existence of such files will still be checked (see next section).

To exclude subdirectories from a directory, place them under the policy IgnoreAll with
an individual recursion depth of -1 (see Sect. 4.3.5).

25



Note that any change in a directory will also modify the directory itself (i.e. the special
file that holds the directory information). If you want to check all but a few files in a
directory (say, /etc), and you expect some of the excluded files to get modified, you
should use a setup like:

[ReadOnly]

#

dir=/etc

##

[Attributes]

#

# less restrictive policy for the directory file itself
#

file=/etc

##

[IgnoreAll]

#

# exclude this file

#
file=/etc/resolv.conf.save
#

4.3.4 Dynamic database update (modified/disappeared/new files)

samhain reads the file signature database at startup and creates an in-memory copy. This
in-memory copy is then dynamically updated to reflect changes in the file system.

Le. for each modified/disappeared/new file you will receive an alarm, then the in-memory
copy of the file signature database is updated, and you will only receive another alarm
for that file if it is modified again (or disappears/appears again).

Note that the on-disk file signature database is not updated (if you have signed it, the
daemon could not do that anyway). However, as long as the machine is not rebooted,
there should be no need to update the on-disk file signature database.

If files disappear after initialization, you will get an error message with the severity spec-
ified for file access errors (except if the file is placed under the IgnoreAll policy, in which
case a message of SeverityIgnoreAll — see Sect. 2.3.1 — is generated).

If new files appear in a monitored directory after initialization, you will get an error
message with the severity specified for that directory’s file policy (except if the file is
placed under the IgnoreAll policy, in which case a message of SeverityIgnoreAll — see
Sect. 2.3.1 — is generated).

26



The special treatment of files under the IgnoreAll policy allows to handle cases where a
file might be deleted and/or recreated by the system sometimes.

4.3.5 Recursion depth(s)

Directories can be monitored up to a maximum recursion depth of 99 (i.e. 99 levels of
subdirectories. The recursion depth actually used is defined in the following order of
priority:

1. The recursion depth specified for that individual directory (see 4.3). As a special
case, for directories with the policy IgnoreAll, the recursion depth should be set
to 0, if you want to monitor (the existence of) the files within that directory, but to
-1, if you do not want samhain to look into that directory.

2. The global default recursion depth specified in the configuration file. This is done
in the configuration file section Misc with the entry
SetRecursionLevel=number

3. The default recursion depth, which is zero.

4.4 Timing file checks

In the Misc section of the configuration file, you can set the interval (in seconds) between
succesive file checks:

SetFilecheckTime=value

4.5 Initializing, updating, or checking

In the Misc section of the configuration file, you can choose between initializing the
database, updating it, or checking the files against the existing database:

ChecksumTest=init—update—check—none

If you use the mode none, you should specify on the command line one of init, update, or
check, like: samhain -t check

4.6 The database

The database file is named samhain file by default, and placed into
/usr/local/var/lib/samhain by default (name and location can be configured at com-
pile time).

27



The database is a binary file. For security reasons, it is recommended to store a backup
copy of the database on read-only media, otherwise you will not be able to recognize file
modifications after its deletion (by accident or by some malicious person).

samhain will compute the checksum of the database at startup and verify it at each
access. samhain will first open() the database, compute the checksum, rewind the file,
and then read it. Thus it is not possible to modify the file between checksumming and
reading.

4.7 Checking the file system for SUID/SGID binaries

To enable this option, use the configure option
-—with-suidcheck

If enabled, this will cause the samhain daemon to check the whole file system hierarchy
for SUID /SGID files at user-defined intervals, and to report on any that are not included
in the file database. Upon database initialization, all SUID/SGID files will automatically
be included in the database. Excluded are nfs, proc, msdos, vfat, and is09660 (CD-ROM)
file systems.

You can manually exclude one directory (see below); this should be used only for obscure
problems (e.g.: /net/localhost on Solaris - the automounter will mirror the root directory
twice, as ’/net/localhost’ and ’/net/localhost /net /localhost’, and any nfs file system in
'/? will be labelled as ufs system in ’/net /localhost /net /localhost’ ...).

Configuration This facility is configured in the [SuidCheck] section of the configura-
tion file.

[SuidCheck]

# activate (0 for switching off)
SuidCheckActive=1

# interval between checks (in seconds, default 7200)
SuidCheckInterval=86400

# this is the severity (see section 2.3.1)
SeveritySuidCheck=crit

# you may manually exclude one directory
SuidCheckExclude=/net/localhost

# limit on files per seconds
SuidCheckFps=250

28



4.8 Detecting Kernel rootkits

This option is currently supported only for Linux, kernel versions 2.2.x and 2.4.x, on ix86
machines.

What is a kernel rootkit 7 A rootkit is a set of programs installed to "keep a backdoor
open” after an intruder has obtained root access to a system. Usually such rootkits are
very easy to install, and provide facilities to hide the intrusion (e.g. erase all traces from
audit logs, install a modified 'ps’ that will not list certain programs, etc.).

While "normal” rootkits can be detected with checksums on programs, like samhain does
(the modified 'ps’ would have a different checksum than the original one), this method can
be subverted by rootkits that modify the kernel at runtime, either with a loadable kernel
module (LKM), i.e. a module that is loaded into the kernel at runtime, or by writing
to /dev/kmem (this allows to 'patch’ a kernel on-the-fly even if the kernel has no LKM
support).

Kernel rootkits can modify the action of kernel syscalls. From a users viewpoint, these
syscalls are the lowest level of system functions, and provide the access to filesystems,
network connection, and other goodies. By modifying kernel syscalls, kernel rootkits can
hide files, directories, processes, or network connections without modifying any system
binaries. Obviously, checksums are useless in this situation.

How can samhain detect them ? Syscalls are invoked by calling the corresponding
C library function, which will trigger an int 0x80 interrupt to enter the kernel code. The
kernel entry point (the system call) function will then call the requested kernel syscall.

It is possible to compile into the samhain executable a map of all kernel syscall ad-
dresses, and of the syscall code itself. samhain will then check periodically (by reading
from /dev/kmem), if any of these addresses has changed, or if the first 8 bytes of the
syscall code itself have changed, thus indicating that the corresponding syscall has been
clobbered by some other code. As of version 1.3.6, samhain also checks the integrity of
the system_call() kernel function that is used to invoke syscalls.

Note that if you use the option -—-enable-khide to use a kernel module to hide the
presence of samhain , the sys_getdents syscall will cause only a warning (rather then
an error) for the first detected modification (which is presumed to be caused by the
samhain_hide LKM).

To use this facility, you need to use the configure option:
--with-kcheck="/path/to/System.map"

System.map is a file (sometimes with the kernel version appended to its name) that is
generated when the kernel is compiled, and is usually installed in the same directory as
your kernel (e.g. /boot), or in the root directory. To find it, you can use:

29



locate System.map

Configuration This facility is configured in the [Kernel] section of the configuration
file.

[Kernel]

# activate (0 for switching off)
KernelCheckActive=1

# interval between checks (in seconds, default 300)
KernelCheckInterval=600

# this is the severity (see section 2.3.1)
SeverityKernel=crit

4.9 Monitoring login/logout events

samhain can be compiled to monitor login/logout events of system users. For initializa-
tion, the system utmp file is searched for users currently logged in. To recognize changes
(i.e. logouts or logins), the system wtmp file is then used.

This facility is configured in the [Utmp] section of the configuration file:

[Utmp]

7
# activate (0 for switching off)

i
LoginCheckActive=1

##

# interval between checks (in seconds)

i
LoginCheckInterval=600

7

# these are the severities (see section 2.3.1)

i
SeverityLogin=info
SeverityLogout=info

##

# multiple logins by same user

7t

SeverityLoginMulti=crit

30



4.10 Modules

samhain has a programming interface that allows to add modules written in C. Basically,
for each module a structure of type struct mod_type, as defined in sh_modules.h, must
be added to the list in sh_modules.c.

This structure contains pointers to initialization, timing, checking, and cleanup functions,
as well as information for parsing the configuration file.

For details, in the source code distribution check the files sh.modules.h, sh_modules.c,
as well as utmp.c, utmp.h, which implement a module to monitor login/logout events.

4.11 Performance tuning

Almost all time is spent in the checksum algorithm. To improve performance, you can use
MD?5 instead of TIGER, which will give some 20 per cent improvement (on Linux/i686).
To switch to MD5, use the DigestAlgo option in the configuration file:

[Misc]
# use MD5
DigestAlgo=MD5

Other things you can do are:

e Build a static binary (use the -—enable-static switch for configure). Static bina-
ries are faster, and also more secure, because they cannot be subverted via libc.
Note: unfortunately this is not possible on Solaris. This is not a bug in samhain ,
but is because some functions in Solaris are only supplied by dynamic libraries.

e Change the compiler switches to optimize more aggressively.

e If on a commercial UNIX, check whether the native compiler produces faster code
(note that you need an ANSI C compiler). The configure script honours CC
(compiler) and CFLAGS environment variables.

On the other side, if you want to reduce the load caused by file checking, you can change
the scheduling priority (see man nice), and/or limit the I/O:

[Misc]

# low priority (positive argument means lower priority)
SetNiceLevel=19

# kilobytes per second

SetI0Limit=1000

31



Similarly, for the SUID check, you can limit the files per seconds:

[SuidCheck]
# limit on files per seconds
SuidCheckFps=250

32



5 7yule — The log server

yule is the log server within the samhain file integrity monitoring system. yule is part
of the distribution package. It is only required if you intend to use the client/server
capability of the samhain system for centralized logging to yule .

To compile with support for networking (client/server), you must use the ——enable-network
configure switch. This will also ensure that by default both a client and a server binary
are compiled.

5.1 General

yule is a non-forking server. Instead of forking a new process for each incoming logging
request, it multiplexes connections internally. Apart from samhain client reports (see
below), yule (version 1.2.84) can also collect syslog reports by listening on port 514 /udp,
if compiled with this option enabled.

Each potential client must be registered with yule to make a connection (see Sect. 4.1
and the example below). The client tells its host name to the server, and the server verifies
it against the peer of the connecting socket. On the first connection made by a client,
an authentication protocol is performed. This protocol provides mutual authentication of
client and server, as well as a fresh session key.

By default, all messages are encrypted using ji;Rijndael;j/ij (selected as the Advanced
Encryption Standard algorithms). The 192-bit key version of the algorithm is used. There
is a compile-time option to switch off encryption, if your local lawmakers don’t allow to
use it (see Appendix).

yule keeps track of all clients and their session keys. As connections are dropped after
successful completion of message delivery, there is no limit on the total number of clients.
There is, however, a limit on the maximum number of simultaneous connections. This
limit depends on the operating system, but may be of order 103.

Session key expire after two hours. If its session key is expired, the client is forced to
repeat the authentication protocol to set up a fresh session key.

Incoming messages are signed by the client. On receipt, yule will:
1. check the signature,

2. accept the message if the signature can be verified, otherwise discard it and issue
an error message,

3. discard the clients signature,
4. log the message, and the client’s hostname, to the console and the log file, and

5. add its own signature to the log file entry.

33



It is possible to set a time limit for the maximum time between two consecutive messages
of a client (option SetClientTimeLimit in the configuration file). If the time limit is
exceeded without a message from the client, the server will issue a warning. The default
is 86400 seconds (one day); specifying a value of 0 will switch off this option.

By default, client messages have the severity inet, and are logged only to the console
and the log file (and to database/external, if threshold is properly set). It is possible to
override this behavior by setting the option UseClientSeverity=yes in the configuration
file. In that case, the client message severity is used, and client messages are treated just
like local messages (i.e. like those from the server itself).

5.2 Client registry

As noted above, clients must be registered with yule to make a connection. The respec-
tive section in the configuration file looks like:

[Clients]

#
# A client

i
Client=HOSTNAME_CLIENT1@salt1@verifierl

7*

# another one

i
Client=HOSTNAME_CLIENT20salt20verifier?

##

The entries have to be computed in the following way:

1. Choose a password (16 chars hexadecimal, i.e. only 0 — 9, a—f, A — F allowed. You
may use:

yule —gen-password

2. Use the program samhain _setpwd to reset the password in the compiled binary (that
is, samhain , not yule ) to the one you have chosen. Running samhain setpwd
without arguments will print out exhaustive usage information.

3. Use the server’s convenience function to create a registration entry:

yule -P password

4. The output will look like:
Client=HOSTNAME@salt@verifier

34



You now have to replace HOSTNAME with the fully qualified domain name of the
host on which the client should run.

5. Put the registration entry into the servers’s configuration file, under the section
heading Clients (see Sect. 5.2). You need to send SIGHUP to the server for the
new entry to take effect.

6. Repeat steps (1) — (5) for any number of clients you need (actually, you need a
registration entry for each client’s host, but you don’t neccesarily need different
passwords for each client. L.e. you may skip steps (1) — (3)).

5.3 Enabling logging to the server

If the client is properly registered with the server, all you need to do is to set an appropri-
ate threshold for remote logging in the client’s configuration file, and give the IP address
of the server (if not already compiled in). Of course, the client must be compiled with
the -—enable-network switch.

Example

[Log]

#
# Threshold for forwarding to the log server

i
ExportSeverity=crit

[Misc]

SetLogServer=I/P address

5.4 Database / configuration file download

Caveat: Obviously, retrieving the configuration file from the log server requires that the
IP address of the log server is compiled in.

5.4.1 Configuration file

If the compiled-in path to the configuration file begins with the special value “REQ_FROM_SERVER”,
the client will request to download the configuration file from yule (i.e. from the server).

35



If “REQ_FROM_SERVER” is followed by a path, the server will use that path as the
path to its configuration file (basically, this feature allows to use the same configuration
options for client and server).

The client will use the path following “REQ_FROM_SERVER” as a fallback if (and only
if) it is initializing the database.

Example: --with-config-file=REQ_FROM_SERVER/etc/conf.samhain
In this case, the client will request to download the configuration file from the server,
while the server will use “/etc/conf.samhain” as its configuration file.

The server will search for the configuration file to send in the following order of priority
(statedir is the state data directory, see Sect. A.4; clientname is the hostname of the
client’s host, as listed in the server’s config file in the [Clients] section):

1. statedir/rc. clientname

2. statedir/rc

5.4.2 Database file

If the compiled-in path to the database file begins with the special value “REQ_FROM_SERVER”,
the client will request to download the database file from yule (i.e. from the server).
“REQ_FROM_SERVER” must be followed by a path that will be used for writing the
database file when initializing (the client cannot upload the database file to the server, as

this would open a security hole).

Example: --with-data-file=REQ_FROM_SERVER/var/lib/samhain/data.samhain

In this case, the client will request to download the database file from the server if check-
ing, and will create a local database file /var/lib/samhain/data.samhain if initializing.
You have to scp this file to the server then.

The server will search for the database file to send in the following order of priority
(statedir is the state data directory, see Sect. A.4; clientname is the hostname of the
client’s host, as listed in the server’s config file in the [Clients] section):

1. statedir/file. clientname

2. statedir/file

5.5 Server status information

yule writes the current status to a HI'ML file. The default name of this file is samhain. html,
and by default it is placed in /var/log.

36



The file contains a header with the current status of the server (starting time, current
time, open connections, total connections since start), and a table that lists the status of
all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive The client has not connected since server startup.
Started The client has started.
This message may be missing if the client was
already running at server startup.

Exited The client has exited.
Message The client has sent a message.
File transfer The client has fetched a file from the server.
ILLEGAL Startup without prior exit.
May indicate a preceding abnormal termination.
PANIC The client has encountered a fatal error condition.
FAILED An unsuccessful attempt to set up a session key
or transfer a message.
POLICY The client has discovered a policy violation.

For each client, the latest event of each given type is listed. Events are sorted by time.
Events that have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table entry, and (iii)
the file end. Templates must be named head.html, entry.html, and foot.html, respectively,
and must be located in the state data directory (see Sect. A.4). The distribution package
includes two sample files head.html and foot.html.

37



The following replacements will be made in the head template:

%T Current time.

%S Startup time.

%L Time of last connection.

%0 Open connections.

%A Total connections since startup.

%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

%H Host name.
%S Event.
%T Time of event.

NOTE: A literal '%’ in the HTML output must be represented by a % * ("%’ followed by
space) in the template.

5.6 syslog logging

yule (version 1.2.8+) can listen on port 514/udp to collect reports from syslog clients.
This must be enabled by using the --enable-udp configure option when compiling.
In addition, in the [Misc] section of the configuration file, you must set the option
SetUDPActive=yes.

This option requires to run yule either as root, or as SUID root. For security, yule
will drop root privileges irrevocably immediately after binding to port 514/udp. It will
assume the credentials of some compiled-in user. The default is 'nobody’, but you should
probably change this with the ——with-ident=X option. Daemons should run as a dedi-
cated user, not as 'nobody’.

Note that in this case you cannot use a privileged port (< 1024) for the samhain client(s)
because yule does not have root privileges anymore when binding to that port. The
default is 49777, which causes no problem.

5.7 Performance tuning

Even without tweaking, the server can probably handle some 100 connections per second
on a 500Mhz i686. Depending on the verbosity of the logging that you wish, this should
suffice even for some thousand clients.

38



Almost all time is spent (i) in the HMAC function that computes the message signatures,
and (ii) if you do not have the gmp (GNU MP) library, in the multiple precision arithmetic
library (for SRP authentication).

The reason for (ii) is that samhain /yule will use a simple, portable, but not very efficient
MP library that is included in the source code, if gmp is not present on your system.

To improve performance, you can:

e install gmp, remove the file config.cache in the source directory (if you have run
configure before), and then run configure and make again. The configure script
should automatically detect the gmp library and link against it.

e use a simple keyed hash (HASH-TIGER), which will compute signatures as HASH (message
key) instead of the HMAC (HMAC-TIGER). This will save two of the three hash
computations required for a HMAC signature.

Important: make sure you use the same signature type on server and client !

[Misc]

i

# use simple keyed hash for message signatures

# Make sure you set this both for client and server

7
MACType=HASH-TIGER

e build a static binary (use the -—enable-static switch for configure). Static binaries
are faster, and also more secure, because they cannot be subverted via libc.
Note: unfortunately this is not possible on Solaris. This is not a bug in samhain ,
but is because some functions in Solaris are only supplied by dynamic libraries.

e change the compiler switches to optimize more aggressively.

e if on a commercial UNIX, check whether the native compiler produces faster code
than gce (note that you need an ANSI C compiler). The configure script honours
CC (compiler) and CFLAGS environment variables.

5.8 Authentication protocol
Depending in the option selected at compile time, either a challenge-response protocol or

the Secure Remote Password (SRP) protocol will be used for mutual authentication and
exchange of a session key.

39



5.8.1 Challenge-response

The client requests a random nonce from the server.

The server generates a random nonce v and sends H(v: password) v to the client. (H
is a one-way hash function.)

The client generates a random nonce u and sends H(H (u:v) password) u.

The session key is H(w: password: u)

5.8.2 SRP

The protocol is described in detail in the following paper (available at
http://srp.stanford.edu/srp):

T. Wu, The Secure Remote Password Protocol, in Proceedings of the 1998 Internet So-
ciety Network and Distributed System Security Symposium, San Diego, CA, Mar 1998,
pp. 97-111.

Some of the advantages of SRP are:

1.

5.9

No useful information about the password is revealed.

. No useful information about the session key is revealed to an eavesdropper.
. A compromise of a session key does not help to determine the password.

. A compromise of the password does not allow to determine the session key for past

sessions.

A man-in-the-middle attack may at worst cause the authentication to fail.

Message transfer protocol

To submit a message to yule , the following protocol is used:

1.

2.

The client request a random nonce from the server.
The server generates a random nonce u and sends it to the client.

The client send the message, followed by a signature. The signature is computed as
H(message: u: session key). (H is a one-way hash function.)

On receipt of the message, the server verifies the signature, and discards message
on failure.

40



5. The server confirms successful receipt by sending H(message: session key:u) (i.e.
reverse order of u and session key in the hash).

6. The client verifies the server’s confirmation.

Message transfer is relieable in the sense that the client assumes responsibility for the
message until it has verified the server’s confirmation of the receipt.

5.10 File transfer protocol

For file transmission, the following protocol is used:

1. The client announces that it requests a file from the server.
2. The server generates and sends a random nonce w.

3. The client generates and sends a random nonce v, together with a request for either
the configuration or database file.

4. The server sends the file in chunks of 65280 bytes, each preceded by a checksum
computed as H(H(u: v: sesston key)H(data)).

5. The client verifies the checksum, and discards data on failure.

6. The server ends the file transmission with an EOF marker signed by H(H(u: v: session
key) H(client_hostname)) .

7. The client verifies the EOF marker, and discards the file on failure.

On the client side, transferred data are written to a temporary file that is created in
the home directory of the effective user. The filename is chosen at random, the file is
opened for writing after checking that it does not exist already, and immediately thereafter
unlinked.

Thus the name of the file will be deleted from the filesystem, but the file itself will remain
in existence until the file descriptor referring it is closed (see man unlink), or the process
exits (on exit, all open file descriptors belonging to the process are closed).

41



6 Hooks for External Programs

samhain provides several hooks for external programs for (re-)processing the audit trail,
including pipes, a System V message queue, and the option to call external programs.

6.1 Pipes

It is possible to use named pipes as 'console’ device(s) (samhain supports up to two
console devices, both of which may be named pipes. You can set the device path at
compile time (see A.4), and/or in the configuration file (see 3.3.1).

6.2 System V message queue

It is possible to have a SystemV IPC message queue (which is definitely more elegant than
named pipes) as additional ’console’ device. You need to compile with --enable-message-queue
and use the option MessageQueueActive=T/F. The default mode is 700 (rwx——), but

this is a compile option (message queues are kernel-resident, but have access permissions

like files). To get the System V IPC key for the message queue, use ftok("/tmp", ’#°);

(man ftok, man msgctl, man msgrcv). Note that not all systems support SysV IPC.

6.3 Calling external programs

samhain may invoke external programs or scripts in order to implement logging capabili-
ties that are not supported by samhain itself (e.g. pager support). This section provides
an overview of this capability.

External programs/scripts invoked for logging will receive the formatted log message on
stdin. The program should expect that stdout and stderr are closed, and that the
working directory is the root directory.

Each external program must be defined in the configuration file, in a section starting with
the header [External].

In addition, ExternalSeverity must be set to an appropriate threshold in the section
[Log].

Each program definition starts with the line
OpenCommand=/full/path

Options for the program may follow. The definition of an external program is ended when
the section ends, or when another OpenCommand=/full/path line for the next command is
encountered.

e There are several places in samhain where external programs may be called. Each

42



such place is identified by a type. Currently, valid types are:

log An external logging facility, which is handled like other logging facilities. The
program will receive the logged message on stdin, followed by a newline, fol-
lowed by the string [EOF] and another newline.

srv Executed by the server, whenever the status of a client, as displayed in the
HTML status table, has changed. The program will receive the client host-
name, the timestamp, and the new status, followed by a newline, followed by
[EOF] and another newline.

Any number of external programs may be defined in the configuration file. Each
external program has a type, which is log by default. Whenever external programs
are called, all programs of the appropriate type are executed. The type can be set
with

SetType=type

External programs must be on a trusted path (see Sect. 2.1), i.e. must not be
writeable by untrusted users.

For enhanced security, the (192-bit TIGER) checksum of the external program/script
may be specified in the configuration file:
SetChecksum=checksum (one string, no blanks in checksum)

Command line arguments and environment variables for each external program are
configurable (the default is no command line arguments, and only the timezone in
the environment):
SetCommandline=full command line (starting with the name of the program)
Setenviron=KFEY=value

The user whose credentials shall be used, can be specified:
SetCredentials=username

Some filters are available to make the execution of an external program dependent
on the message content:

SetFilterNot=/ist If any word in list matches a word in the message, the
program is not executed, else

SetFilterAnd=list if any word in [ist is missing in the message, the program
is not executed, else

SetFilter0Or=list if none of the words in list is in the message, the program is
not executed.
Any filter not defined is not evaluated.

It is possible to set a 'deadtime’. Within that ’deadtime’, the respective external
program will be executed only once (if triggered):
SetDeadtime=seconds

43



6.3.1 Example setup for paging

The distribution contains two example perl scripts for paging and SMS messages (ex-
ample_pager.pl, example_sms.pl). The paging script will page via a web CGI script at
www.pagemart.com (obviously will work only for their pagers), the SMS script is for any
German ’'free SMS’ web site that outsources free SMS to pitcom (with a suitable query
on Google you can find such sites; you can then inspect the HTML form to set proper
values for the required form variables.)

If you know some Perl, both scripts can be adapted fairly easily to other providers. Below
is an example setup for calling example_pager.pl as an external logging facility.

[External]

# start definition of first external program
OpenCommand=/usr/local/bin/example_pager.pl
SetType=log

# arguments

SetCommandline=example_pager.pl pager_id

# environment
SetEnviron=HOME=/home/moses
SetEnviron=PATH=/bin:/usr/bin:/usr/local/bin
# checksum
SetChecksum=FCBD3377B65F92F1701AFEEF3BSESASOED4936FD0D172C84
# credentials

SetCredentials=moses

# filter

SetFilterOr=POLICY

# deadtime

SetDeadtime=3600

44



7 Signed Configuration/Database File

Both the configuration file (Sect. C.1) and the database of file signatures (Sect. 4.6) may
always be cleartezt signed by GnuGP (gpg) or PGP (pgp).

Note that pgp 2.6.3 seems to refuse a cleartext signature on the database (777) (any pro-
gram that tries to be smarter than the user should be considered seriously flawed). If you
experience problems, we recommend switching to GnuPG, which seems more respectful
of the user’s wishes, however strange they may be.

If compiled with support for signatures, samhain will invoke gpg or pgp to verify the
signature. To compile with gpg/pgp support, use the configure option:

./configure --with-gpg=/full/path/to/gpg (GnuPG)
- Or -
./configure --with-pgp=/full/path/to/pgp (PGP)

e samhain will check that the path to the executable is writeable only by trusted
users (see Sect. 2.1).

e The program will be called without using the shell, with its full path (as compiled
in), and with an environment that is limited to the $HOME variable.

e The public key must be in in the subdirectory $HOME/.gnupg/$HOME/ . pgp, where
$HOME is the home directory of the effective user (usually root).

e From the command line, the signature must verify correctly with
/path/to/gpg --status-fd 1 --verify - < FILE (GnuPGQG), or
/path/to/pgp +language=en -o /dev/null -f < FILE (PGP),
when invoked by the effective user of samhain (usually root).

As signatures on files are only useful as long as you can trust the gpg/pgp executable and
the file holding the public key, you may consider using the following options:

e it is possible to compile in the TIGER checksum of the gpg/pgp executable, which
then will be verified before calling the program. The appropriate configure option
is:

--with-checksum="CHECKSUM"
CHECKSUM should be the checksum as printed by

gpg ——load-extension tiger --print-md TIGER192 /path/to/gpg
- OI‘ -
samhain -H /path/to/gpg

(the full line of output, with spaces).

45



Example:
--with-checksum="/usr/bin/gpg: 1C739B6A F768C949 FABEF313 5FOB37F5 22ED4A27
60D59664"

e it is possible to compile in the key fingerprint of the signature key, which then will
be verified after checking the signature itself:

--with-fp=FINGERPRINT
FINGERPRINT should be the key fingerprint without spaces.

Example:
--with-fp=EF6CEF54701A0AFDB86AF4C31AAD26C80F571F6C

samhain will report the signature key owner and the key fingerprint as obtained from
gpg/pgp- If both files are present and checked (i.e. when checking files against the
database), both must be signed with the same key. If the verification is successful, samhain
will only report the signature on the configuration file. If the verification fails, or the key
for the configuration file is different from that of the database file, an error message will
result.

46



8 Stealth mode

If an intruder does not know that samhain is running, s/he will make no attempt to
subvert it. Hence, you may consider to run samhain in stealth mode, using some of the
options discussed in this section.

8.1 Hiding the executable

samhain may be compiled with support for a stealth mode of operation, meaning that
the program can be run without any obvious trace of its presence on disk. The following
options are provided:

—with-stealth=xo0r_val provides the following measures:

1. All embedded strings are obfuscated by XORing them with some value zor_val
chosen at compile time. The allowed range for zor_val is 128 to 255.

2. The messages in the log file are obfuscated by XORing them with zor_val. The built-
in routine for validating the log file (samhain -L /path/to/logfile) will handle
this transparently. You may specify as path an already existing binary file (e.g. an
executable, or a JPEG image), to which the log will get appended. Note: Use
samhain -jL /path/to/logfile if you just want to view rather than verify the
logfile.

3. Strings in the database file are obfuscated by XORing them with zor_val. You may
append the database file to some binary file (e.g. an executable, or a JPEG image),
if you like.

4. The configuration file must be steganographically hidden in a postscript image file
(the image data must be uncompressed). To create such a file from an existing
image, you may use e.g. the program convert, which is part of the ImageMagick
package, such as:
convert +compress ima.jpg tma.ps.

To hide/extract the configuration data within/from the postscript file, a utility
program samhain stealth is provided. Use it without options to get help.

Note: If -—with-stealth is used together with --with-gpg/pgp, then the config
file must be signed before hiding it (rather than signing the PS image file afterwards).

—with-micro-stealth=zo07r_val is like ——with-stealth, but uses a 'normal’ configuration
file (not hidden steganographically).

47



—with-nocl[=ARG] will disables command line parsing. The optional argument is a
‘'magic’ word that will enable reading command-line arguments from stdin. If the first
command-line argument is not the 'magic’ word, all command line arguments will be
ignored. This allows to start the program with completely arbitrary command-line argu-
ments.

—with-install-name=NAME will rename every installed file from *samhain* to *NAME*
when doing a 'make install-samhain’ (standalone/client installation), and likewise rename
installed files from *yule* to *NAME* when doing a 'make install-yule’ (server installa-
tion). Also, the boot scripts (samhain.startSuSE, samhain.startDebian, samhain.startRedHat)
will be updated accordingly. Files created by samhain (e.g. the database) will also have
‘samhain’ replaced by 'NAME’ in their filenames.

Note: if you want to install both server and client on the same host, both would be
renamed to the same. You need to run ./configure (and make clean && make) again with

a different install-name to fix this.

Hint: the man pages have far too much specific information enabling an intruder to infer
the presence of samhain. There is no point in changing 'samhain’ to 'NAME’ there - this
would rather help an intruder to find out what 'NAME’ is. You probably want to avoid
installing man8/samhain.8 and man5/samhainre.5.

—enable-khide (Linuz only) will compile/install two loadable kernel modules (samhain hide.o

/ samhain erase.o). samhain hide.o will hide every file/directory/process with the

string NAME (from --with-install-name=NAME). If --with-install-name is not used,

NAME is set to samhain .

To hide the module itself, the second module samhain erase.o is provided. Loading

and immediately thereafter unloading this module will hide any module with the string

NAME in its name.

make install will install the kernel modules to the appropriate place.

Note: hidden files can still be accessed if their names are known, thus using the option
--with-install-name

to rename installed files is recommended for security.

Note: using the modules at system boot may cause problems with the GNOME (1.2)

gdm display manager (no problems observed with kdm). In case of problems, you may

need to reboot into single-user mode and edit the boot init script ...

8.2 Packing the executable
For even more stealthyness, it is possible to pack and encrypt the samhain executable.

The packer is just moderately effective, but portable. Note that the encryption key of
course must be present in the packed executable, thus this is no secure encryption, but

48



rather is intended for obfuscation of the executable. There is a make target for packing
the samhain executable:

make samhain.pk

On execution, samhain.pk will unpack into a temporary file and execute this, passing
along all command line arguments. The temporary file is created in /tmp, if the sticky
bit is set on this directory, and in /usr/bin otherwise. The filename is chosen at random,
and the file is only opened if it does not exist already (otherwise a new random filename
will be tried). The file permission is set to 700.

The directory entry for the unpacked executable will be deleted after executing it, but on
systems with a /proc filesystem, the deleted entry may show up there. In particular, this
is the case for Linux. You should be aware that this may raise suspicion.

On Linux, the /proc filesystem is used to call the unpacked executable without a race
condition, by executing /proc/self/fd/NN, where NN is the file descriptor to which the
unpacked executable has been written. On other systems, the filename of the unpacked
executable must be used, which creates a race condition (the file may be modified between
creation and execution).

The packed executable will not honour the SUID bit.

49



9 Deployment to remote host

samhain includes a system to facilitate deployment of the client to remote hosts. To use
this system, the following requirements must be met:

1. You must have compiled the server (yule ) on the local host from which you dis-
tribute, and it must be in your $PATH

2. For each operating system type, there must be one host where development tools
(C compiler, make, strip) are available to build the client.

3. On each remote host, you must be able to login as root with ssh.

There are two major parts of this system:

e A directory profiles that for each system type (OS & machine) of remote systems
holds a subdirectory (the subdirectories profiles/os-machine/ in the source tree)
that includes the following files:

1. configopts holds the build configure options, i.e. the options given to configure
when building the samhain executable on the remote host,

2. samhainrc holds the configuration file for the samhain executable, and

3. bootscript is a script that modifies the remote host configuration to make

samhain start when booting.

e A script deploy.sh (created by configure from deploy.sh.in) that, on execution,
will:
1. create a mini-distribution samhain-deploy.tar.gz,
2. copy it to the remote host,
3. compile (if needed) or install the samhain client,
4

. initialize and retrieve the database (and the compiled binary), delete the database
on the remote host, and

5. store the client’s credentials (by default) in a file profiles/yulerc.clients.
(This is what goes into the [Clients] section of the server config file).

6. store the client’s file signature database by default in
profiles/file.$hostname, and

7. store the client’s config file by default in profiles/rc.$hostname.
After building the client on one host of some system type, the executable will
automatically be retrieved and stored in profiles/os-machine/ for further distri-

bution. No development tools (compiler, make, strip, install) are required then on
other hosts of the same type for deployment of the compiled executable to them.

20



deploy.sh takes the following arguments:

e -v|—verbose Verbose output
e -fl—force Force recompilation, even if compiled binary available
e -p|-pack Pack the executable

e —remote-host=HOST Deploy to this host (if not building). Not required if you
want to compile.

e —build-host=HOST Build on this host. Not required if you already have compiled
for this architecture. Note that you can either build or deploy, but not both with
a single run of the script.

e —build-OS=O0S The architecture of the build/deploy host. Used to select the

proper profiles/os-machine subdirectory.

e —build-dir=DIR Directory on the remote (build/deploy) host where the files will
be unpacked, and eventually compiled. If this directory or one of its parents is
writeable by others than root, you should have given a list corresponding list of
trusted UIDs (see next) when building.

e —add-path=ADDPATH Directories (in the format pathl:path2:...) that should
be appended to the PATH variable on the remote host.

e —trusted-uids=UIDS List of trusted uids on the build/deploy host (required if
the —build-dir or one of its parents is writeable by others than root). Must be given
at compile time.

e —build-user=USER Perform a 'su’ to this user when compiling on the build host.

e —prefix=PREFIX The PREFIX given to ’./configure’ when compiling on the build
host.

e —xor-code=XOR The XOR code for (micro-)stealth (if you use —enable-[micro-
|stealth in profilesarchitecture/configopts

e —nocl-code=NOCL The NOCL magic string for the —with-nocl option.

e —basel1=BASE1l,-base2=BASE2 The base keys for verifying e-mail /log entries.
This should be the same for all binaries on your network.

e —loghost=HOST The host on which the server will run.

e —install-name=NAME The name under which the client will be installed.

o1



—clients=FILE Add client’s credential to this file. If FILE is the server’s config
file, and has a [Clients] section, add to this section. If there is already an entry for
the remote host to which you just have deployed, replace this entry.

Note that a temporary file might be created, thus FILE should be in a secure (not
world-writeable) directory.

—client-files=DIR Copy the remote host’s database and the config file to this direc-
tory. Ideally this would be the server’s state data directory (default: /var/lib/samhain,
see Sect. A.4, from where the server will fetch the files when the client requests them
for download.

Usage Notes

Deployment occurs in two separate stages: First, you need to build the executable
on some host, using the -—-build-host option of deploy.sh. Second, you can then
distribute to other hosts using the -—-remote-host option of deploy.sh.

You must run configure first, and compile and install the server (yule ), before
using deploy.sh.

yule must be in your $PATH, if deploy.sh is not used from the top source direc-
tory. It is not necessary to have the server running, though.

It is recommended that you use 'make install-deploy’ to install the required files of
the deploy system to to the samhain state directory (usually /var/lib/samhain, but
see Sect. A.4), and deploy.sh to the $(sbindir) (by default /usr/local/sbin), i.e.
the same directory where yule gets installed.

deploy.sh uses ssh/scp. You need to have the sshd daemon running on the remote
host. It is helpful if RSA-based authentication is possible for root, otherwise you
have to type in your password quite a few times.

Note: to use RSA-based authentication in a secure way, it is recommended to
proceed as follows:

— Use ssh-keygen to create a public/private key pair. Don’t forget to set a
passphrase for the private key (ssh-keygen will ask for it).

— Copy the public key $HOME/ . ssh/identity.pub to $HOME/.ssh/authorized keys
on any remote host where you want to log in. Do not copy the private key
$HOME/ .ssh/identity to any untrusted host !

— On your central host, execute the commands (in a bash /bourne shell, and with
”ssh-agent -s” in backticks):
myhost:~ # eval ‘ssh-agent -s°
myhost:” # ssh-add

52



ssh-add will ask for the passphrase for the private key. You can then ssh/scp
without typing the passphrase again, until you exit the current shell.

— If you do not use ssh-agent, you might want to have a blank ssh password for
your private ssh RSA key, and instead use GnuPG to encrypt the private
RSA key (in .ssh/identity), and store it on a trusted machine or on removeable
media only. Only decrypt the private RSA key if you need to login to (a)
remote host(s), and delete the decrypted key if not needed anymore. This
allows to login multiple times without typing in the ssh passphrase each time,
even without ssh-agent.

—xor-code, —basel, —base2 are needed for consistency across multiple runs of configure.
This is not important for client/server interaction, but for verification of e-mails/log
files written by the client (if you make use of these additional logging facilities).

The deployed client is compiled to retrieve the database and the configuration file
from the server. It will not work (except for initialization of the database) with
database/configuration files stored on the client side. When invoked for file system
checking, the deployed client will expect the server running on the host specified by
—loghost, which by default is set to the local host on which deploy.sh is executed
(surprise, surprise ...).

If you have properly used the options —clients and —client-files, you just need to send
SIGHUP to the server after deploying a client, and everything is ready on the server
side.

If you want to start the client after deployment (normally, it would be started after
the first reboot by the installed bootscript), then you need to add a command at the
bottom of profiles/bootscript (i.e. the shell script that modifies the remote host
configuration to make samhain start when booting). Note that when this script is
run, the server is not yet ready for serving the database and config file to the client
(they are not uploaded to the server yet), therefore you must use at to start the
client with some delay (example for SuSE Linux):
echo /sbin/init.d/samhain start | at now + 1hour

To add support for another system type, just create a subdirectory named
profiles/architecture/in the source tree, and figure out appropriate files configopts,
samhainrc, and bootscript. Note that the layout of the run level directories (with
scripts to start/stop services when booting) is usually different for any two different
Linux distros.

23



10 Security Design

10.1 Usage

It is recommended to:

e compile a static binary (not linked to shared libraries), using the configure option
--enable-static if possible (not possible on Solaris - this is a Solaris problem, not
a problem of samhain )

e strip the binary (on Linux, also use the provided sstrip utility: strip samhain
&% sstrip samhain). This will help somewhat against intruders that try to run it
under a debugger ...

e use signed database/configuration files using the configure options
--with-gpg=PATH_TO_GPG, and compile in the checksum of the GnuPG binary
(-—with-checksum=. ..) and the fingerprint of the signing key (--with-fp=...)

e take a look at the stealth options - while 'security by obscurity’ only is a very
bad idea, it certainly helps if an intruder does not know what defenses you have in
place

If you use a precompiled samhain executable (e.g. from a binary distribution), in
principle a prospective intruder could easily obtain a copy of the executable and analyze
it in advance. This will enable her/him to generate fake audit trails and/or generate a
trojan for this particular binary distribution.

For this reason, it is possible for the user to add more key material into the binary
executable. This is done with the command:

samhain --add-key=key@/path/to/executable

This will read the file /path/to/executable, add the key key, which should not contain a '@’
(because it has a special meaning, separating key from path), overwrite any key previously
set by this command, and write the new binary to the location /path/to/executable.out
(i.e. with .out appended). You should then copy the new binary to the location of the
old one (i.e. overwrite the old one).

Note that using a precompiled samhain executable from a binary package dis-
tribution is not recommended unless you add in key material as described
here.

10.2 Design

Obviously, a security application should not open up security holes by itself. Therefore,
an inportant aspect in the development of samhain has been the security of the program

o4



itself. While samhain comes with no warranty (see the license), much effort has been
invested to identify security problems and avoid them.

To avoid buffer overflows, only secure string handling functions are used to limit the
amount of data copied into a buffer to the size of the respective buffer (unless it is known
in advance that the data will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to zero thereafter.
Signal handlers, timers, and file creation mask are reset, and the core dump size is set to
zero. If started as daemon, all file descriptors are closed, and the first three streams are
opened to /dev/null.

If external programs are used (in the entropy gatherer, if /dev/random is not available),
they are invoked directly (without using the shell), with the full path, and with a limited
environment (by default only the timezone). Privileged credentials are dropped before
calling the external program.

With respect to its own files (configuration, database, the log file, and its lock), on access
samhain checks the complete path for write access by untrusted users. Some care has
been taken to avoid race conditions on file access as far as possible.

samhain requires root privileges to monitor files with privileged access. If set SUID root,
samhain will run with the credentials of a compiled-in user, which by default is nobody.
In that case, root privileges will only be used if neccessary.

Critical information, including session keys and data read from files for computing check-
sums, is kept in memory for which paging is disabled (if the operating system supports
this). This way it is avoided that such information is transfered to a persistent swap store
medium, where it might be accessible to unauthorized users.

Random numbers are generated from a pseudo-random number generator (PRNG) with a
period of 288 (actually by mixing the output from three instances of the PRNG). The inter-
nal state of the PRNG is seeded from a strong entropy source (if available, /dev/random
is used, else lots of system statistics is pooled and mixed with a hash function). The
PRNG is re-seeded from the entropy source at regular intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of the PRNG
can be inferred. To avoid this, the internal state of the PRNG is hidden by hashing the
output with a hash function.

25



A Compilation options

A.1 General

—with-rnd=egd/dev/unix/default The entropy gatherer to use. ’egd’ is the Entropy
Gathering Daemon (EGD), dev’ is /dev/random, "unix’ is the built-in Unix entropy
gatherer (similar to EGD), and 'default’ will check for /dev/random first, and use
‘unix’ as fallback.

—with-egd-socket=NAME The path to the EGD socket. Default is $(state data)/entropy
(see A4).

—enable-login-watch Compile in the module to watch for login/logout events.

—with-identity=USER The username to use when dropping root privileges (default
nobody).

—with-sender=SENDER The username of the sender for e-mail (default is daemon).

—with-recipient=ADDR The recepient(s) for e-mail, seperated by whitespace (max.
8). You can add recepients in the configuration file as well.

—with-trusted=UID Trusted users (must be a comma-separated list of numerical UIDs).
Only required if the configuration file must be on a path writeable by others than
root and the effective user.

—with-timeserver=HOST Set host address for time server (default is literal “NULL”
- use own clock). You can set this in the configuration file as well. An address in
the configuration file will take precedence.

—with-alttimeserver=HOST Set host address for an alternative (backup) time server.
—with-suidcheck Check file system for SUID/SGID binaries not in the database.

—with-kcheck=SYSTEM _MAP (Linux only) Check for clobbered kernel syscalls (to
detect kernel module rootkits). SYSTEM_MAP must be the path to the System.map
file corresponding to the kernel.

—with-stealth=XOR_VAL Enable stealth mode, and set XOR_VAL. XOR_VAL must
be decimal, in the range 127 — 255, and will be used to obfuscate literal strings.

—with-micro-stealth=XOR_VAL As --with-stealth, but without steganographic
hidden configuration file.

—with-nocl=PW Command line parsing is enabled only if the first command line argu-
ment is PW. PW="" (empty string) will disable command line parsing completely.
This may be used as addition to —with(-micro)-stealth to prevent interactive en-
forcement of telltale output.

26



—with-install-name=NAME Upon installation, rename every file from *samhain* to
*NAME*. To be used in conjunction with —with-(micro-)stealth.

—with-base=B1,B2 Set base key for one-time pads. Must be ONE string (no space)
made of TWO comma-separated integers in the range 0 — 2147483647.
Caveat: If this option is not used, a random value will be chosen at compile time
(by the configuration script). Binaries compiled with different values cannot verify
the audit trail(s) of each other.

—enable-db-reload Enable reload of file database on SIGHUP (otherwise, only the con-
fig file will be read again).

—enable-xml-log Enable XML format for the log file.
—with-database=mysql or postgresql Support logging to a (myS or postgres)QL database.

—enable-debug Enable debugging. Will slow down things, increase resource usage, and
may leak information that should be kept secure. Will dump 'core’ and 'samhain_backtrace’
in the root directory on segfault. Do not use in production code.

—enable-ptrace Periodically check whether a debugger is attached, and abort if yes.
Only takes effect if ——enable-debug is not used. Only tested on Linux. Definitely
does not work on Sun Solaris.

A.2 OpenPGP Signatures on Configuration/Database Files

—with-gpg=PATH Use GnuPG to verify database/configuration file. The public key
of the effective user (in /.gnupg/pubring.gpg) will be used.

—with-pgp=PATH Use PPG to verify database/configuration file. The public key of
the effective user (in /.pgp/pubring.pgp) will be used.

—with-checksum=CHECKSUM Compile in TIGER checksum of the gpg/pgp binary.
CHECKSUM must be the full line output by samhain or gpg when computing the
checksum (pgp has no support for the TIGER algorithm).

—with-fp=FINGERPRINT Compile in the fingerprint of the key used to sign the
configuration/database files. FINGERPRINT must be without spaces. If used,
samhain will verify the fingerprint, but still report on the used public key.

A.3 Client/Server Connectivity

—enable-network Compile with client/server support.

—disable-encrypt Disable encryption for client/server communication.

57



—disable-srp Disable the use of the zero-knowledge SRP protocol to authenticate to log
server, and use a (faster, but less secure) challenge-response protocol.

—with-port=PORT The port on which the server will listen (default is 49777). Only
needed if this port is already used by some other application. Port numbers below
1024 require root privileges for the server.

—with-logserver=HOST The host address of the log server. This can be set in the
configuration file. A compiled-in address is only required if you want to fetch the
configuration file from the log server. An address in the configuration file will take
precedence.

—with-altlogserver=HOST The host address of an alternative (backup) log server.

A.4 Paths

Compiled-in paths may be as long as 255 chars. If the ——with-stealth option is used,
the limit is 127 chars.

The paths to the database, log file, and lock file can be overridden in the configuration file
(see Sect. C.1 - use "AUTO” to simply tack on the hostname on the compiled-in path).
The same length limits apply.

—prefix=PREFIX The install prefix (default is /usr/local).
IF PREFIX = /usr; then

configuration: /etc/$(install name)rc
state data:  /var/lib/$(install_name)

log file: /var/log/$(install name)_log
lock/pid file: /var/run/$(install_ name).pid
mandir: /usr /share/man

bindir: Jusr/sbin/

IF PREFIX = /opt; then

configuration: /etc/opt/$(install name)rc

state data:  /var/opt/$(install_name)/$(install_name)

log file: /var/opt/$(install_ name)/$(install_name) log
lock/pid file: /var/opt/$(install name)/$(install name).pid
mandir: /opt/$(install name) /man

bindir: /opt/$(install_name)/bin/

o8



IF PREFIX = (something else); then
if EPREFIX is not set, it will be set to PREFIX

—exec-prefix=EPREFIX The binary directory prefix (default is /usr/local, or see —
prefix=PREFIX above).

—with-man-dir=MPREFIX The man directory directory prefix (default is /usr/local/share/man).

—with-tmp-dir=TPFX The directory where tmp files are created (config/database
downloads from server, extracted PGP-signed parts of config/database files) (de-
fault is $HOME).

—with-config-file=FILE The full path of the configuration file (default is /etc/samhainrc).
—with-dataroot-prefix=DPFX The state data directory (default is /var/lib/samhain).

—with-data-file=FILE The path of the database file written by samhain (default is
$DPFX/samhain_file).

—with-html-file=FILE The path of the html report file written by yule (default is
$DPFX/samhain.html).

—with-log-file=FILE The path of the log file (default is /var/log/samhain_log).
—with-lock-file=FILE The path of the lock file (default is /var/run/samhain.pid).

—with-console=PATH The path of the console (default is /dev/console). This may be
a FIFO.

—with-altconsole=PATH The path of a second console (default is none). This may be
a FIFO. If defined, console output will always go to both console devices (but note
that console devices are only used when running as daemon).

B Command line options

B.1 General

-D, —deamon Run as daemon.
-f, —forever Loop forever, even if not daemon.

-s <arg>, —set-syslog-severity=<arg> Set the severity threshold for syslog. arg may
be one of none, debug, info, notice, warn, mark, err, crit, alert.

-1 <arg>, —set-log-severity=<arg> Set the severity threshold for logfile. arg may be
one of none, debug, info, notice, warn, mark, err, crit, alert.

29



-m <arg>, —set-mail-severity=<arg> Set the severity threshold for e-mail. arg may
be one of none, debug, info, notice, warn, mark, err, crit, alert.

-p <arg>, —set-print-severity=<arg> Set the severity threshold for terminal /console.
arg may be one of none, debug, info, notice, warn, mark, err, crit, alert.

-x <arg>, —set-extern-severity=<arg> Set the severity threshold for external pro-
gram(s). arg may be one of none, debug, info, notice, warn, mark, err,
crit, alert.

-L <arg>, —verify-log=<arg> Verify the integrity of the log file and print the entries
(arg is the path of the log file).

-j, —just-list Just list the logfile, rather than verify (to de-obfuscate the logfile if you
have compiled for stealth mode).

-M <arg>, —verify-mail=<arg> Verify the integrity of e-mailed messages (arg is the
path of the mail box).

-V <arg>, —add-key=<arg> Add key material to the compiled-in key (see Sect. 3.4).
<arg> must be of the form key@/path/to/executable. Output will be written to
/path/to/executable.out.

-H <arg>, —hash-string=<arg> Print the hash of a string / the checksum of a file,
and exit. If arg starts with a ’/’, it is assumed to be a file, otherwise a string. This
function is useful to test the hash algorithm.

-z <arg>, —tracelevel=<arg> If compiled with —enable-debug: arg > 0 to switch on
debug output.
If compiled with —enable-trace: arg > 0 max. level for call tracing.

-i <arg>, —milestone=<arg> If compiled with —enable-trace: trace from milestone
arg to arg+1. If arg = -1, trace all.

-d <arg>, —list-database=<arg> List the database file <arg> (use “default” for the
compiled-in path).

-c, —copyright Print copyright information and exit.

-h, —help Print a short help on command line options and exit.

B.2 samhain
-t <arg>, —set-checksum-test=<arg> Set file checking to init, update, or check. Use

init to create the database, update to update it, and check to check files against the
database.

60



-e <arg>, —set-export-severity=<arg> Set the severity threshold for forwarding mes-
sages to the log server. arg may be one of none, debug, info, notice, warn,
mark, err, crit, alert.

-r <arg>, —recursion=<arg> Set the default recursion level for directories (0 — 99).

B.3 yule

-S, —server Run as server. Only required if the binary is dual-purpose.
-q, —qualified Log received messages with the fully qualified name of client host.

-G <arg>, —gen-password Generate a random password suitable for use in the follow-
ing option (16 hexadecimal digits).

-P <arg>, —password=<arg> Compute a client registry entry. arg is the chosen pass-
word (16 hexadecimal digits).

C The configuration file

C.1 General

The configuration file for samhain is named .samhainrc by default. Also by default, it
is placed in /usr/local/etc. (Name and location is configurable at compile time). The
distribution package comes with a commented sample configuration file.

This section introduces the general structure of the configuration file. Details on individual
entries in the configuration files are discussed in Sect. 4.3 (which files to monitor), Sect. 2.3
(what should be logged, which logging facilities should be used, and how these facilities
are properly configured), and Sect. 4.9 (monitoring login/logout events).

The configuration file contains several sections, indicated by headings in square brackets.
Each section may hold zero or more key=value pairs. Keys are not case sensitive, and

space around the ‘=" is allowed. Blank lines and lines starting with '#’ are comments.
Everything before the first section and after an [EOF] is ignored. The [EOF] end-of-file
marker is optional. Keys are not case sensitive, and space around the '=" is allowed. The

file thus looks like:

Example
# this is a comment

[Section heading]
keyl=value

61



key2=value

[Another section]
key3=value
key4=value

C.1.1 Conditionals

Conditional inclusion of entries for some host(s) is supported via any number of Qhost-
name/@end directives. @hostname and @end must each be on separate lines. Lines in
between will only be read if hostname (which may be a regular expression) matches the
local host.

Likewise, conditional inclusion of entries based on system type is supported via any num-
ber of $sysname:release:machine/$end directives.

sysname:release:machine for the local host can be determined using the command uname
-srm and may be a reqular expression.

A 17 in front of the ’@°/°$’ will invert its meaning. Conditionals may be nested up to
15 levels.

Example

@hostname

only read if hostname matches local host
@end

l@Qhostname

not read if hostname matches local host

@end
i

$sysname:release:machine

only read if sysname:release:machine matches local host
$end

'$sysname:release:machine

not read if sysname:release:machine matches local host
$end

C.2 Files to check

Allowed section headings (see Sect. 4.3.1 for more details) are:

62



[Attributes]
[LogFiles]
[GrowingLogFiles]
[IgnoreAll]
[IgnoreNonel
[ReadOnly]
[User0]

[User1]

Placing an entry under one of these headings will select the respective policy for that
entry (see Sect. 4.3.1). Entries under the above section headings must be of the form:

dir=|optional numerical recursion depth]path
file=path

C.3 Severity of events

Section heading (see Sect. 2.3.1 for more details):
[EventSeverityl]
Entries:

SeverityReadOnly=severity
SeverityLogFiles=severity
SeverityGrowingLogs=severity
SeverityIgnoreNone=scverity
SeverityIgnoreAll=severity
SeverityAttributes=secverity
SeverityUserO=severity
SeverityUserl=severity

SeverityFiles=severity
SeverityDirs=severity
SeverityNames=severity

severity may be one of none, debug, info, notice, warn, mark, err, crit, alert.

C.4 Logging thresholds

Section heading (see Sect. 3.1 for more details):

[Log]

63



Entries:

MailSeverity=[optional specifier|threshold
PrintSeverity=[optional specifier]threshold
LogSeverity=|optional specifier|threshold
SyslogSeverity=|optional specifier|threshold
ExportSeverity=|optional specifier|threshold
ExternalSeverity=[optional specifier]threshold
DatabaseSeverity=[optional specifier]threshold

threshold may be one of none, debug, info, notice, warn, mark, err, crit, alert.

The optional specifier may be one of ’!”, "*’ or '=’, which are interpreted as ’all’, ’all but’,
and ’only’, respectively.

C.5 Watching login/logout events

Section heading:

[Utmp]

Entries:

LoginCheckActive=1/0 "1’ to switch on, "0’ to switch off.
LoginCheckInterval=seconds Interval between checks.
SeverityLogin=severity Severity for login events.
SeverityLoginMulti=severity Severity for logout events.
SeverityLogout=severity Severity for multiple logins by same user.

C.6 Checking for kernel module rootkits

Section heading:

[Kernel]

Entries:

KernelCheckActive=1/0 "1’ to switch on, '0’ to switch off.
KernelCheckInterval=seconds Interval between checks.
SeverityKernel=severity Severity for events.

64



C.7 Checking for SUID/SGID files

Section heading:
[SuidCheck]

Entries:

SuidCheckActive=1/0
SuidCheckInterval=seconds
SeveritySuidCheck=severity
SuidCheckFps=fps

C.8 Database

Section heading:
[Database]

Entries:

SetDBHost=db_host
SetDBName=db_name
SetDBTable=db_table
SetDBUser=db_user
SetDBPassword=db_password

C.9 Miscellaneous

Section heading:
[Misc]

Entries:

Daemon=yes,/no
SetNicelLevel=-19..19

SetIOLimit=bps
SetLoopTime=seconds
SetFilecheckTime=seconds
ReportOnlyOnce=yes/no

17 to switch on, ’0’ to switch off.
Interval between checks.

Severity for events.

Limit files per seconds for SUID check.

Host where the DB server runs.
Name of the database.

Name of the database table.
Connect as this user.

Use this password.

Whether to become a daemon (default: no)

Set scheduling priority during file check.

(see 'man nice’).

Set 10 limits (kilobytes per second) for file check.
Interval between timestamp messages.

Interval between file checks.

Report only once on a modified file.

65



ReportFullDetail=yes/no

Report in full detail on modified files.

ChecksumTest=none/init/update/check The default action.

SetConsole=device
MessageQueueActive=1/0

SetMailTime=seconds

SetMailNum=0 — 127
SetMailAddress=recepient
SetMailRelay=IP address
MailSubject=string
SamhainPath=path

SetLogServer=I/P address
SetTimeServer=I/P address
TrustedUser=username(,username,.. ).
SetDatabasePath=AUTO or /path

SetLogfilePath=AUTO or /path

SetLockfilePath=AUTO or /path

DigestAlgo=SHAI or MD5

RedefReadOnly=+XXX or - XXX
RedefAttributes=+XXX or -XXX
RedefLogFiles=+XXX or - XXX

Set the console device.
Use SysV IPC message queue
(1" is on, '0’ is off).

Maximum time interval between mail messages.
Maximum number of pending mails on internal queue.
Add a recepient e-mail address (max. 8).

The mail relay (for offsite mail).

Custom format for the email subject.

The path of the process image.
The log server.

The time server.

List of additional trusted users.

Path to database (AUTO to tack
hostname on compiled-in path).
Path to log file (AUTO to tack
hostname on compiled-in path).
Path to lock file (AUTO to tack

hostname on compiled-in path).
Use SHA1 or MD?5 instead of the TIGER checksum.

Add or subtract test XXX from the ReadOnly policy.
Add or subtract test XXX from the Attributes policy.
Add or subtract test XXX from the LogFiles policy.

RedefGrowingLogFiles=-XXX or XXMdd or subtract test XXX from the GrowingLogFiles policy.

RedefIgnoreAll=+XXX or - XXX
RedefIgnoreNone=+XXX or - XXX
RedefUserO=+XXX or - XXX
RedefUserl=+XXX or - XXX

SeverityLookup=severity
SetClientTimeLimit=seconds

Add or subtract test XXX from the IgnoreAll policy.
Add or subtract test XXX from the IgnoreNone policy.
Add or subtract test XXX from the User( policy.

Add or subtract test XXX from the Userl policy.

Severity for socket peer not equal client address.
Time limit until next client message (server-only).

MessageHeader="%S %T %F %L %C” Specify custom format for message header.

66



SetUDPActive=yes/no yule 1.2.84: Listen on 514/udp (syslog).
HideSetup=yes/no Don’t log names of config/database files on startup.
SyslogFacility=LOG xzz Set syslog facility (default is LOG_AUTHPRIV).
MACType=HASH-TIGER/HMAC-TIGER Set type of message auth. code (HMAC).

Remarks: (i) root and the effective user are always trusted.

(ii) If no time server is given, the local host clock is used.

(iii) If the path of the process image is given, the process image will be checksummed at
startup and exit, and both checksums compared.

C.10 External

Definition of an arbitrary number of external programs/scripts (see Sect. 6). Section
heading:

[Externall

Entries:

OpenCommand=/full/path/to/program Starts new command definition.

SetType=log/srv Type/purpose of the program.
SetCommandline=list The command line.
SetEnviron=KFEY=value Environment variable (can be repeated).
SetChecksum=TIGER checksum Checksum of the program.
SetCredentials=username User whose credentials shall be used.
SetFilterNot=list Words not allowed in message.
SetFilterAnd=list Words required (ALL) in message.
SetFilterOr=list Words required (at least one) in message.
SetDeadtime=seconds Deadtime between consecutive calls.

C.11 Clients

This section is relevant for yule only. Section heading:
[Clients]

Entries must be of the form:
Client=hostnameQsaltQuerifier

See Sect. 5.2 on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the host on which
it runs. Usually, this will be a fully qualified hostname, no numerical address. However,

67



there is no method that guarantees to yield the fully qualified hostname (it is not even
guaranteed that a host has one ...).

The only way to know for sure is to set up the client, and check whether the connection
is refused by the server with a message like

Connection attempt from unregistered host hostname
In that case, hostname is what you should use.

C.12 End of file

[EOF] Not required, unless there is junk beyond.

68



