y4
< =ROPERIL

VULNERABILITY REPORT

[Vendor: AMD]
[Product: AMD Chipset Drivers]

[Author: Kyriakos Economoul]

[08/04/2021]

E
ZEROPERIL

OVERVIEW

ZeroPeril Ltd has discovered two issues inside the amdpsp.sys (v4.13.0.0) kernel driver module that ships with
the AMD Chipset Drivers package for multiple AMD chipsets [1]:

e B350
e A320
e X370
e X399
e B450
e X470
e X570
e B550
e A520
e TRX40
e WRX80

The first issue is an information disclosure type security vulnerability, and the second is a memory leak type

bug due to insufficient releasing of all associated allocated resources upon request.

We have verified both in the latest Revision Number (2.13.27.501) of the package that was released the 4% of
February 2021.

TECHNICAL DETAILS

The amdpsp.sys driver exposes one or more named device objects of the form \Device\amdpsp in userland to
allow user-mode processes to send /O control (IOCTL) requests. The DACL applied to the device object allows
also low privileged users to open a handle and send requests to the driver.

We have identified two IOCTLs of interest that are related to these findings:

e 0x9c422008
e 0x9c42200c

For simplicity, we will be referring to the first one as ALLOC_CONTIGUOUS_MEMORY and to the second as
FREE_CONTIGUOUS_MEMORY control codes (CTLs).

With regards to the first issue, when the driver receives an ALLOC_CONTIGUOUS_MEMORY request, it will
make a call to MmAllocateContiguousMemorySpecifyCache function [2] to allocate a range of contiguous
physical memory and map it to nonpaged kernel pool address space. Next, the driver will attempt to initialize
the allocated range with zeros by using the exact allocation size as requested.

Ltext:e000000140002882 loc_148682B32: 3 DATA XR

LtextesepaRal488828582 3 .rdata:
text:eBe0008140082882 mow [rsp+38h+arg_@], rbp
Ltext:@800000148002887 mow ebp, edx
text:bebobepliebe2bsg mov r8, BFFFFFFFFFh
Jtext:bebopeplieee2bod mav rod, 4sesaeeh

Ltext: pepepen148802899 mov edx, ebx
Ltext:eepepenldaee2B96 maow ecx, ebp
Ltext:eB8000001400802890 mow [rsp+38h+arg_B], rdi
text:@Be00081400828A2 mow [rsp+3Bh+var_18], 1
.text:eae06080140002BA0 call cs:MmallocateContiguousMemorySpecifyCache
text : pepepeplie002560 mov rdi, rax
Ltext:eBeRaRal40882863 test rax, rax
.text:0006000140002BB6 jnz short loc_l48682BDA
.text:@8808001480028658 mow rdi, [rsp+38h+arg 8]
Ltext:eB0000014008028BD mow rbp, [rsp+38h+arg_@]
Jext:pepepenliene2ec mov ebx, eCesaeaebh
Ltext:ea0808148082BCT7 mowv eax, ebx
Ltext:eo008001400828C0 mow rbx, [rsp+38h+arg_18]
Ltext:@8000001400882BCE mow rsi, [rsp+38h+arg_18]
text:@ae080814068828D3 add rsp, 3Bh
Ltext:eepepenldasa2BD7 pop rl4
text:bebebepliebe2bDo retn

Xt 1 8BBBBBBIABBBZBDA ; - - - - - === o=
. text : 0BBBBAB1AHGH2EDA

Ltext:e0000001400028DA loc_148G82BDA: 3 CODE XREF: Suh_149892859+661j
LtextesepaRal488828DA ; DATA XREF: .pdata:ee0e00014801C138)c
Ltext: pepepen140802BDA mov rg, rbp ; Size

Ltext : pepepep148808280D xor edx, edx 3 val

Ltexteeapaaaliaea2BDF mow rcx, rax 3 Dst

.text:2000880148802BE2 call memset

Figure 1. Memory allocation and initialisation

The first part of the issues starts with memory contents initialisation. The size of memory allocated via
MmAllocateContiguousMemorySpecifyCache function is rounded to the size of memory page as defined by the
system, which is usually 4KBs (4096 bytes) of memory.

In other words, if the request sent to the driver asks for 1-byte allocation, the function will still allocate an
entire memory page, but will only initialise the first byte, since it doesn’t take in consideration the memory
allocation granularity. What this means is that the rest of data on that page will remain intact.

Following that step, the driver will call MmMapLockedPagesSpecifyCache [3] using UserMode access mode
which will map that kernel nonpaged pool page in userland. This allows the process to parse the non-initialised
contents and retrieve information that otherwise would only be accessible by high-privileged processes and/or
code running at kernel level.

E
ZEROPERIL

text:0800000140003099 mov rex, [rsp+e3h+virtualaddress] ; VirtualAddress
text:6p808008148008389E mow esi, eax

text:esaas08 140803008 test rcw, rocx

text:esaeoealdonaivnd jz loc_148883193

.text:0800800140003009 Xor rad, rad 3 ChargeQuota

Ltext : 0eRREEE 14888 3BAC Xor rdd, rad 3 SecondaryBuffer

.text : 686686014006030AF mov edx, rldd ; Length
text:BeE008148083082 mav [rsp+6Bh+Irp], rl2 ;3 Irp
.text:0000000140003087 call cs:ToAllocateMdl

text:oeaaeaalisea3asD maw rbp, rax

text:apeaa86 148863600 test rax, rax

Jtext:esepepalispasecs jz loc_ 148883187

.text:0000000140003009 mov rcx, rax ; MemoryDescriptorlist
text:000080014000300C call cs:MmBuildMdlForNonPagedPool
.text:aeeae081486838D2 mov réd, 1 3 CacheType
text:0860800140003008 xor rad, rad 3 BaseAddress
text:aeeas0al4a8003800 mov rcx, rbp 3 MemoryDescriptorlist
.text:08608001400030DE movIx edwx, rab 3 AccesszMode
Ltext:000000014600630E2 mov [rsp+68h+Priority], 4@eeaeeeh ; Priority
.text:00000001400830EA mov dword ptr [rsp+68h+Irp], rl3d ; BugCheckOnFailure
text:ooe000014080030EF call cs:MmMaplockedPagesSpecifyCache

Figure 2. Usermode mapping of nonpaged kernel pool

The amdpsp.sys driver has an array containing a maximum of 100 mappings at the same time.

Each userland mapping base address will be stored inside that array so that can be retrieved for a subsequent
operation.

We can now proceed to the second issue that involves a FREE_CONTIGUOUS_MEMORY request to the driver.

Upon receiving this request, the driver will extract the userland base address for the mapping that is supplied
via the aforementioned CTL code, and will search through the list of stored mappings.

Once the correct entry has been found, it will call MmFreeContiguousMemory [4] to release the kernel
nonpaged pool allocation that is associated with that mapping. According to the documentation, this should
release the range of physically contiguous memory that was previously allocated.

.tewt:FFFFFER44BCE2E2D sub rsp, 28h
dext:FFFFFEA44ABCE2E24 test rcx, PCX
dext:FFFFFE8448CE2E2Y jz short loc_FFFFF38448CE2E3A
Jtext:FFFFFE@448CE2E29 test edw, edx
dext i FFFFFE@448CE2E2E jz short loc FFFFF3B44BCE2E3A

text:FFFFFE3@448CE2E2D call cs:MmFreeContiguousMemaory
dext i FFFFFE@44@CE2ESS Xor eax, eax
Jdext:FFFFFE@44@CE2ESS add rsp, 28h
Jdext:FFFFFE@448CE2ESD retn

Figure 3. Releasing allocated physical pages

However, even though the nonpaged pool allocation is freed, the driver never calls MmUnmapLockedPages [5]
which results into keeping the mapping of those physical pages in user-mode and subsequently keep them
private to the associated process until it’s terminated. This means that these physical pages become unusable
by the system for the lifespan of the process.

E
ZEROPERIL

Furthermore, additional memory pool chunks allocated for other kernel objects during the memory mapping
stage such as MDL objects [6] also are not freed until the calling process has been terminated, which increases
the memory leak issue by rendering additional memory unusable for other system operations.

SECURITY IMPACT

During our tests we managed to leak several gigabytes of uninitialized physical pages by allocating and freeing
blocks of 100 allocations continuously until the system was not able to return a contiguous physical page
buffer.

The contents of those physical pages varied from kernel objects and arbitrary pool addresses that can be used
to circumvent exploitation mitigations such as KASLR [7], and even registry key mappings of
\Registry\Machine\SAM containing NTLM hashes [8] of user authentication credentials that can be used in
subsequent attack stages.

For example, these can be used to steal credentials of a user with administrative privilege and/or be used in
pass-the-hash [9] style attacks to gain further access inside a network.

MITIGATION ADVICE

1. Use appropriate DACLs on device objects to block non-privileged users from sending IOCTL requests
to a kernel driver whenever possible

2. Avoid userland mappings of kernel pool memory.

3. If mapping kernel pool memory in userland is necessary due to the current design, then make sure
that the memory has been initialised appropriately.

4. Always make sure that allocated resources are freed back to the system when no longer in use.

REFERENCES

1. https://www.amd.com/en/support/chipsets/amd-socket-tr4/x399

2. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-
mmallocatecontiguousmemoryspecifycache

3. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-
mmmaplockedpagesspecifycache

4. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-
mmfreecontiguousmemory

5. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-
mmunmaplockedpages
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-mdls

7. https://docs.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-
mitigations-in-windows-10#table-2

8. https://docs.microsoft.com/en-us/windows/win32/secauthn/microsoft-ntim

9. https://www.sans.org/reading-room/whitepapers/testing/pass-the-hash-attacks-tools-mitigation-
33283

E
ZEROPERIL

