

0

VULNERABILITY REPORT

[Vendor: AMD]

[Product: AMD Chipset Drivers]

[Author: Kyriakos Economou]

[08/04/2021]

1

OVERVIEW

ZeroPeril Ltd has discovered two issues inside the amdpsp.sys (v4.13.0.0) kernel driver module that ships with

the AMD Chipset Drivers package for multiple AMD chipsets [1]:

• B350

• A320

• X370

• X399

• B450

• X470

• X570

• B550

• A520

• TRX40

• WRX80

The first issue is an information disclosure type security vulnerability, and the second is a memory leak type

bug due to insufficient releasing of all associated allocated resources upon request.

We have verified both in the latest Revision Number (2.13.27.501) of the package that was released the 4th of

February 2021.

TECHNICAL DETAILS

The amdpsp.sys driver exposes one or more named device objects of the form \Device\amdpsp in userland to

allow user-mode processes to send I/O control (IOCTL) requests. The DACL applied to the device object allows

also low privileged users to open a handle and send requests to the driver.

We have identified two IOCTLs of interest that are related to these findings:

• 0x9c422008

• 0x9c42200c

For simplicity, we will be referring to the first one as ALLOC_CONTIGUOUS_MEMORY and to the second as

FREE_CONTIGUOUS_MEMORY control codes (CTLs).

With regards to the first issue, when the driver receives an ALLOC_CONTIGUOUS_MEMORY request, it will

make a call to MmAllocateContiguousMemorySpecifyCache function [2] to allocate a range of contiguous

physical memory and map it to nonpaged kernel pool address space. Next, the driver will attempt to initialize

the allocated range with zeros by using the exact allocation size as requested.

2

Figure 1. Memory allocation and initialisation

The first part of the issues starts with memory contents initialisation. The size of memory allocated via

MmAllocateContiguousMemorySpecifyCache function is rounded to the size of memory page as defined by the

system, which is usually 4KBs (4096 bytes) of memory.

In other words, if the request sent to the driver asks for 1-byte allocation, the function will still allocate an

entire memory page, but will only initialise the first byte, since it doesn’t take in consideration the memory

allocation granularity. What this means is that the rest of data on that page will remain intact.

Following that step, the driver will call MmMapLockedPagesSpecifyCache [3] using UserMode access mode

which will map that kernel nonpaged pool page in userland. This allows the process to parse the non-initialised

contents and retrieve information that otherwise would only be accessible by high-privileged processes and/or

code running at kernel level.

3

Figure 2. Usermode mapping of nonpaged kernel pool

The amdpsp.sys driver has an array containing a maximum of 100 mappings at the same time.

Each userland mapping base address will be stored inside that array so that can be retrieved for a subsequent

operation.

We can now proceed to the second issue that involves a FREE_CONTIGUOUS_MEMORY request to the driver.

Upon receiving this request, the driver will extract the userland base address for the mapping that is supplied

via the aforementioned CTL code, and will search through the list of stored mappings.

Once the correct entry has been found, it will call MmFreeContiguousMemory [4] to release the kernel

nonpaged pool allocation that is associated with that mapping. According to the documentation, this should

release the range of physically contiguous memory that was previously allocated.

Figure 3. Releasing allocated physical pages

However, even though the nonpaged pool allocation is freed, the driver never calls MmUnmapLockedPages [5]

which results into keeping the mapping of those physical pages in user-mode and subsequently keep them

private to the associated process until it’s terminated. This means that these physical pages become unusable

by the system for the lifespan of the process.

4

Furthermore, additional memory pool chunks allocated for other kernel objects during the memory mapping

stage such as MDL objects [6] also are not freed until the calling process has been terminated, which increases

the memory leak issue by rendering additional memory unusable for other system operations.

SECURITY IMPACT

During our tests we managed to leak several gigabytes of uninitialized physical pages by allocating and freeing

blocks of 100 allocations continuously until the system was not able to return a contiguous physical page

buffer.

The contents of those physical pages varied from kernel objects and arbitrary pool addresses that can be used

to circumvent exploitation mitigations such as KASLR [7], and even registry key mappings of

\Registry\Machine\SAM containing NTLM hashes [8] of user authentication credentials that can be used in

subsequent attack stages.

For example, these can be used to steal credentials of a user with administrative privilege and/or be used in

pass-the-hash [9] style attacks to gain further access inside a network.

MITIGATION ADVICE

1. Use appropriate DACLs on device objects to block non-privileged users from sending IOCTL requests

to a kernel driver whenever possible

2. Avoid userland mappings of kernel pool memory.

3. If mapping kernel pool memory in userland is necessary due to the current design, then make sure

that the memory has been initialised appropriately.

4. Always make sure that allocated resources are freed back to the system when no longer in use.

REFERENCES

1. https://www.amd.com/en/support/chipsets/amd-socket-tr4/x399

2. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

mmallocatecontiguousmemoryspecifycache

3. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

mmmaplockedpagesspecifycache

4. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

mmfreecontiguousmemory

5. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

mmunmaplockedpages

6. https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-mdls

7. https://docs.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-

mitigations-in-windows-10#table-2

8. https://docs.microsoft.com/en-us/windows/win32/secauthn/microsoft-ntlm

9. https://www.sans.org/reading-room/whitepapers/testing/pass-the-hash-attacks-tools-mitigation-

33283

