

Security Vulnerability Notice

SE-2019-01-ORACLE-2

[Security vulnerabilities in Java Card, Issues 20-25]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered additional security vulnerabilities in Java Card [1]
technology used in financial, government, transportation and telecommunication sectors
among others. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

20 origin javacard.framework.Util class

cause insufficient type check in arrayCompare method implementation (src

argument)

impact compromise of memory safety / arbitrary read access of card memory (via
oracle)

status verified

21 origin javacard.framework.Util class

cause insufficient type check in arrayCompare method implementation (dst

argument)

impact compromise of memory safety / arbitrary read access of card memory (via
oracle)

status verified

22 origin javacard.framework.Util class

cause insufficient type check in arrayFill method implementation

impact compromise of memory safety / arbitrary write access to card memory

status verified

23 origin javacard.framework.Util class

cause insufficient type check in arrayFillNonAtomic method implementation

impact compromise of memory safety / arbitrary write access to card memory

status verified

24 origin javacard.framework.Util class

cause insufficient type check in setShort method implementation

impact compromise of memory safety / arbitrary write access to card memory

status verified

25 origin javacardx.framework.util.intx.JCint class

cause insufficient type check in setInt method implementation

impact compromise of memory safety / arbitrary write access to card memory

status verified

Issues 20-25 were successfully verified in the environment of the most recent Oracle Java

Card 3.1 SDK from Jan 2019 incorporating reference implementation of Java Card VM [2].

All of newly reported issues are due to the missing type check when handling array

arguments. If a specially crafted ordinary object is provided instead of an array of bytes,

Java Card VM can be tricked to treat it is an array of a very large size. This type confusion

condition is explained in a more detail in our previous report (SE-2019-01-ORACLE, Issues 1-

2).

In this report, instead of a direct array copying functionality, other array operations are

signaled. These are the following:

 Issues 20 and 21 make use of array comparison methods. They exploit the possibility

to compare an array with a known content with an array of a completely unknown

content. An unknown and malicious array of bytes A (spoofed by an ordinary object

instance) can be scanned and for each of its elements a comparison operation can

be conducted with an array of bytes B containing 1 element only. If the comparison

operation is done for the length of 1 and the whole range of values of the only

element of array B, one of them will trigger a match with a byte of an unknown array

at given offset. As a result, the content of array A can be discovered (card memory

can be read).

 Issues 22 and 23 exploit the possibility to use array filling methods as a gadget

capable to store a given 1 byte value at target array offset (1 byte store operation),

 Issues 24 and 25 rely on the possibility to directly write short and int values into an

array of bytes.

Table below provides more details with respect to APDU commands implemented by our

Proof of Concept code illustrating the above issues.

POC INS TYPE DESCRIPTION

arrayops 0x10 READ_MEM Read memory by the means of an oracle
available through an array comparison
operation
REQ APDU:
 00-01: offset to start reading data
 02: length of data to read

 03: type (unused)

RESP APDU:
 00-len: bytes of data read (discovered) from
a table of bytes starting from given offset

0x11 WRITE_MEM Write memory by the means of various array
operations
REQ APDU:
 00-01: offset to start writing data
 02: length of data to read
 03: type

 00 - use arrayFill method as a 1

 byte store gadget

 01 - use arrayFillNonAtomic

 method as a 1 byte store
 gadget

 02 - use setShort method

 03 - use setInt method

04-len: data bytes to write
RESP APDU:
00-len: bytes of data written to a table of
bytes starting from given offset

REFERENCES

[1] JAVA CARD TECHNOLOGY

https://www.oracle.com/technetwork/java/embedded/javacard/overview/i

ndex.html

[2] JAVA CARD CLASSIC PLATFORM SPECIFICATION 3.0.5

https://www.oracle.com/technetwork/java/embedded/javacard/downloads/

index.html

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security

company from Poland, providing various services in the area of security and vulnerability

research. The company came to life as a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 100 security issues uncovered in the Java technology over the recent years. He is also

the Argus Hacking Contest co-winner and the man who has put Microsoft Windows to its

knees (the original discoverer of MS03-026 / MS Blaster worm bug). He was also the first

expert to present a successful and widespread attack against mobile Java platform in 2004.

