
RESEARCHING MARVELL

AVASTAR WI-FI: FROM ZERO

KNOWLEDGE TO OVER-THE-

AIR ZERO-TOUCH RCE

Denis Selianin

Agenda

Broadly:

It is all about how device security can be completely
compromised using component vulnerabilities.

Specifically:

• How Wi-Fi devices works/Attack surface of Wi-Fi devices

• RE RTOS ThreadX

• Instrumentation and fuzzing of Wi-Fi firmware

• Exploitation of vulnerabilities on Wi-Fi SoC

• Escalation to the Application Processor (AP)

2

Previous research

• Series of blog posts Google Project Zero by Gal Beniamini
(starting from April 2017)

• Black Hat USA 2017 - Broadpwn: Remotely Compromising
Android and iOS via a Bug in Broadcom's Wi-Fi Chipsets

• SEEMOO lab projects (not actual vulnerability research)

• Some mobile pwn2own baseband exploits and write-ups
(focused on baseband)
• https://github.com/comsecuris/shannonRE

3

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://www.blackhat.com/us-17/briefings.html#broadpwn-remotely-compromising-android-and-ios-via-a-bug-in-broadcoms-wi-fi-chipsets
https://github.com/seemoo-lab
https://github.com/comsecuris/shannonRE

Where Marvell Avastar Wi-Fi
can be found

• Sony PlayStation 4, PlayStation 4 Pro

• Microsoft Surface, Surface Pro, Surface laptop, Xbox One

• Samsung Chromebook, some smartphones like Galaxy J1

• Valve SteamLink, and other devices…

4

How it works

• Difference between FullMAC and SoftMAC

Application

Supplicant

PHY

MAC

MLME

SoftMAC Dongle

Application

Supplicant

PHY

MAC

MLME

FullMAC Dongle

5

How it starts up

6

ROM

FW
RAM

Wi-Fi
chip

ROM

FW
RAM

Uninitialized Initialized

Operating System
driver startup

File from
filesystem

Researched device

• Marvell Avastar 88W8897
• Steamlink Wi-Fi

• GNU/Linux

• mlan + mlinux kernel modules

• Wi-Fi core - ARM946 core

• Wi-Fi + Bluetooth + NFC COMBO

7

Firmware internals of Marvell
FullMAC Wi-Fi

• linux-firmware package or repo

is a source of this blobs

• RAM image files – structure from driver

• IDA loader

• Contains several memory

regions configured by MPU.

• Missing ROM?

dnld_cmd base_addr data_length crc

8

Marvell Wi-Fi device
interaction with AP

• Linux driver
• GNU licensed mwifiex

• Marvell proprietary mlan+mlinux

• API and events – command packets
• Serialization/Deserialization to internal format

• Versions of firmware and driver depends on a chip and
interconnection bus (sd8897.bin vs pci8897.bin)

• Higher layer packets encapsulated in a lower layer
• For example in SDIO RW or PCI bus TLP

9

Marvell Wi-Fi device
interaction with AP. cont.

10

PCI
SDIO
USB
...

Application
processor

Bare-metal
RTOS

Wi-Fi SoC

Firmware API implemented
in driver

• READ/WRITE functions of SoC memory

• Extended version info from firmware (like “w8897o-B0, RF8XXX,
FP68, 15.68.7.p206” for SteamLink)

• Wi-Fi related stuff (authentication, association, scanning…)

• Some of them can be accessed from the usermode

• It is much easier to RE firmware dump

11

Post-mortem analysis of
firmware crash

12

Operating
System
driver

Wi-Fi chip

Request

Timeout

Dumping
memory

Firmware debug crash -
differences

• mwifiex
• PCI DUMP – to devcoredump a

linux device

• Contains FULL Wi-Fi SoC
memory dump

• Format similar to a firmware
image in the filesystem

• Additional driver info and
statistics

• mlan + mlinux
• SDIO DUMP – directly to host

OS filesystem

• Contains SEVERAL memory
regions (ITCM, DTCM, SQRAM,
…)

• RAW binary format – separate
files

• Additional driver info and
statistics

13

Starting RE of firmware
dump

• No symbols (approx. < 10 strings)

• Approx. 5K functions. Some of them exceeds limits of IDA (>
1000 BB)

• No information about RTOS

• ARM code. Most is thumb code

• Only interrupt vectors

• We can find MPU initialization
• Identify boundaries of memory regions

• Memory regions are RWX

14

Firmware memory layout for
88W8887

15

ITCM

DTCM

HEAP + THREAD
STACK

MAIN CODE +
ROM

0x00000000

0x0000FFFF

0x04000000

0x04007FFF

0xC0000000

0xC00FFFFF

0xFFD00000

0xFFFFFFFF

UNKNOWN
0x80000000

0x90000000

RE of Firmware

• Use full memory dumps instead of loaded image FW
• You can get runtime structures

• Appears to be a ThreadX – based bare-metal firmware

• Recover ThreadX runtime structure from live memory dump

• Recover RTOS tasks + stacks
• You can get entry points !!! (with names in case steamlink firmware)

• Recover block and byte pool memory layout
• Essential for hunting bugs

16

ThreadX RTOS

• One of the most popular RTOSes
• Over several billions deployments

• Closed sourced, however leaked sources for earlier versions can
be found

• Provides basic API and services
• Thread scheduling

• Counting semaphores

• Mutexes

• Block and byte pool memory management

• Timers

• …
17

ThreadX runtime structures

• Contain signature fields, by which they can be identified in
memory dump

• Also helps to identify RTOS functions (because of ARM constant
handling)

18

ThreadX runtime objects in
Steamlink Wi-Fi firmware

Object Name Entry point

Thread Idle 0xFFD06479

Thread MAC Tx 0xFFD50C39

Thread MAC Tx Notify 0xFFD55B2F

Thread MAC Mgmt 0xFFD13E55

Thread CB Proc 0xFFD24859

Thread IccTask 0xFFD066D5

Timer SleepConfirmTmr 0xFFD1E055

Timer AP_NullPktDoneTmr 0xFFD1DC55

Timer NullPktDoneTmr 0xFFD1DC55

Queue TxMgmt80211MsgQ -

Queue MacMgmtSMEMsgQ -

Queue TimerCbMsgQ -
19

RE of firmware memory
dump

• Still large and opaque binary

• Need to recover data flows inside firmware
• Identify frame parsing routines

• Need basic firmware instrumentation to do so

20

Firmware instrumentation

• Extremely limited resources on Wi-Fi SoC
• Only several Kbytes of free memory available

• However, we can hook a single function (splicing)

• We can replace pointers for some debug-or-log-like routines

• Can trace block pool allocation/deallocation

• We can even instrument entire code regions (not so big) with
thumb function calls (like DBI with function-level granularity)

• All of this can be accomplished using READ/WRITE
firmware API functions and extended version info API

21

Instrumenting firmware
using debug callbacks

• Though ThreadX block pool management routines are located
in ROM, firmware uses wrappers, which contain debug callback
routine

22

Firmware instrumentation

• Detour all calls in memory region to the instrumentation tool

23

Firmware instrumentation
cont.

24

Instrumentation
stub

1. Call custom
instrumentation

routine

2. Lookup and
call original

procedure by
saved LR

3. Return to
saved LR location

Instrumentation stub

25

1. SAVE ORIGINAL LR

2. PREPARE ARGUMENTS FOR
CUSTOM TOOL

ANALYSIS TOOL

INSTRUMENTATION STUB

LR1 FUNCTION1

LR2 FUNCTION2

 .

5. BX LR

4. ANALYSIS PAYLOAD

9. ORIGINAL FIRMWARE
FUNCTIONALITY

10. BX LR

ORIGINAL FUNCTION

3. CALL TOOL

6. LOOKUP FUNCTION ADDRESS
IN TABLE

7. PREPARE ARGUMENTS FOR
FUNCTION

8. CALL FUNCTION

11. RESTORE ORIGINAL LR

12. BX LR

LOOKUP TABLE

DBI TOOL

How to achieve this?

Instrumentation
workflow

Preparatory
stages on AP

Patching code
on the SoC

26

Firmware instrumentation.
Code that runs on AP

• Read memory block from Wi-Fi SoC

• Disassemble it with capstone engine

• For each BL instruction
• Get BL instruction location and target address (4 bytes)

• Encode new BL to INSTRUMENTATION stub location on SoC (4bytes)

• Add entry to LOOKUP table and PATCH table

• Write PATCH table, LOOKUP table PATCHER code,
INSTRUMENTATION stub and user tool to Wi-Fi SoC

• Hook extended version info function so PATCHER code will be
executed, when firmware calls this function

27

Firmware instrumentation.
Code that runs on AP. cont

28

BL TARGET_1

BL TARGET_2

...

ADDRESS_1

ADDRESS_2

Disassemble
and process

with capstone

LR1 TARGET_1

LR2 TARGET_2

 .

LOOKUP
TABLE

ADDRESS_1 PATCH_1

ADDRESS_2 PATCH_2

 .

PATCH
TABLE

MEMORY
REGION

FROM SOC

Write tables to
SoC

Firmware instrumentation.
Code that runs on SoC

• Disable interrupts

• Apply patches from PATCH table to code
• This is just replacing one BL instruction to another

• Enable interrupts

29

Firmware instrumentation.
Code that runs on SoC cont

30

DISABLE IRQ

APPLY PATCHES
FROM TABLE

HOOKED EXTENDED VERSION INFO
FUNCTION (NEVER CALLED BY DRIVER)

ENABLE IRQ

CONTINUE
FUNCTION EXEC

PATCHER CODE

Firmware instrumentation/
Useful tools

• Searching frame signatures in function parameters (e.g. MAC,
BSSID…)
• Identifying parsing routines

• Also we can identify useful routines for escalation to AP

• Collection of thread context and parameters before function
calls
• Can be used for fuzzing

• Can help RE (for example call stacks)

• ThreadX block pools state monitoring
• Can help understand how to exploit vulnerability

31

Exploitation mitigations on
Wi-Fi SoC

• Almost nothing
• No ASLR

• Very limited resources of chip

• No DEP
• All MPU memory regions configured as RWX

• No stack cookies, allocator/deallocator verifications
• Possibly by RTOS design

32

Hunting for bugs

• Manual
• Hard!

• Fuzzing – still feasible using afl-unicorn fuzzer
• Mix of AFL and QEMU mode patch applied to Unicorn emulator

originally created by Nathan Voss

• Check out materials on medium how to fuzz arbitrary code or CGC
binary example

33

https://github.com/Battelle/afl-unicorn
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5

Fuzzing firmware

• Identify parsing routines and their arguments using self-made
DBI

• Write fuzzer using afl-unicorn which will fuzz this routines

• Looks like an easy target

34

Fuzzer workflow

• MAP necessary memory regions using modified version of
Unicorn
• We have already dumped them using our tool

• Setup register context
• Capture this one using DBI tool, or function hooking

• Read mutated input file and map it into emulator memory
• Identify parsing routines using DBI and pass mapped memory block as

function parameter

• Start code execution
• All SET !!!

35

Challenges of fuzzing
firmware

• It is difficult to locate and remove checksum code especially in
authenticated frame handing routines

• Out fuzzer depends on global state captured at the time when
we created dump of SoC memory. Memory dump can contain
saved state of global vars, block pools…etc which can prevent
certain execution path to be reached by fuzzer.

• No memory access sanitization (however it can be
implemented)

• Communication between RTOS tasks cannot be implemented,
so some paths cannot be reached

36

Results of fuzzing

37

Disclosure timeline

• Some bugs were founded ~4

• Vendor notified – 02 May 2018

• Submitted for ZeroNights – September 2018

• Talk selected for presentation – October 2018

• Presentation slides reviewed by Marvell – 12 November 2018

• ZeroNights conference – 21 November 2018

• Still fixing

38

Testing on other devices

• Different memory layout on different chips

• Different dynamic memory layout on different firmware versions

• May depend on interconnection BUS type

• Bugs are still present!
• Compared 88W8897 firmware from linux-firmware with steamlink repo

firmware

• Compared SDIO 88W8897 with PCI 88W8997 (Samsung Chromebook)

39

The most interesting bug to
be exploited

• The most interesting bug is the one that can be triggered
during network scan

• There is no authentication

• There is no need to know which network name (SSID) victim is
expecting

• Can be triggered whether a victim is connected to
network or not and without ANY user interaction (every
5 minutes in case of Marvell Wi-Fi)

• Appears to be a ThreadX block pool overflow during network
scan

40

ThreadX block pool overview

PTR Block 1 PTR Block 2 Block nNULL

free list

TX_BLOCK_POOL
STRUCTURE

41

ThreadX block pool overview
cont.

42

BLOCK_1

PTR_TO_2

BLOCK_2

PTR_TO_1

BLOCK_3

PTR_TO_4

BLOCK_N

NULL

LINKS CAN BE REARANGED

ThreadX block pool
allocation of block

PTR Block 1 PTR Block 2 Block nNULL

free list

TX_BLOCK_POOL
STRUCTURE

PTR Block 1 PTR Block 2 Block nNULL

free list

TX_BLOCK_POOL
STRUCTURE

Previous free list RED
pointer returned to caller

43

Exploitation – basic
technique

• Relocate next block to location where some function pointers or
even regular code reside

• By writing to this newly allocated block attacker can overwrite
code or function pointers

44

Returning attacker-
controlled pointer to caller

PTR Block 1 PTR Block 2 Block nNULL

free list

TX_BLOCK_POOL
STRUCTURE

PTR Block 1 PTR Block 2 Block nNULL

free list

Previous attacker-
overwritten RED pointer

returned to caller

TX_BLOCK_POOL
STRUCTURE

Two consequent
allocation calls

45

Exploitation – a simpler way

• Marvell implementation of block deallocator wrapper function
listed below

• Allows direct code execution after freeing block if we can
overwrite metadata in the beginning of the block

46

Exploitation – a simpler way

BLOCK_1

PTR_TO_STRUCT

BLOCK_2 BUSY

Attacker-controlled

PTR_TO_LOGPTR_TO_STRUCT

47

Exploiting Valve Steamlink

• Linux kernel 3.8.13-mrvl arm7L

• Wireless – Marvell Avastar 88W8897 chipset

• Wireless firmware version – “w8897o-B0, RF8XXX, FP68,
15.68.7.p206”

• SDIO bus

• Wireless driver – mlan + mlinux proprietary kernel modules
(sd8897.ko + 8897mlan.ko)

48

Exploit – stage1

• Exploit RCE bug in Wi-Fi firmware and gain control over Wi-Fi
SoC
• Beacon frame spraying

• Because shellcode from just one frame is not enough

• Beacon frames are located at predictable location (for certain fw version)

• Egg-Hunter execution
• this is all what we can deliver in a single frame

• BRANCH to sprayed code
• remember ARM address alignment requirements

49

Exploit – stage1 pic
Wi-Fi SoC Memory

Sprayed Beacon
frame location

Egg-hunter
code execution

50

Escalation attack surface

51

Operating
System Driver
which parses

responses from
Wi-Fi SoC

Command
responses

Event notifications
General data

packets

Application
Processor Wi-Fi SoC

Command
General data

packets

We can exploit
vulnerabilities in host
driver command packet
parser to gain execution on
application processor

Escalation attack surface
cont.

52

TYPICAL
DEVICE DRIVER

USER REQ/
RESP

PARSING

DEVICE EVENTS/
REQ/RESP
PARSING

APPLICATION DEVICE

This is our
ESCALATION
attack surface

Exploit – stage2

• Prepare for escalation to application processor
• Hook function in firmware which sends “event” packets to host

• Craft special firmware API response packet(s) or event packet(s) which
triggers vulnerability in Marvell mlan+mlinux driver

53

How to write stage2
shellcode

• Information on structure of event packets can be obtained from
driver source

• We can write a DBI tool to search for this structures in Wi-Fi
SoC memory

54

Analysing linux driver

• Large project (somewhat ~150 KLOC)

• However driver has a good debug functionality that can be
configured at runtime
• Trace functions called in driver

• Hex dump packets from Wi-Fi SoC and more

55

Using libtooling to analyze
big amount of source code

• Write your own tool using AST information from libtooling to
identify potential dangerous code
• memcpy with variable length

• memcpy to stack buffers

• Collect information from your tool and manually analyze it

• ~2 days to code, ~1 min to parse, ~20 minutes to analyze logs
and search for vulnerability

56

Exploit – stage3

• Execution on host AP in kernel mode
• Preparatory stages (ROP) – steamlink uses kernel without ASLR

• We need preparatory stages for mitigating ARM I/D-cache
incoherency

• Actual payload execution in kernel mode of Application Processor

57

Exploit requirements

• HARDWARE
• Wi-Fi dongle with monitor

mode and frame injection
capabilities

• ALFA networks appears to be
the best in injecting frames and
doing it FAST (rtl8287 chip)

• SOFTWARE
• Kali GNU/Linux

• Scapy python framework

58

Demo

59

Conclusions

• Wireless devices expose HUGE attack surface

• Usually no exploitation mitigation present on wireless SoC

• Device drivers may expose WIDE attack surface for escalation
from a device to host application processor

• Methods described in this research can be applied to similar
devices like Broadcom Wi-Fi and smartphone baseband
processors firmware

• Will publish full exploit write-up, exploit itself, tools and
whitepaper as soon as fix will be available

60

THANKS FOR ATTENTION

@author

