
1/13

Bypassing ASLR on 64 bit PIE Linux

Héctor Marco
Ismael Ripoll

2/13

Bypass ASLR on 64 bit PIE Linux

Server protections
ASLR Weakness
Offset2mem on a buffer overflow:

Defeating PIE
Stack Buffer Overflow
Guessing offsets
Building the ROP

Offset2mem on web browsers
Demo on Ubuntu 64 bits 12.10

3/13

Bypass ASLR on 64 bit PIE Linux

Application Protections:

Full ASLR
SSP enabled
NX enabled
App. PIE
Full RELRO
64 bit compiled

randomize_va_space = 2
-fstack-protector-all
PAE or x64
-fpie -pie
-wl, -z, -relro, -z, now
-m64

4/13

ASLR Weakness

Linux ASLR randomizes only the first mapped area (i.e. library).
Subsequent maps are put side by side.

A PIE executable is mapped as a normal a shared library.

As a result the mapping distance between the application and any other memory region
is always the same. We will call this “Offset2mem” technique.

Once we know one single address, we can calculate any other → ASLR is defeated.

Constant !!!

5/13

Defeating PIE

return address

saved RBP

buffer

return address

saved RBP

frame canary

Higher
addresses

Lower
addresses

Stack growth

return address

saved RBP

...

...

...

buffer

...

Stuff on the stack:
When a function is called, the
instruction pointer is pushed onto the
stack to allow the program to return to
the site of the call later.

Depending on the bug, it is possible
do bruteforce to the return address.

6/13

Defeating PIE

Stack buffer overflow

This kind of bugs allow to brute force the
return address
Knowing the return address PIE is
defeated.

return address

saved RBP

buffer

return address

saved RBP

frame canary

Higher
addresses

Lower
addresses

return address

saved RBP

...

...

...

buffer

...

Stack growth

7/13

Defeating PIE

0x????????????????
...

buffer

return address

...

...

Higher
addresses

Lower
addresses

vulnerable()
stack frame

memcpy()
stack frame

return address

...

attend()
stack frame

...

...

...

buffer

...

Stack growth

8/13

Defeating PIE

0x00007F???????2DF

Hardcoded Unknown

Page number where the call is made (page_no_of_the_call).
 We will use this number to obtain the base address of the

application .text

Saved RIP

9/13

Defeating PIE

Bruteforcing unknown bytes (byte for byte strategy)
Only to 3 and a half bytes.
Max trials: 256*3 + 128 = 896
Very quick: less than 1 second.

Non-optimized code
Bruteforcing RBP

Help to derandomize the stack.
Most applications optimize code (no RBP).
It is not as good as saved RIP reference.

Since RIP is always available, it is better to bruteforce against the saved
RIP.

0x00007F???????2DF

10/13

Guessing offsets

The offset from executable to libraries depends the Linux
distribution (the size of each library and local mappings):

But it is always constant on the same system.

Some libc offsets:
Ubuntu 12.10 = 0x5e4000
Ubuntu 12.04 L.T.S = 0x5e4000
Debian 7.1 = 0x5ac000

Using offset2mem we can use as many mapped libraries as
we need to create the ROP:

We are not limited to use only the libc library.

11/13

Building the attack

Steps to bypass ASLR 64 bits for a PIE compiled application
1. Extract low bits from the application.
2. Make a brute force attack against Saved RIP

Set high bits (0x00007Fxxxxxxxxxx)

Set low bits previously extracted (0x00007Fxxxxxxx2DF)

Obtain the page number where the call is performed.
Obtain saved RIP by bruteforce (less than 1 second)

3.Obtain the base address of the application .text
Text_Base = (Saved RIP) & ~0xFFF – (page_no_of_the_call << 12)

4.Subtract Base to the OFFSET
Text_Base – 0x5e4000 = libc mapping

Text_Base – 0x???000 = other library mapping

5. Build the ROP
Use as many libraries as needed to build the ROP attack.

12/13

Other applications of the Offset2mem

Firefox

Chrome

We know the distance between the sprayed area and the
application.

Add reliability to current exploitation techniques

It can open the door to new exploitation techniques.

13/13

Conclusions

For this kind of vulnerability (byte-for-byte overflow) the PIE is
worse than NON-PIE !!

Since all the areas are mapped side by side on a PIE
application, it is possible to calculate the address of the
libraries.

Offset2mem technique is not limited to bruteforce Saved EIP.
This technique only require know an application value (.text,
stack, heap …) to obtain the full mapping of all libraries.

	First Slide Example
	Default Example
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13

