

Security Vulnerability Notice

SE-2014-01-ORACLE

[Security vulnerabilities in Oracle Database Java VM, Issues 1-20]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered multiple security vulnerabilities in the implementation of a
Java VM embedded by Oracle Database software. Below, we provide technical details of our
findings in a form of two sections. The first section outlines the weaknesses uncovered. The
second one describes privilege elevation techniques for gaining DBA role privileges in a
target database upon a successful compromise of its incorporated Java VM.

1. VULNERABILITIES

Almost all of discovered security vulnerabilities are the result of insecure implementation of
Java Reflection API. Their successful exploitation can easily lead to the full compromise of a
Java security sandbox of a target database server instance. This can further be exploited to
execute arbitrary OS commands on a database server or to gain administrator privileges in a
target Oracle Database.

A table below presents a summary of discovered Java security issues:

ISSUE

TECHNICAL DETAILS

1 origin oracle.jpub.reflect.RObject

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation

type complete security bypass vulnerability

2 origin oracle.jpub.reflect.RMethod

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation

type partial security bypass vulnerability

3 origin oracle.jpub.reflect.RClass

cause insecure use of getDeclaredMethod() method of java.lang.Class class

impact access to declared methods of arbitrary classes

type partial security bypass vulnerability

4 origin oracle.sqlj.runtime.OraDynamicClosure

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation

type complete security bypass vulnerability

5 origin oracle.jpub.reflect.RClass

cause insecure use of forName() method of java.lang.Class class

impact access to arbitrary classes

type partial security bypass vulnerability

6 origin oracle.jpub.reflect.RClass

cause insecure use of getDeclaredConstructor() method of

java.lang.Class class

impact access to declared constructors of arbitrary classes

type partial security bypass vulnerability

7 origin oracle.jpub.reflect.RClass

cause insecure use of getMethod() method of java.lang.Class class

impact access to methods of arbitrary classes

type partial security bypass vulnerability

8 origin oracle.jpub.reflect.RClass

cause insecure use of forName() method of java.lang.Class class

impact access to arbitrary classes

type partial security bypass vulnerability

9 origin oracle.jpub.reflect.RClass

cause insecure use of getDeclaredConstructor() method of

java.lang.Class class

impact access to declared constructors of arbitrary classes

type partial security bypass vulnerability

10 origin oracle.jpub.reflect.RClass

cause insecure use of getMethod() method of java.lang.Class class

impact access to methods of arbitrary classes

type partial security bypass vulnerability

11 origin oracle.aurora.util.ClassDescription

cause insecure use of getDeclaredFields() method of java.lang.Class class

impact access to declared fields of arbitrary classes

type partial security bypass vulnerability

12 origin oracle.aurora.util.JRIExtensions

cause insecure access bits of a native method

impact arbitrary field access

type partial security bypass vulnerability

13 origin oracle.sqlj.runtime.OraDynamicClosure

cause insecure use of getDeclaredMethod() method of java.lang.Class class

impact access to declared methods of arbitrary classes

type partial security bypass vulnerability

14 origin oracle.jpub.reflect.Server

cause insecure use of forName() method of java.lang.Class class

impact access to arbitrary classes

type partial security bypass vulnerability

15 origin oracle.jpub.reflect.Server

cause insecure use of getConstructor() method of java.lang.Class class

impact access to constructors of arbitrary classes

type partial security bypass vulnerability

16 origin oracle.sqlj.runtime.OraDynamicClosure

cause insecure use of getDeclaredMethod() method of java.lang.Class class

impact access to declared methods of arbitrary classes

type partial security bypass vulnerability

17 origin oracle.sqlj.runtime.OraDynamicClosure

cause insecure use of forName() method of java.lang.Class class

impact access to arbitrary classes

type partial security bypass vulnerability

18 origin sqlj.runtime.profile.ref.IterConvertProfile.IterConvertSta

tement

cause insecure use of getDeclaredConstructor() method of

java.lang.Class class

impact access to declared constructors of arbitrary classes

type partial security bypass vulnerability

19 origin oracle.sqlj.runtime.OraDynamicClosure

cause insecure use of getMethod() method of java.lang.Class class

impact access to methods of arbitrary classes

type partial security bypass vulnerability

Reported Java security sandbox bypass issues illustrate known and widely discussed security
risks related to the use of Java SE Reflection API. They are caused by exactly the same
violations of Oracle's own Secure Coding Guidelines [1] as we reported for Java SE [2] and
Oracle Java Cloud Service [3].

Arbitrary Java class loading and execution (Issue 20)
According to [4], a user needs CREATE PROCEDURE privilege to define Java classes (source
and binary) and resources in a target Oracle Database environment. The same

documentation specifies that LOADJAVA tool additionally requires CREATE TABLE privilege to
load arbitrary classes into a database.

The above is true from a database point of view, but not necessarily from a Java VM
execution engine perspective.

There exists a way for an unprivileged user (with a CREATE SESSION privilege only) to both
"load" and execute arbitrary user provided classes in Oracle Database server. This can be
accomplished with the use of the following features of Oracle Database Java VM:

 dbms_java.start_loading_jar and dbms_java.finish_loading_jar

expose a functionality to load arbitrary JAR files (containing Java classes) into the
Oracle Database. The content of loaded JAR objects is visible along the system JAR

files in a system JAVAJAR$ table,

 Oracle Database Java VM implements internal jserver URL protocol that allows to

reference JAR objects and resources defined in user schemas. The content of JAR

files loaded into the database can be accessed through jserver URL protocol

(jserver:/CP/JAR/SCHEMA/schemaname/jarname)

 A classpath term beginning with the literal substring "JSERVER_CP" is converted to

an URL by replacing JSERVER_CP with jserver:/CP [4],

 dbms_java.runjava allows for execution of arbitrary Java classes. The call can be

provided with an argument denoting a classpath.

We verified that a user with a bare minimum CREATE SESSION database privilege can
successfully "load" and execute arbitrary user provided classes in Oracle Database server.

The loaded classes are not fully defined in a database environment (i.e. invisible to ALTER
JAVA or DROP JAVA constructs). This is however not an obstacle at all, as the possibility to
load and execute malicious Java code is completely sufficient to successfully compromise the
security of Oracle Database as explained in the next section of this paper.

Attached to this report, there are 8 Proof of Concept codes illustrating discovered
weaknesses. Their successful exploitation allows for a complete Java security sandbox
bypass in a target Oracle Database environment.

2. PRIVILEGE ELEVATION TECHNIQUES
Proof of Concept Codes accompanying the reported vulnerabilities implement 3 different
exploitation techniques that allow to gain DBA role privileges in a target database upon a
successful compromise of its embedded Java VM. These exploitation techniques are briefly
described below.

Exploitation through sqlplus command execution

The most naive method for gaining database administrator privileges can be accomplished

by the means of arbitrary sqlplus command execution. Escape of a Java security sandbox

allows for execution of arbitrary binaries on a database server through Runtime.exec()

method.

Spawned sqlplus process can be provided with arbitrary PL/SQL command input. The

commands are executed with database administrator privileges if sqlplus process is

started in DBA administrator mode:

sqlplus / as sysdba

The described exploitation technique might not be applicable if

dbms_java.set_runtime_exec_credentials procedure is used to control OS user

identities of spawned commands.

Exploitation through a privileged definer frame
Oracle database employs the idea of a DEFINER and CURRENT_USER authorization types for
PL/SQL code. The same applies to Java methods. Methods of a class marked as AUTHID
DEFINER execute with the privileges of a class owner. Methods of a class marked as
AUTHID CURRENT_USER execute with the privileges of a caller. Internal identity stack
structure helps evaluate the effective ID of the code for security verification purposes.

The security model implemented by Oracle Database lacks the advantages of the scoped
privilege model with stack inspection [5] introduced into JDK 1.2 and Netscape 4.0 more
than 15 years ago. In this model, a given privilege must be explicitly granted to the code
requesting restricted operation, it must be explicitly enabled before a potentially harmful
operation. Finally, it is valid only for the stack frame of the code that enabled it. By using
privileges along with a stack inspection mechanism, the threat of escaping the Java applet
sandbox through exploitation of some potentially vulnerable system class is drastically
minimized. This is due to the fact that in Java all method frames from within a trusted call
sequence (i.e. privileged method block) are inspected during privilege checking operation. In
Oracle Database case, usually only the top of the identity stack matters. This means that an
arbitrary call to attacker provided code (PL/SQL or Java marked as AUTHID
CURRENT_USER) made from within the trusted call sequence will not affect the effective
privileges seen by the database security engine. The reason for it is because only AUTHID
DEFINER classes influence the content of the identity stack. This is illustrated on Fig. 1.

Fig. 1 Illustration of Oracle Database privilege model as seen by the embedded Java VM.

This deficiency of Oracle Database security model has been the subject of abuse for many
years [6][7]. The majority of the techniques exploited vulnerabilities in a privileged PL/SQL
code to inject arbitrary PL/SQL code of attacker's choice.

at oracle.jdbc.driver.T2SConnection.check_error

at oracle.jdbc.driver.T2SStatement.checkError

at oracle.jdbc.driver.T2SStatement.executeForRows

at oracle.jdbc.driver.OracleStatement.doExecuteWithTimeout

at oracle.jdbc.driver.OracleStatement.executeQuery

at oracle.jdbc.driver.OracleStatementWrapper.executeQuery

at DBE.run_privileged

at DBE.dp7

at oracle.aurora.rdbms.security.DefinersVersionedObject.get

UNPRIVILEGED STACK FRAMES

Oracle Database privilege model allows for arbitrary

injection of untrusted Java code in a privileged call

sequence

JVM CALL STACK DB ID STACKEFFECTIVE ID

SYSSYS

SYS

SYS

SYS

SYS

SYS

SYS

SYS

SYS

Class DBE

AUTHID: CURRENT USER

OWNER: NOPRIVUSER

Class DefinersVersionedObject

AUTHID: DEFINER

OWNER: SYS

Below, we present 2 techniques that exploit the abovementioned weakness of Oracle
Database security model through the embedded Java VM. Both of them can be successfully
used to elevate privileges in Oracle Database environment upon a complete Java security
sandbox bypass of the incorporated Java VM. Both techniques abuse the implementation of
AUTHID DEFINER construct for database procedures and functions defined in a Java
language.

Please note, that for the purpose of further discussion, the terms AUTHID DEFINER class /
definer class or simply definer are used interchangeably.

Definer spoofing
Java VM runtime of Oracle Database maintains a dedicated stack of identities for a given

execution context. This is the eocontext_idstk field of struct eocontext. Upon

invocation of a given Java method represented internally by struct jom_method, its

jom_method_access field is inspected to see whether a value corresponding to the

method's owner should be pushed onto the identity stack:

 test r12d, 10000h ; is JOM_ACC_DEFINERS set ?

 jz short loc_5BEB7B4

 mov rcx, r15 ; eocontext *ctx

 mov rdx, r13 ; jom_active_clint *id

 mov r8, r14 ; eoforptr *frame

 call _joet_push_id__

loc_5BEB7B4:

If JOM_ACC_DEFINERS flag is set in method access flags, the id of the method's owner

gets pushed onto the identity stack.

The interesting things happen in joet_push_id code:

 mov rbx, r8 ; frame

 mov r15, rdx ; jom_active_clint

 mov rsi, rcx ; ctx

 mov rcx, rsi

 call _joet_id_stack_top__

 mov r10, rax ; eocontext_idstk

 mov r14, r15

 and r14, 0FFFFFFFFFFFFFFF8h

 mov rbp, [r14+28h] ; jom_active_clint_pair

 test r10, r10 ; eocontext_idstk

 jz short loc_5BF9D1F

 test rbp, rbp

 jz short loc_5BF9D1F

 mov rdx, r10 ; eocontext_idstk

 and rdx, 0FFFFFFFFFFFFFFF8h

 cmp rbp, [rdx+18h] ; are eoidstk_pairs equal ?

 jz loc_5BF9F03 ; jump to exit if equal

loc_5BF9D1F:

In the above code, jom_active_clint_pair field of jom_active_clint structure is

compared to the top element of the identity stack. If they are equal (in terms of pointer's
equivalence), no value is pushed onto the identity stack. This condition corresponds to the

invocation of the method from the class of which owner has been already pushed onto the
identity stack (effective ID does not change across calls).

Fig. 2 Internal memory representation of certain structures in Oracle Database Java VM.

The implementation described above lies at the origin of a definer spoofing privilege
elevation technique demonstrated in our Proof of Concept Codes. By exploiting Java
Reflection API implementation, one can easily break both Java type and memory safety [8].
This can be further abused to inspect internal memory representation of runtime Java
objects and certain Java VM structures of a target Oracle Database. This in particular

includes jom_active_class structure illustrated on Fig. 2.

The unpublished eoidstkpair_handle field can be accessed by navigating through

internal Class and identity stack pair structures. It contains several fields that among other
things hold a user identifier value corresponding to the owner of the class. The initial
reference to internal Class structure can be read from either Java object instance (Oracle
Database 11g) or Java Class instance (Oracle Database 12c).

By changing a field of eoidstkpair_handle structure to the SYS user id value1, one can

easily spoof the identity of the called methods and effectively the identity seen by Oracle
Database security engine. There are however several important requirement for this to
occur.

 The method's owner class needs to be marked as AUTHID DEFINER, so that the

jom_active_class_pair field is assigned a non-NULL value. For classes marked

as AUTHID CURRENT_USER, jom_active_class_pair field is usually NULL (no

1
 User identifiers can be enumerated with the use of "select user_id || ' ' || username from

dba_users order by user_id" PL/SQL query.

struct joe_obj

Java object instance (11g)

struct jom_active_class

Internal Class representation

ub4 joe_obj_hdr;

ub4 joe_obj_hashval;

jom_active_class* joe_obj_isa_slot;

ub1 joe_obj_slots[1];

ub4 jom_active_class_hdr;

joe_static* jom_active_class_static_vars;

ub4 jom_active_class_flags;

ub4 jom_active_class_process_id;

jom_active_clint* jom_active_class_self;

joe_class* jom_active_class_class_object;

eoidstkpair* jom_active_class_pair;

eofnparray* jom_active_class_native_methods;

...

struct eoidstkpair

Identity stack pair

ub4 eoidstkpair_hdr;

ub4 eoidstkpair_uid;

eoforptr* eoidstkpair_handle;

ub4 eoidstkpair_handle_len;

ub4 eoidstkpair_hash;

Identity stack pair handle

EFFECTIVE ID OF THE CALLER

FOR DEFINER CALL FRAME

ub2 uid;

ub4 id_name;

...

struct joe_class

Java Class instance (12c)

ub4 joe_class_hdr;

ub4 joe_class_hashval;

…

jom_active_class* joe_class_clint;

...

identity gets pushed onto the identity stack following the invocation of class'

methods, thus no need to cache eoidstkpair pointer value),

 The attacker needs to be granted CREATE PROCEDURE privilege in order to define

Java classes in a database environment (ALTER JAVA CLASS construct setting

AUTHID DEFINER property requires properly defined Java classes visible in the

database environment).

Abuse of a system definer class
If CREATE PROCEDURE privilege is not available in a target environment, definer spoofing
cannot be applied directly for the reasons outlined above. Privilege elevation can however
still take place. All that is needed for that purpose is a system class already defined in Oracle
Database environment that is marked as AUTHID DEFINER and is owned by a privileged
database identity.

There are several such classes in Oracle Database environment. The

oracle.aurora.rdbms.security.DefinersVersionedObject is in particular

interesting due to the possibility to inject arbitrary, attacker provided code into the code
path following the invocation of some of its methods:

class DefinersVersionedObject {

 DefinersVersionedObject(Schema schema, String name) {

 vo = new VersionedObject(schema, name);

 }

 ...

 void refresh() {

 vo.refresh();

 }

 Object get() {

 return vo.get();

 }

 ...

}

DefinersVersionedObject constructor initializes its vo field with a reference pointing to

an instance of oracle.aurora.rdbms.security.VersionedObject class. Further,

some of its methods are called from within the AUTHID DEFINER class. This creates the
possibility for the abuse of the definer ID pushed as a result of the invocation of the method

of DefinersVersionedObject class. What one needs is the possibility to set vo field to

the object value controlled by an attacker, so that vo.get() method dispatch will call

attacker code. This can be accomplished by the means of arbitrary memory write operation.

The object that gets written to the vo field does not however need to be type compatible

with VersionedObject. It just needs to implement several dummy placeholder methods

corresponding to the spoofed oracle.aurora.rdbms.security.VersionedObject.

They are required to properly dispatch vo.get() method call through attacker provided

code (through proper method slot). Illustration of this privilege elevation technique is shown
on Fig. 3.

Fig. 3 Illustration of a privilege elevation technique through arbitrary definer system class.

All reported vulnerabilities and exploitation techniques were successfully verified in the
environment of the following Oracle Database software:
 Oracle Database 11g Release 2 (11.2.0.1.0) for Microsoft Windows x64
 Oracle Database 11g Release 2 (11.2.0.4.5) Patch Bundle 18590877 for Microsoft

Windows x64
 Oracle Database 12c Release 1 (12.1.0.1.0) for Microsoft Windows x64
 Oracle Database 12c Release 1 (12.1.0.1.9) Bundle Patch 18724015 for Microsoft

Windows x64

REFERENCES

[1] Secure Coding Guidelines for the Java Programming Language, Version 4.0,
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

[2] Security Vulnerabilities in Java SE, technical report,

http://www.security-explorations.com/materials/se-2012-01-report.pdf

[3] Security vulnerabilities in Oracle Java Cloud Service, Issues 1-28,

http://www.security-explorations.com/materials/SE-2013-01-ORACLE.pdf

[4] Oracle Database Java Developer's Guide, 11g Release 2 (11.2),

http://docs.oracle.com/cd/E18283_01/java.112/e10588.pdf

[5] Understanding Java Stack Inspection, Dan S. Wallach, Edward W. Felten,

http://sip.cs.princeton.edu/pub/oakland98.pdf

[6] David Litchfield's papers on Database Security,

http://www.davidlitchfield.com/security.htm

[7] Oracle Security Whitepapers from Red-Database-Security,

http://www.red-database-

security.com/whitepaper/oracle_security_whitepaper.html

[8] Security threats in the world of digital satellite television,

DefinersVersionedObject

instance

AUTHID: DEFINER

OWNER: SYS

VersionedObject vo

DBE instance

 private static Object sdp1() {return run_privileged();}

 private static Object sdp2() {return run_privileged();}

 private static Object sdp3() {return run_privileged();}

 private static Object sdp4() {return run_privileged();}

 private static Object sdp5() {return run_privileged();}

 private static Object sdp6() {return run_privileged();}

 private static Object sdp7() {return run_privileged();}

 private static Object sdp8() {return run_privileged();}

 private Object dp1() {return run_privileged();}

 private Object dp2() {return run_privileged();}

 private Object dp3() {return run_privileged();}

 private Object dp4() {return run_privileged();}

 private Object dp5() {return run_privileged();}

 private Object dp6() {return run_privileged();}

 private Object dp7() {return run_privileged();}

 private Object dp8() {return run_privileged();}

AUTHID: CURRENT USER

OWNER: NOPRIVUSER

VersionedObject instance

AUTHID: CURRENT USER

OWNER: NOPRIVUSER

…

Object get()

...

original code path

vo.get()

exploit code path

…

Object get()

...

run_privileged()

executed with

effective ID of

SYS

http://www.security-explorations.com/materials/se-2011-01-hitb1.pdf

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

