
Background

The Apache HTTP Server is an open-source HTTP server for
modern operating systems including UNIX, Microsoft Windows,
Mac OS/X and Netware. The goal of this project is to provide a
secure, efficient and extensible server that provides HTTP
services observing the current HTTP standards. Apache has been
the most popular web server on the Internet since April of 1996.

Problem Description

During routine testing, an integer overflow was found in
apache2-mpm-worker 2.2.19 in the function ap_pregsub called
from mod-setenvif. The issue affects all versions from XXXX
up to 2.2.20, not depending on the mode of operation (worker,
prefork, ..). When a header field is mangled using SetEnvIf, the
new environment variable data can be multiples of the size of
the submitted header field. When ap_pregsub from server/util.c
calculates the buffer size using

 else if (no < nmatch && pmatch[no].rm_so < pmatch[no].rm_eo) {
 len += pmatch[no].rm_eo - pmatch[no].rm_so;
 }

the length value overflows and is used in a subsequent allocation
call of buffer too small:

 dest = dst = apr_pcalloc(p, len + 1);

The subsequent filling of the buffer with user-supplied data leads
to buffer overflow. Even without overflowing, the allocation of
significant amounts of server memory for excessivly large
environment variables should be considered a problem also.

Impact

Depending on the input data, exploitation of this issue leads to:

allocation of large quantities of server memory, killing
processes due to out-of-memory conditions or reducing
system performance to crawl due to massive swapping.

Integer Overflow in Apache ap_pregsub via mod-setenvif http://www.halfdog.net/Security/2011/ApacheModSetEnvIfInte...

1 of 3 11/2/11 7:53 AM

invalid memory access when copying more than 4GB of
data into the much smaller buffer. Since the loop copying
the data uses only stack and libc-heap, not the apr pool,
for source and destination addresses, copy process is
linear, starting at low address and pool is separated by
unaccessible memory pages for protection on linux.
Usually this will only cause termination of the apache
process, which is restarted automatically. The impact is
increased system load and DOS-condition while under
attack.
At least with multi-threaded server (worker), arbitrary
code execution is proven, on single-threaded varians, the
use of crafted stop-sequences might allow code execution
even on these systems. On many systems ASLR will
reduce the efficiency of the attack, but even with ASLR
enabled, the automatic restart of processes allows to probe
for all possible mappings of libc. An attacker, that has
already access to another account on the machen, might be
able to use ApacheNoFollowSymlinkTimerace to learn the
memory map of the process, thus having the posibility to
reach nearly 100% efficiency.

To trigger this issue, mod_setenvif must be enabled and the
attacker has to be able to place a crafted .htaccess file on the
server. Since the triggering of the exploit might depend on a
magic header field, the malicious .htaccess might be placed as
backdoor in web-content .zip files or could be stored dormant on
the server until activation by the corresponding magic request.

Workaround

On workaround is to disable the module when not needed.
Another one is to disable use of .htaccess on all user-modificable
locations by setting AllowOverride None on all corresponding
directories.

Solution

The fix for the integer overflow in ap_pregsub (server/util.c,) is
tivial, e.g.

 oldlen=len=0
 else if (no < nmatch && pmatch[no].rm_so < pmatch[no].rm_eo) {
 len += pmatch[no].rm_eo - pmatch[no].rm_so;
// Return NULL on error

Integer Overflow in Apache ap_pregsub via mod-setenvif http://www.halfdog.net/Security/2011/ApacheModSetEnvIfInte...

2 of 3 11/2/11 7:53 AM

 if(len<oldlen) return(NULL);
 }

Apart from the overflow, a discussion on reasonable sizes for
environment variables should be started to deal with the
memory consumptin problem. Without limits, another
problematic section is in ap_pregsub (server/util.c,) should be
fixed also. At the moment, the return value from from
apr_pcalloc is not checked, leading to a NULL-pointer
dereference. Fix

 dest = dst = apr_pcalloc(p, len + 1);
 if(!dest) return(NULL);

Timeline

20110715: Initial discovery, report to apache security
20110716: Ubuntu bug report 811422
20111011: Feedback from apache security, impact low,
go ahead with preparation of advisory.
20111031: Feedback from apache security on advisory,
OK for public release
20111102: Public release via bugtraq and full disclosure

References

CVE: CVE-2011-3607
Ubuntu bug report: 811422
apache bug ID?
Demo exploit: http://www.halfdog.net/Security
/2011/ApacheModSetEnvIfIntegerOverflow
/DemoExploit.html

Last modified 20111102
Contact e-mail: me (%) halfdog.net

Integer Overflow in Apache ap_pregsub via mod-setenvif http://www.halfdog.net/Security/2011/ApacheModSetEnvIfInte...

3 of 3 11/2/11 7:53 AM

